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Abstract

It has recently been demonstrated that selective inhibition of both neuronal constitutive and inducible nitric oxide synthases
(ncNOS and iNOS) is neuroprotective in a model of dynorphin (Dyn) A(1-17)-induced spinal cord injury. In the present study,
various methods including the conversion of *H-L-arginine to 3H-citrulline, immunohistochemistry and in situ hybridization are
employed to determine the temporal profiles of the enzymatic activities, immunoreactivities, and mRNA expression for both
ncNOS and iNOS after intrathecal injection of a neurotoxic dose (20 nmol) of Dyn A(1-17). The expression of ncNOS
immunoreactivity and mRNA increased as early as 30 min after injection and persisted for 1-4 h. At 24-48 h, the number of
ncNOS positive cells remained elevated while most neurons died. The cNOS enzymatic activity in the ventral spinal cord also
significantly increased at 30 min—48 h, but no significant changes in the dorsal spinal cord were observed. However, iNOS mRNA
expression increased later at 2 h, iNOS immunoreactivity and enzymatic activity increased later at 4 h and persisted for 2448
h after injection of 20 nmol Dyn A(1-17). These results indicate that both ncNOS and iNOS are associated with Dyn-induced
spinal cord injury, with ncNOS predominantly involved at an early stage and iNOS at a later stage. © 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction toxins or cytokines. The iNOS produces NO in large
quantities independent of intracellular calcium.

Nitric oxide (NO) is synthesized from L-arginine by NO production as well as NOS.actiVity, %ml}qunore-

NO synthase (NOS), an enzyme which exists in multiple activity (IR), and mRNA expression are significantly

isoforms in various species. In the central nervous increased in cerebral ischemia (Zhang et al., 1994;

system (CNS), two constitutive isoforms of NOS Ia'decol'a et al., 1995a,b; Kuppusamy et al.,. 1995;
(cNOS) are expressed, one in neurons (ncNOS) and Higuchi et al., 1996; Rao et al., 1998), experimental

another in endothelial cells. An inducible isoform of allergic encejpha.litis (Hooper et al., 1995; Van Dam et
NOS (iNOS) is expressed in a wide variety of cells, gl., 1995), viral infection (Adamson et al., 1996;. Meyd-
notably in macrophages or glia, after exposure to endo- ing-Lamade et al., 1998; Haas et al., 1999; Li et al,

1999) and excitotoxic injuries (Schmidt et al., 1995;

* Corresponding author. Tel.: + 86-23-6880-8963; fax: + 86-23- Lecanu et al., 1998; Perez-Severiano et al., 1998). Vari-
6870-5094. T T ous injuries to the brain (Rao et al., 1998; Stojkovic et
E-mail address: huwenhui98@hotmail.com (W.-H. Hu) al., 1998; Wada et al., 1998, 1999) and spinal cord (Wu

0891-0618/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0891-0618(99)00039-3



184 W.-H. Hu et al. /Journal of Chemical Neuroanatomy 17 (2000) 183—197

et al., 1994; Hamada et al., 1996; Vizzard, 1997,
Guizar-Sahagun et al., 1998; Winkler et al., 1998; Xu et
al., 1998; Kaur et al., 1999) as well as axotomy (Herde-
gen et al., 1993; Rossiter et al., 1996; Nakagomi et al.,
1999) also elevate NOS/NO expression. However, the
implication of increased NOS/NO expression after CNS
injury remains contentious. Various isoforms of NOS
may play different roles in the double-edged effects of
NO in CNS injury.

Dynorphin (Dyn) A(1-17), an endogenous kappa
opioid ligand, induces transient or permanent paralysis
of hindlimbs and tails upon intrathecal (i.t.) injection of
high doses in normal rats (Faden, 1990; Long et al.,
1994; Shukla and Lemaire, 1994; Tian et al., 1994),
while its analgesic effects remain controversial (Hylden
et al., 1991; Dubner and Ruda, 1992; Laughlin et al.,
1997). After traumatic or inflammatory spinal cord
injury (SCI), both the content of endogenous Dyn
A(1-17) and the expression of prodynorphin mRNA
are markedly increased in the spinal cord, implying that
Dyn A(1-17) is implicated in SCI (Faden, 1990; Li et
al., 1997, Tachibana et al., 1998). Activation of N-
methyl-D-aspartate (NMDA) receptor is involved in the
non-opioid neurotoxic effect of Dyn A(1-17) (Faden,
1990; Skilling et al., 1992; Long et al., 1994; Shukla and
Lemaire, 1994; Chen et al., 1995). Since the calcium
channel blocker verapamil prevents the spinal cord
damage induced by Dyn, intracellular calcium may be
involved in the damage (Chen et al., 1995). Among the
intracellular events that are stimulated by calcium are
the activation of NOS and the generation of NO.
Therefore, Dyn A(1-17) may induce neurotoxicity
through the NMDA-Ca?>*-NOS pathway. Our previ-
ous study with NADPH-diaphorase histochemistry sug-
gested that Dyn spinal neurotoxicity induces NOS
expression in the ventral horn cells (Hu et al., 1996).

Table 1
Definition for neurological scoring of hindlimbs in rats

Neuroscores  Functional definition

0 No spontaneous movement

1 No spontaneous movement but responds to
hindlimb pinch

2 Spontaneous movement but unable to support
weight (stand)

3 Stands but unable to walk

4 Walks on knuckles or on the medial surface of
foot, lack of control of ankle or foot, uncoordi-
nated gait

5 Walks, coordination of forelimbs and hindlimbs in
gait, improved hindlimb postural support, abdo-
men not lowered to the ground, few toe drags

6 Walks, one or two toe drags, slight unsteadiness
turning at full speed

7 Normal gait and body support, no loss of balance

on fast turns, no toe drag

Recently, it has been demonstrated that selective inhibi-
tion of both ncNOS and iNOS is neuroprotective
against Dyn-induced SCI (Hu et al.,, 1999). In the
present study, various methods including enzyme assay,
immunohistochemistry, and in situ hybridization histo-
chemistry are employed to determine the time course of
the enzyme activities, immunoreactivities, and mRNA
expression of cNOS and iNOS after i.t. injection of a
paralyzing dose of Dyn A(1-17). These results suggest
that both ncNOS and iNOS are involved in Dyn-in-
duced SCI, with ncNOS predominantly involved at an
early stage and iNOS at a later stage.

2. Materials and methods

2.1. Animals and surgery

Wistar rats weighing 250-300 g were obtained from
the Animal Breeding Center of the Chinese Academy of
Medical Sciences. Rats were anesthetized with sodium
pentobarbital. A self-made polyethylene catheter was
inserted through a slit in the atlanto-occipital mem-
brane and pushed 7.5 cm into the subarachnoid space
around the rostral edge of the lumbar enlargement as
described by Yaksh and Rudy (1976). The placement of
the catheter tip at L, _; was confirmed at autopsy. All
animals were allowed to recover for 24—36 h and only
those rats with normal neurological function and no
abnormal responses to i.t. saline injection were used for
experiments. Ten microliters of Dyn A(1-17) (lot #
34523, Peninsula, Belmont, CA) or saline were infused
and followed by 10 pl of saline to flush the catheter.
Hindlimb neurological function was blindly evaluated
by two investigators over a 48-h period after infusion.

2.2. Evaluation of hindlimb motor function

Neurological function was assessed by a combination
of the 8-point ordinal scale described by Faden et al.
(1987) and the open field walking scale described by
Behrmann et al. (1993). The neuroscores were presented
in Table 1.

2.3. ¢NOS and iNOS activity assay

Rats were killed by decapitation. Spinal cords be-
tween T,; and L, were quickly removed (within 20 s)
onto an ice-cold paraffin plate. Under a dissection
microscope, the spinal cord was drawn apart through
the anterior median fissure and cut with a blade equally
into dorsal and ventral parts. The dorsal and ventral
parts were collected separately in Eppendorf tubes,
briefly immersed in liquid nitrogen and stored at —
70°C until the time of assay. The entire procedure from
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decapitation to freezing required ~2 min and was
maintained at 4°C.

NOS activity was measured as described previously
(Qiang et al., 1996) by detecting the conversion of
*H-L-arginine to *H-L-citrulline through a modification
of the procedure described by Bredt and Snyder (1990)
and Mayer et al. (1990). After being weighed, the
sample was homogenized in 5 volumes of cold buffer
A containing 50 mM HEPES, pH 7.4, 0.32 M sucrose,
1 mM EDTA, 0.1 mM EGTA, 1 mM phenylmethyl-
sulfonal fluoride, 1 mM dithiothreitol and 1.5 mM
2-mercaptoethanol. The homogenate was centrifuged
at 20000 x g for 60 min at 4°C. The supernatant was
tested in triplicate for assaying NOS activity and the
precipitant for assaying *H-MK801 binding. The reac-
tion buffer B contained 50 mM HEPES, pH 7.4, 1
mM B-NADPH, 30 puM 6(R)-5,6,7,8-tetrahydro-L-
biopterin (BH,), 10 nM calmodulin, 1.25 mM CacCl,
and 1 mM EGTA. The reaction mixture containing 50
pl supernatant, 50 pl reaction buffer B and 0.2 pCi
3H-L-arginine (100 000—150 000 cpm) was incubated at
37°C for 15 min. The reaction was stopped by adding
2 ml of ice-cold buffer C containing 20 mM HEPES,
pH 5.5, 0.2 mM EGTA, 2 mM EDTA and 1 mM
L-citrulline. The mixture was then applied to a 0.7-1.0
ml Dowex AGS5S0WXS8 (Na* form) anion-exchange
column, and the unbound 3H-L-citrulline was eluted
with 2 ml of distilled water. The radioactivity in the
eluate was measured by liquid scintillation counting
(Beckman 1.9800). The enzymatic activity was ex-
pressed as pmol *H-L-citrulline per milligram protein
per minute. Protein concentrations of the samples were
measured with Bradford assay. The activity of iNOS
was determined in the presence of 4 mM EGTA (a
Ca?* -chelating agent) and in the absence of calmod-
ulin and CaCl, after subtracting the blank wvalue,
which represents the radioactivity in the presence of 1
mM N©®-nitro-L-arginine methyl ester (L-NAME), a
potent NOS inhibitor. The activity of c¢cNOS was
defined as the activity remaining after subtracting
iNOS activity from the calcium-dependent total NOS
activity (Salter et al., 1991). In preliminary studies, we
measured the dose-response of various cofactors and
substrates for NOS. The K, for L-arginine was 1.6
uM. The ECs, for calcium, calmodulin, B-NADPH
and BH, were 0.55, 1.33, 32.5 and 0.43 pM, respec-
tively. Addition of ~3-5 mM EGTA completely
abolished all NOS activity. Both trifluoperazine, a
calmodulin antagonist, and L-NAME inhibited NOS
activity at a 1 mM concentration with 1Cy, value of
12.7 and 1.56 pM, respectively, in this assay.

2.4. Perfusion and tissue processing

Animals were perfused under deep anesthesia with
sodium pentobarbital (50 mg/kg, i.p.) via the ascend-

ing aorta with 200 ml of autoclaved 0.1 M phosphate
buffered saline (PBS) followed by 400 ml of ice-cold
4% paraformaldehyde in 0.1 M PBS. The spinal seg-
ment 2 cm rostral and caudal to the tip of the im-
planted catheter was dissected and post-fixed for 2-3
h in the same fixative at 4°C, and then cryoprotected
overnight with 20% sucrose at 4°C.

Blocks of 0.5-cm segments of spinal cord above and
below from the i.t. catheter tip were cut transversally,
and some of them were labeled longitudinally by uni-
lateral or bilateral incision. For comparison, the la-
beled and unlabeled segmental cords were sectioned
together on a sliding microtome. Five 1-in-5 series of
40-um-thick frozen sections were collected in sterile
Eppendorf tubes containing 20% sucrose in 0.1 M PBS
and stored at —20°C until use. One set of sections
was stained with thionin, and the others were used for
immunohistochemistry and in situ hybridization histo-
chemistry.

2.5. Immunocytochemistry

After rinsing thoroughly with 0.01 M PBS, the free-
floating spinal sections were incubated in 10% normal
goat serum for 30 min and then with primary anti-
body in 0.01 M PBS containing 1% normal goat
serum and 1% Triton X-100 at 4°C for 24 h. The
affinity purified polyclonal antibody to rat ncNOS was
a generous gift from Dr Ted M. Dawson (Johns Hop-
kins University School of Medicine), and the rabbit
polyclonal antibody to mouse iNOS (sc-650) was pur-
chased from Santa Cruz (California, CA). The sections
were then washed in 0.01 M PBS, and the staining
procedure was performed according to the specifica-
tions of the manufacturer (Histostain-SP kit, Zymed
Laboratories, South San Francisco, CA) using di-
aminobenzidine hydrochloride (Sigma, St. Louis, MO)
as the chromogen. Sections were mounted on gelatin-
coated slides, air-dried, dehydrated, cleared in xylene
and coverslipped. Positive staining was abolished
upon omission of the primary or secondary antibody.
To reduce variability in the processing, sections from
both experimental and control groups were processed
simultaneously using the same reagents in the same
staining tube. All sections were processed in parallel to
allow comparison between different experimental
groups.

2.6. In situ hybridization histochemistry

The chosen cDNA probes were labeled with digoxi-
genin (DIG)-dUTP and quantified according to the
protocol of the commercial kit (Boehringer-
Mannheim, Germany). Free-floating sections were pre-
treated with 0.1 M PBS, 0.4% Triton X-100 in PBS,
10 pg/ml proteinase, K, 4% ice-cold paraformalde-
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hyde, 0.2 N HCI and 2 x salt sodium citrate (SSC).
Prehybidization of the sections was then carried out for
2 h at 42-45°C in the prehybridization solution con-
taining 50% deionized formamide, 5 x SSC, 10% dex-
tran sulphate, 0.5% sodium dodecyl sulfate (SDS), 200
pg/ml heat-denatured and sheared salmon sperm DNA
and 2 x Den’hardt. The hybridization solution was
prepared by adding the DIG-labeled cDNA probe to a
final concentration of 0.5 ng/pl in the prehybridization
solution and heat-denatured each time before use.
About 30-60 pl of hybridization solution was added
into each Eppendorf tube and the hybridization was
carried out at 42—-45°C for 20 h. After washing with
pre-warmed 2 x SSC/50% formamide at 42-45°C for
2 x 15 min followed by 0.1 x SSC/50% formamide and
0.1 x SSC at 42-45°C for 15 min each, the sections
were immunohistochemically stained with alkaline
phosphatase labeled anti-DIG Fab fragment according
to the protocol of the commercial kit (Boehringer-
Mannheim, Germany). The color reaction was carefully
monitored until sufficient reaction product had devel-
oped in the cells of interest and then stopped by rinsing
the sections in distilled water. The sections were finally
mounted on gelatin-coated slides, air-dried and directly
cleared in xylene and coverslipped. Hybridization in the
absence of the DIG-labeled probe or anti-DIG anti-
body and pretreatment of the sections with 100 pg/ml
RNAse at 37°C were employed for controls. All sec-
tions were processed in parallel to allow for comparison
between different groups and different probes.

2.7. Microscopic observations and cell counting

The individual laminae and segmental levels of tho-
raco-lumbar spinal cords were determined based on the
schematic cytoarchitecture described by Molander et al.
(1984). For ncNOS-IR, the number of positive cells in
the individual spinal cord laminae was counted blindly
by two investigators (Hu W.H. and Li F.) in 20-30
1-in-5 sequential sections per animal using a 20 x
objective and bright illustration. The number of posi-
tive cells on the left and right side of the spinal cord
was combined for statistical analysis since no significant
difference was observed.

2.8. Statistical analysis

Neurological ordinal scores were compared using
Kruskal-Wallis ANOVA and Mann—Whitney U tests.
Differences of NOS activities and ncNOS-IR between
experimental and control groups were compared by
ANOVA and Newman-Keuls test and post-hoc un-
paired ¢-tests. Data are expressed as mean + standard
deviation (S.D.).

3. Results
3.1. Dyn neurotoxicity in rat spinal cord

It is well-known that i.t. injection of Dyn A(1-17)
produces dose-dependent paralysis of hindlimbs and
tails in rats (Faden, 1990; Long et al., 1994; Shukla and
Lemaire, 1994; Tian et al., 1994). However, the neuro-
toxic doses of Dyn A(1-17) have varied. In the present
study, 5 nmol Dyn A(1-17) produced transient paraly-
sis in six out of eight rats with full recovery within 1 h.
After i.t. injection of 10 nmol Dyn A(1-17), five out of
11 rats underwent transient paralysis with almost com-
plete recovery within 1 h. Two rats developed perma-
nent paraplegia with no recovery within 24 h. Fifteen
nmol Dyn A(1-17) induced transient paralysis in one
out of seven rats and permanent paraplegia in four out
of seven rats. At 20 nmol, all 19 rats were severely
paralyzed. One showed full recovery of motor function
within 1 h and 2 within 4 h, but the remainder had no
trace of neurological recovery (Fig. 1). Hindlimb paral-
ysis usually concurred with paralysis of the tail, espe-
cially at higher dosages of Dyn A(1-17). Tails showed
earlier paralysis and later functional recovery than the
hindlimbs. Occasionally, only tail paralysis occurred in
some rats. Hindlimb paralysis, however, never occurred
without tail paralysis. This phenomenon supports the
hypothesis that Dyn-induced spinal analgesia remains
indefinite due to loss of tail flick (Hylden et al., 1991;
Dubner and Ruda, 1992; Laughlin et al., 1997).

The histopathological changes of the spinal cord
after i.t. injection of Dyn A(1-17) were described previ-
ously (Tian et al., 1994; Hu et al., 1996). Generally, 20
nmol Dyn A(1-17) produced progressive and irre-
versible neuronal death and gliosis, maximizing at the
tip of the i.t. catheter and centering on the central gray
matter. In the most seriously damaged cases, the entire
gray matter and its surrounding white matter were
intensely necrotic and lost during the staining process,
leaving behind a small peripheral rim of white matter
and superficial dorsal horn. It was most remarkable 0.5
cm from the tip of the i.t. catheter.

3.2. Temporal profile of ¢cNOS and iNOS activities in
ventral and dorsal spinal cord

Since the dorsal and ventral regions of the spinal
cord have quite different functional morphologies, the
spinal cords were carefully dissected into dorsal and
ventral parts. In saline-injected control rats, the cNOS
activity assayed by the conversion of *H-L-Arg into
SH-L-citrulline was significantly higher in the dorsal
than in the ventral regions. However, there was no
significant difference in iNOS activity between the dor-
sal and the ventral regions. The cNOS activity was
significantly higher than the iNOS activity both in the
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Fig. 1. Dose-response effect of intrathecal (i.t.) injection of dynorphin (Dyn) A(1-17) on rat hindlimb motor function. (A) 20 nmol, (B) 15 nmol

and (C) 10 nmol Dyn A(1-17). * P <0.05, ** P <0.01 and # P <0.05 indicate statistical significance as compared with A and B respectively by
Mann-Whitney U test. Dots represent the number of animals.
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Fig. 2. Activities of constitutive and inducible nitric oxide synthases (¢ctNOS and iNOS) in the supernatant of the ventral (V) and dorsal (D) spinal
cord after 20 nmol dynorphin (Dyn) A(1-17)-induced spinal neurotoxicity. V-cNOS significantly increased at 30 min but V-iNOS increased at 4
h. * P<0.05. ** P<0.01 and + P <0.05. + 4+ P <0.01 indicate statistical significance as compared with the corresponding saline control and
the ventral spinal cord respectively.

dissected dorsal cord and in the entire non-dissected removal of Ca?* and calmodulin during bioassay may
cord, while no significant difference between cNOS and not have completely blocked the conversion of L-
iNOS activities was observed in the ventral spinal cord arginine into L-citrulline.

(Fig. 2 and see below). The presence of ¢cNOS activity There were no significant differences in the activities
in the control rats is comprehensible, but it is unclear of ¢cNOS and iNOS among the saline control rats at
why iNOS activity is also present in control rats various time points. At 30 min—48 h after i.t. injection
(Tadecola et al., 1995b; Schmidt et al., 1995). It is of 20 nmol Dyn A(1-17), the cNOS activity signifi-
possible that the control rats were not normal since cantly increased in the ventral cord compared to the

they were also sham-operated. It is also possible that control, but no significant change in the dorsal cord
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was observed. The iNOS activity in the ventral cord
showed no significant change at 30 min—-2 h after i.t.
injection of 20 nmol Dyn A(1-17), but they increased
at 4 h and persisted up to 24-48 h. The iNOS activity
in the dorsal cord also increased significantly (P < 0.01)
48 h after i.t. injection of 20 nmol Dyn A(1-17) (Fig.
2). Similar trends were observed in the cNOS and
iNOS activities in the entire segment of the non-dis-
sected spinal cord. The cNOS activity in the entire
spinal cord significantly increased from 28.47 + 3.33
(n=15) in the controls to 38.97 +3.94 (n="7, P <0.05)
and 54.04 + 1.74 pmol/mg per min (n =15, P<0.01) 2
and 24 h, respectively, after injection. The iNOS activ-
ity of control rats was 16.83 +2.70 pmol/mg per min
(n=95), 19.73+147 (n=7, P>0.05) after 2 h but
significantly increased to 27.69 +4.24 (n=15, P <0.05)
after 24 h.

3.3. ncNOS and iNOS immunoreactivities in normal
and injured spinal cord

In control rats, ncNOS-IR neurons and fibers were
located mainly in laminae I-II and X as well as in the
intermediolateral cell column (IML). A few isolated
and slight-stained neurons with long processes were
occasionally observed in laminae VII, VIII and IX.
Large motoneurons in laminae VIII and IX and the
lateral and medial group (LG, MQG) in lamina VII were
negative. These staining patterns are consistent with
previous reports (Dun et al., 1993; Vizzard et al., 1994).

As early as 5-30 min after i.t. injection of 20 nmol
Dyn A(1-17), ncNOS-IR expression was dramatically
enhanced. It peaked at 1-2 h and remained elevated at
3—4 h (Table 2, Fig. 3). The number of ncNOS-IR-pos-
itive cells and their intensities in lamina X and IML
significantly increased. The staining for ncNOS-IR in
lamina I-II also slightly increased. In laminae VII,

Table 2

VIII and IX, a number of neurons stained strongly for
ncNOS-IR. These neurons with extensive processes
were mainly distributed in the LG and MG of lamina
VII and in a few motoneurons. However, not all of the
motoneurons and interneurons were positively stained.
Staining for ncNOS-IR was most abundant in L,—L;,
depending upon the severity and site of the pathologi-
cal abnormality. At 24 and 48 h, although most neu-
rons were dead, a number of ncNOS-IR positive cells
remained significantly elevated (Table 2, Fig. 4). Since
some of the cells in the spinal sections showing severe
necrosis might have been lost during the staining proce-
dure, the relative percentage of ncNOS-IR neurons at
48 h may be misleading. However, abundant staining
for ncNOS-IR was observed in the 3rd and 4th seg-
ments of the spinal cord at 24-48 h, which displayed
less pathological damage (Fig. 4E,F). Furthermore, in
some spinal sections with asymmetrical damage, more
ncNOS-positive neurons were present on the slight-
damaged side than on the side exhibiting severe necro-
sis (Fig. 4A). Most of the surviving neurons with intact
morphology in the necrotic penumbra were strongly
stained for ncNOS-IR (Fig. 4A-D). This selective re-
sistance of ncNOS-positive neurons to CNS injury has
been widely reported (Hyman et al., 1992; Mufson and
Brandabur, 1994; Zhang et al., 1994; Behrens et al.,
1996; Marsala et al., 1997; Gonzalez-Zulueta et al.,
1998; Bishop et al., 1999).

The ncNOS-IR staining was absent in all glial,
ependymal, and microvascular cells. However, the
spinal pial arteries were stained positively for ncNOS-
IR in both the control and experimental rats (Fig. 3A
and Fig. 4A,B). This finding is supported by previous
reports that ncNOS could not be found in parenchymal
microvasculature but is present only in pial vessels of
the brain and spinal cord (Catalan et al., 1996; Seidel et
al., 1997).

Quantitative counting for number of neuronal constitutive nitric oxide synthase (ncNOS)-immunoreactivity (IR)-positive cells in spinal cords after

dynorphin-induced spinal cord injury®

Spinal cord laminae

[-111 V-Vl VII-IX X IML
Control (36) 34+ 14 17+ 10 11+9 1245 543
Dyn 30 min (27) 52 4 20%** 26+ 11* 27 £ 11%%* 22 4 6%** 11 + 7%*
Dyn 2 h (45) 52 4 19%** 25+ 11** 25 + 12%** 21 + 8*** 8 + 4%
Dyn 4 h (39) S1 4 22%%* 2149 16+ 13 18 4+ 9*** 11 + 6%*
Dyn 48 h (55) 42 + 13* 20+ 10 23 + 14%** 15 + 9F** 13 + 4***

4 Number in parentheses represents 1-in-5 sections of spinal cord.
* P<0.05;
** P<0.01;

*#% P<0.001 indicate statistical significance as compared with saline control.
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Fig. 3. Neuronal constitutive nitric oxide synthases (ncNOS) immunohistochemistry for the first segment of spinal cord from the intrathecal (i.t.)
catheter tip in rats of the saline-injected control group (A and B) and the experimental groups at 1 h (C and D), 2 h (E), and 4 h (F) after i.t.
injection of 20 nmol dynorphin (Dyn) A(1-17). The positive cells and fibers were distributed mainly in laminae I-II and X in the saline control.
After i.t. injection of Dyn A(1-17), the number of positive neurons in laminae I-II increased (E) in comparison with a saline-injected control (B),
making the laminar structure more visible. In laminae X and intermediolateral cell column (IML), more neurons and fibers stained positively and
the ventral longitudinal fasciculus was also positive (small arrow). In the ventral horn, especially laminae VII, many scattered and medium-sized
neurons were intensely positive with abundant and long beaded processes. However, most large motoneurons were negative. A few neurons also
stained positively in the deeper dorsal horn (laminae IV-VI). (B) magnification of the left dorsal horn of (A). (D) magnification of (C). d and v
indicate the dorsal and ventral orientation of the spinal cord. The lateral incision (A,B) is for labeling to distinguish the control and experimental

sections of spinal cord stained in one tube. Scale bars = 100 um.

No iNOS-IR-positive cells were observed in the
spinal cords in the saline-injected controls and at
1-3 h after i.t. injection of 20 nmol Dyn A(1-17).
However, iNOS-IR-positive cells were visible at 4—48 h
after injection. They were mainly located around the
edge of the peripheral white matter. At 48 h, many
iNOS-IR-positive cells were present around and within
the necrotic region of the spinal cord (Fig. 5). The
positive cells appeared to resemble glial cells or epi-
thelial cells in location and size, although neurons
could not be excluded. Immunohistochemical multiple

labeling for identifying the cell types deserves further
study.

3.4. Expression of ncNOS and iNOS mRNA

To ensure the probe specificities for ncNOS and
iNOS, the DNA sequences and restriction enzyme sites
were analyzed. Digestion of ncNOS c¢cDNA plasmid
(from Dr Ted M. Dawson) and iNOS cDNA plasmid
(from Dr Charles J. Lowenstein) with Acc I generated
two exclusive fragments of 592 (564 plus 28) and 684 bp
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(4018 — 3334), respectively. Both shared no homology
to other isoforms of NOS and no cross-reactivity be-
tween ncNOS and iNOS in the plasmid dot hybridiza-
tion (data not shown). However, the fragments of Bam
HI-digested 2811 bp and Hind III-digested 997 bp for
ncNOS cDNA shared 45 and 68% homology with
iNOS, respectively, while the fragments of Bam HI 800
bp and Eco RI 990 bp for iNOS ¢cDNA shared 42 and
48% homology with ncNOS, respectively. These frag-
ments exhibited varying degrees of cross-reactivity be-
tween ncNOS and iNOS in the plasmid dot
hybridization. To further confirm the probe specificity,
i.t. injection of lipopolysaccharide (LPS) 20 ug/10 ul
was performed. The LPS stimulation induced extensive

and typical expression of iNOS mRNA in the spinal
cord as detected with the 684 bp probe but did not
induce ncNOS mRNA expression as detected with the
592 bp probe. These results were compatible with re-
sults obtained by in situ hybridization in spinal cord
sections from the saline control and experimental rats.
Finally, in situ hybridization and post-hybridization
washes were performed under high stringent conditions.

In the control rats, ncNOS mRNA was most abun-
dant in laminae I-1I, and lamina X. Slight to moderate
expression of ncNOS mRNA was also found in mo-
toneurons of the spinal ventral horn. After i.t. injection
of 20 nmol Dyn A(1-17), ncNOS mRNA appeared as
early as 5—30 min and increased progressively for 1-4 h

Fig. 4. Neuronal constitutive nitric oxide synthases (ncNOS) immunohistochemistry of rat lumbar spinal sections 24 h (A, B) and 48 h (C—F) after
intrathecal (i.t.) injection of 20 nmol dynorphin (Dyn) A(1-17). Central necrosis was marked and more severe on one side of some spinal sections
(A). Note the intact morphological structure of laminae X and dorsal horn with a number of ncNOS-positive neurons (A, B, C, D) and a few
intensely-stained neurons (large arrow) at the border of necrosis (C;, D,). Extensive distribution and intense staining of ncNOS-positive neurons
were observed in the fourth segment of spinal cord from the i.t. catheter tip (E, F). The intimal and adventitial tunicae of the anterior media spinal
artery were intensely positive (A, B,) but the parenchymal microvasculature was negative. (B, D, F) are magnified from (A), (C) and (E),

respectively. Scale bars = 100 pm.
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Fig. 5. Inducible nitric oxide synthases (iNOS) immunohistochemistry of rat lumbar spinal sections 48 h after intrathecal (i.t.) injection of 20 nmol
dynorphin (Dyn) A(1-17). (A, B) shows the iNOS-immunoreactivity (IR)-positive cells within the necrotic zone of the central gray matter of the
spinal cord. (C, D) display the strong iNOS-IR-positive cells around the margin of dorsal white matter. (B, D) are magnified from (A) and (C),

respectively. Scale bars = 100 um.

(Fig. 6). Expression was highest in large motoneurons
of laminae VIII and IX and the dorsal nucleus (Clark
column) and less in the medium- and small-sized neu-
rons in the lateral and ventral horns. Some neurons in
the deeper layer of the dorsal horn (Laminae IV and V)
also expressed ncNOS mRNA. At 24-48 h, surviving
motoneurons and interneurons retained their ncNOS
mRNA expression and an intact morphological in-
tegrity, but ncNOS mRNA was absent in glial, ependy-
mal, and microvascular endothelial cells, both in the
control and experimental groups.

In contrast, typical signals for iNOS mRNA in con-
trol rats were moderately detected in large motoneurons
of the ventral horn, dorsal nucleus, and in ependymal
cells, but rarely in glial cells and small neurons (Fig.
7A). After i.t. injection of 20 nmol Dyn A(1-17), iNOS
mRNA expression did not change significantly between
S min and 1 h, but rose at 2—-3 h and peaked at 4 h.
Expression was greatest in large motoneurons, dorsal
nucleus, lamina VII and ependymal cells. Glial cells
(especially in white matter) also expressed iNOS
mRNA at 2—-4 h (Fig. 7B—D). The expression of iNOS
mRNA remained high 24 and 48 h after i.t. injection of
20 nmol Dyn A(1-17), predominantly in glial cells
and/or small neurons (both in gray and white matter)
since most motoneurons had already died by this time.
In those lumbar spinal sections with marked central
necrosis, a few cells (most likely glial cells) expressing

iINOS mRNA were found within the necrotic area.
Surviving motoneurons and small neurons with positive
signals were scattered in the penumbra (Fig. 7E—H).

4. Discussion

It is generally accepted that Dyn is neurotoxic upon
intrathecal injection. However, the mechanisms respon-
sible for Dyn-induced SCI are unknown. Both local
ischemia (Long et al., 1994) and direct cytotoxicity have
been implicated. Previous studies (Tian et al., 1994
Chen et al., 1995) together with other reports (Faden,
1990; Shukla and Lemaire, 1994) have indicated that
the direct neurotoxicity of Dyn A(1-17) at the cellular
level may involve both opioid and non-opioid effects.
Pharmacological blockade with various competitive and
non-competitive NMDA receptor antagonists prevents
Dyn-induced motor dysfunction in rats (Faden, 1990;
Long et al., 1994; Chen et al., 1995). Dyn A(1-17)
increases the concentrations of glutamate and aspartate
in the cerebrospinal fluid and particularly in the extra-
cellular fluid of the spinal cord (Skilling et al., 1992).
Dyn also enhances high potassium-induced glutamate
release in rat spinal slices (Li et al., 1997). Receptor
binding studies using rat brain membranes have
demonstrated that Dyn interacts directly with NMDA
receptors at the glutamate, glycine, and phencyclidine
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sites (Dumont and Lemaire, 1994; Shukla and Lemaire,
1994). 1t has been reported that high concentrations of
Dyn A(1-17) induce a sustained and irreversible over-
load of intracellular free calcium in cultured rat single
spinal neurons via both NMDA and kappa opioid
receptor activation (Hu et al., 1998). Among the intra-
cellular events that are stimulated by calcium are the
activation of NOS and the generation of NO. A consid-
erable body of evidence exists to demonstrate that NO
may be neurodestructive both in vitro and in vivo by
generating toxic free radicals, inducing genotoxicity,
activating poly (ADP-ribose) synthetase, and enhancing
glutamate release. Therefore, Dyn may produce spinal
neurotoxicity through the NMDA-Ca?>*-NOS/NO
pathway. Using NADPH-diaphorase staining, a rela-
tively specific histochemical marker for NOS, it was
reported that Dyn does induce NOS expression in the
ventral horn cells (Hu et al., 1996). Using selective
ncNOS and iNOS inhibitors (7-nitroindazole and
aminoguanidine), we reported that both ncNOS and
iNOS are involved in Dyn-induced SCI (Hu et al.,
1999). In the present study, we further demonstrate that
enzymatic activities and mRNA expression of both
ncNOS and iNOS increased in the ventral spinal cord
after Dyn-induced spinal neurotoxicity. This finding is
consistent with previous demonstrations that both nc-
NOS and iNOS contribute to the pathophysiological
processes in other models of CNS injury such as is-
chemia, trauma, excitotoxicity and neurodegenerative

diseases (for reviews, see Dalkara and Moskowitz,
1994; Tadecola, 1997; Parkinson et al., 1997; McCann et
al., 1998; Strijbos, 1998; Bolanos and Almeida, 1999;
Callsen-Cencic et al., 1999).

It has been documented that both iNOS mRNA and
iNOS protein in the CNS do not change until 2-4 h
after systemic LPS treatment (Liu et al., 1993; Iadecola
et al.,, 1995a; Harada et al., 1999). After cerebral is-
chemia, expression of iNOS mRNA begins to increase
at 12 h, but iNOS activity and immunoreactivity are
not elevated until 2 days (Iadecola et al., 1995a,b).
After traumatic injuries of the brain (Wada et al., 1998)
or spinal cord (Bethea et al., 1998), iNOS activity is not
increased, and iNOS immunoreactivity is not detected
until 3 days. iNOS activity is significantly increased 2
days after NMDA-induced lesions in the striatum
(Lecanu et al., 1998). However, RT-PCR reveals that
the iNOS mRNA rises at 6 h and peaks at 24 h after an
intrastriatal ethanol injection (Takeuchi et al., 1998) or
after cortical cryogenic lesions (Knerlich et al., 1999).
The relatively selective iNOS inhibitor aminoguanidine
reduces cerebral infarct volume even when adminis-
trated 24 h after the middle cerebral artery is occluded
either transiently (Zhang et al., 1996) or permanently
(Iadecola et al., 1995b). The present study demonstrates
that a few hours are needed for iNOS to be induced
after Dyn-induced neurotoxicity. Later expression of
iNOS may reveal a local inflammatory response after
CNS injury (Licinio et al., 1999). Dyn and kappa

Fig. 6. In situ hybridization with neuronal constitutive nitric oxide synthases (ncNOS) for the first segment of spinal cord from the intrathecal (i.t.)
catheter tip in saline-injected control rats (A) and experimental rats (B—D) 4 h after i.t. injection of 20 nmol dynorphin (Dyn) A(1-17). Dyn
A(1-17) induced extensive mRNA expression of ncNOS with typical signals in motoneurons. (C) is the left ventral horn of the spinal cord in (B).

(D) is further magnified from (C). Scale bars = 100 pm.
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Fig. 7. In situ hybridization with inducible nitric oxide synthases (iNOS) for the first segment of spinal cord from the intrathecal (i.t.) catheter
tip in saline-injected control rats (A) and experimental rats 2 h (B, C), 4 h (D), 24 h (E, F) and 48 h (G, H) after i.t. injection of 20 nmol dynorphin
(Dyn) A(1-17). Typical signals were moderately detected in motoneurons of saline-injected control rats. Dyn A(1-17) induced intensive
expression in motoneurons, interneurons, glial cells (in white matter especially, small arrow, C and F), ependymal cells (B) and the microvascular
wall (D, G, middle arrow). (C, H) are magnified from (B, G), respectively (dashed square). (F) is the white matter of another spinal section. (B)
shows the whole spinal cord. (A, E) are from the ventral horn of spinal cord. Scale bars = 100 pm.

opioid receptor have been reported to be involved in family members, with Dyn-induced SCI deserves fur-
the inflammatory process (Hassan et al., 1992; Herz, ther study.
1996; Sheng et al., 1997). The correlation of inflamma- In the CNS, neurons express only cNOS, activated

tory cytokines, such as tumor necrosis factor (TNF) microglial cells and vascular smooth muscle cells ex-
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press only iNOS, while astrocytes and endothelial cells
express both ¢cNOS and iNOS (Murphy et al., 1993).
The present study further demonstrates that the expres-
sion of ncNOS-IR and its mRNA is restricted in neu-
rons of both normal and injured spinal cords. Although
ncNOS-IR is occasionally found in the endothelium of
small spinal arteries, vascular smooth muscle cells do
not express ncNOS (Catalan et al., 1996; Seidel et al.,
1997).

The cellular sources of iINOS after in vivo CNS
injury remain controversial. Earlier studies demon-
strated that a hippocampal lesion (Wallace and Fre-
dens, 1992) and transient global ischemia (Endoh et al.,
1993) induce astrocytes to express NADPH-diaphorase
activity. However, in some studies, only polymor-
phonuclear cells in the infarct penumbra after focal
ischemia were iINOS-IR-positive. Macrophages, astro-
cytes and smooth muscle cells were all iNOS-IR-nega-
tive (Iadecola et al., 1995b; Coeroli et al., 1998). With
the demyelinating multiple sclerosis-like lesion (De
Groot et al., 1997) or with cortical incision (Yamanaka
et al., 1998), strong iNOS-IR staining is found exclu-
sively in perivascular and parenchymal macrophages.
Injuries to the striatum (Takeuchi et al.,, 1998),
hippocampus (Stojkovic et al., 1998) and cortex (Kner-
lich et al., 1999) induce reactive microglial expression of
iNOS. After traumatic brain injury, the major cellular
sources of iNOS expression are astrocytes and
macrophages (Wada et al., 1998, 1999). In traumatic
SCI (Bethea et al., 1998), iNOS coexpression with
NF-kappaB in neurons and macrophages/microglia but
not astrocytes is visible. The present study is the first
report to demonstrate iNOS expression in glial cells and
neurons in Dyn-induced SCI. The subtype of glial cells
expressing iNOS has not been identified.

The observation of iINOS expression in
(moto)neurons is consistent with previous reports.
Minc-Golomb et al. (1996) demonstrated that cerebel-
lar neurons express iNOS-IR and mRNA using fluores-
cent immunohistochemistry and in situ hybridization.
Using RT-PCR, Jacobs (1997) demonstrated the pres-
ence of iNOS mRNA in the normal hypothalamus.
Harada et al. (1999) reported that expression of iNOS
mRNA by in situ hybridization is significantly induced
after LPS stimulation in the paraventricular nucleus.
Using immunohistochemistry and slot blots, Jacob et
al. (1999) showed iNOS expression in normal facial
motoneurons of adult rats.

The cellular distribution and intensity of expression
of both ncNOS and iNOS are not equivalent at protein
and mRNA levels in the spinal cord. For example,
ncNOS-IR is absent in most large motoneurons even
after Dyn spinal neurotoxicity, yet ncNOS hybridiza-
tion data show more extensive distribution both in
ncNOS-IR-negative as well as in ncNOS-IR-positive
neurons. Similarly, iNOS-IR is present predominantly

in glial and/or epithelial cells, but iNOS mRNA is
expressed primarily in neurons as well as in glial cells.
The reason for this discrepancy remains elusive. One
possible explanation is the universal mRNA expression
or existence in motoneurons. In the preliminary experi-
ments, in situ hybridization was employed to measure
expression of several genes including NOS, p75 nerve
growth factor receptor, brain-derived neurotrophic fac-
tor, c-fos, and heat shock protein a and b. All these
genes displayed various degrees of expression of iNOS
in the spinal, facial and hypoglossal motoneurons. To
confirm this observation, the reported genes were in-
spected for their expressions in the spinal and brain
motoneurons with both radioactive and non-radioac-
tive probes. The majority of the reported genes showed
extensive mRNA expression in motoneurons with typi-
cal hybridization signals under both physiological and
pathophysiological conditions (Hanemann et al., 1993;
Ikeshima et al., 1993; Hammarberg et al., 1998; Jacob-
sson et al., 1998; Grossman et al., 1999; MacLennan et
al., 1999; Nakagomi et al., 1999; Shibata et al., 1999).
The universality of gene expression in motoneurons and
its biological relevance remain to be elucidated. It
appears that motoneurons express mRNA of many
silent genes with reduced or no translation under nor-
mal constitutive conditions. These silent genes may be
translated into proteins to meet an emergency under
pathophysiological conditions.

Another possibility for the above variation might be
the limited sensitivity and specificity of immunohisto-
chemistry. The Ilevels of NOS (antigen) in the
(moto)neurons may be too low or too unstable to be
detected by routine immunohistochemical techniques.
Western blots of pure (moto)neuronal cultures might
confirm the presence of NOS-IR in (moto)neurons. The
currently available antibodies for iNOS are mostly pro-
duced against the isoform of iNOS in macrophages,
which may be different from the isoform in the CNS.
The available antibodies for ncNOS are derived from
brain sources. Most, if not all, immunohistochemistry
studies have not demonstrated expression of ncNOS-IR
in most large motoneurons. Large motoneurons may
have their own specific isoform of ncNOS.

In conclusion, using neurobehavioral tests, NOS
bioassay, immunohistochemistry and in situ hybridiza-
tion, the present study demonstrates that both ncNOS
(mainly at early stages) and iNOS (at later stages) are
involved in Dyn-induced SCI. Expression of ncNOS
protein and mRNA is equivalent, and both increase as
early as 30 min after Dyn-induced spinal neurotoxicity.
These findings confirm a previous study employing
NADPH-diaphorase histochemistry (Hu et al., 1996).
iINOS mRNA expression is delayed but increases later
at 2 h, iNOS activity and immunoreactivity increase at
4 h, and both persist for 24—48 h after intrathecal Dyn
A(1-17) administration. In a concurrent experimental
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study, pretreatment with the relatively selective in-
hibitors of both ncNOS and iNOS is neuroprotective,
while nonselective inhibition of all isoforms of NOS
aggravates Dyn spinal neurotoxicity (Hu et al., 1999).
In addition, pretreatment with NO donor significantly
prevents Dyn spinal neurotoxicity at lower doses, but at
higher doses NO donor induces paralysis in normal rats
(Hu et al., 1999). Taken together, the data provide
strong evidence that NO/NOS plays an important role
in the pathophysiological mechanisms of Dyn-induced
SCI.
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