
Adaptive Local Hyperplane (ALH) Classifier Toolbox

April 2008

Introduction

The toolbox is used for solving the classification, i.e. pattern recognition, tasks by the

adaptive local hyperplane algorithm as introduced in the reference paper below. Note that the

files can be run in MATLAB’s version 7 and higher. (Sorry, it doesn’t work for vs. 5 and 6).

Copyrights

 Tao Yang tyan028@gmail.com

 Vojislav Kecman v.kecman@auckland.ac.nz

Faculty of Engineering, The University of Auckland, Auckland, New Zealand

Note

The software is for an academic use only and it is not to be used for any commercial

purposes.

Reference

Yang T., Kecman V., Adaptive local hyperplane classification, Neurocomputing, in press, 2008.

Routines

scale - Scale the dataset into zero mean and unit variance

scale2 - Scale both the training and test sets

alhloo - Leave-one-out cross-validation (LOOCV) for ALH classifier

 alhcv - Cross-validation for ALH classifier

 alhval - Testing ALH classifier on a validation set

 alhweight – Calculation of features weights for a given parameter T

 alhclass - Classify a set of unlabelled input patterns given a trained ALH classifier

How to use ALH routines

(1) Data preprocessing phase. You can scale your data or you can skip a scaling. If you

want to scale the data you proceed as follows:

 Run scale.m to scale the whole dataset into zero mean and unit variance data,

 or run scale2.m to scale the training and test sets separately.

(2) Parameters tuning phase:

Finding the best K, T and lambda by running either alhloo or alhcv when you have

training dataset only,

 or finding the best K, T and lambda by running alhval when you have both training

and validation datasets.

 Note that the intermediate results in alhloo, alhcv or alhval will be displayed, so the

time comparison between ALH and other algorithms should not be used by these

routines.

(3) Weighting calculation phase:

 Run alhweight with the best T found in (2) to calculate features' weights.

(4) Testing phase:

 Run alhclass to classify unlabelled test data with results from (2) and (3).

Details

scale Scale the dataset into zero mean and unit variance

Usage: Xs = scale(X)

scale2 Scale two datasets simultaneously

Usage: [X1, X2] = scale2(X1, X2)

X1 is scaled to zero mean and unit variance, and X2 is scaled according to the mean and

variance of X1

alhloo Leave-one-out cross-validation (LOOCV) for ALH classifier

Usage: [] = alhloo(input, label, K, T, lambda)

Inputs:

input - data inputs (size: n*d)

 label - data labels (size: n*1)

 K - the candidate values for the number of nearest neighbors

 T - the candidate values for the temperature used in feature weighting

 lambda - the candidate values for the regularization parameter

Outputs:

 If K, T and lambda are all scalars, only the corresponding LOOCV accuracy will be

displayed;

 Otherwise, the best K, T, lambda and the corresponding LOOCV accuracy will be

displayed, and the plot for the LOOCV accuracy against K and T (with best lambda) will

also be displayed.

Example:

 load iris; X = scale(X);

 alhloo(X,Y,4:2:10,[0.9 1:2],0)

alhcv Cross-validation for ALH classifier

Usage: [] = alhcv(input, label, K, T, lambda, nfold, seed_value)

Inputs:

input - data inputs (size: n*d)

 label - data labels (size: n*1)

 K - the candidate values for the number of nearest neighbors

 T - the candidate values for the temperature used in feature weighting

 lambda - the candidate values for the regularization parameter

 nfold - the fold size of cross-validation

seed_value - the seed value used for randomly shuffling the whole dataset before doing

cross-validation. If seed_value == 0, then no shuffling will be used. (default:

2007)

Outputs:

 If K, T and lambda are all scalars, only the corresponding CV accuracy will be displayed;

 Otherwise, the best K, T, lambda and the corresponding CV accuracy will be displayed,

and the plot for the CV accuracy against K and T (with best lambda) will also be displayed.

Example:

 load iris; X = scale(X);

 alhcv(X,Y,4:2:10,[0.9 1:2],0,10)

alhval Testing ALH classifier on a validation set

Usage: [] = alhval(train_input, train_label, val_input, val_label, K, T, lambda)

Inputs:

train_input - the training inputs (size: n1*d)

 train_label - the training labels (size: n1*1)

 val_input - the validation inputs (size: n2*d)

 val_label - the validation labels (size: n2*1)

 K - the candidate values for the number of nearest neighbors

 T - the candidate values for the temperature used in feature weighting

 lambda - the candidate values for the regularization parameter

Outputs:

 If K, T and lambda are all scalars, only the corresponding validation set accuracy will be

displayed;

 Otherwise, the best K, T, lambda and the corresponding validation set accuracy will be

displayed, and the plot for the validation set accuracy against K and T (with best lambda)

will also be displayed.

Example:

 [X1, X2] = scale2(X1, X2);

 alhval(X1,Y1,X2,Y2,4:2:10,1:3,0.1)

alhweight Calculation of features weights for a given parameter T

Finding the feature weights by the ratio of between-group to within-group sum of squares

Usage: weight = alhweight(input, label, T)

Inputs:

 input - data inputs (size: n*d)

 label - data labels (size: n*1)

 T - the temperature used in feature weighting (T >= 0)

Output:

weight - the resulting feature weights (size: d*1)

alhclass Classify a set of unlabelled input patterns given a trained ALH classifier

Usage: test_label = alhclass(test_input, train_input, train_label, weight, K, lambda)

Inputs:

 test_input - the test inputs (size: m*d)

train_input - the training inputs (size: n*d)

train_label - the training labels (size: n*1)

weight - the feature weights computed by alhweight routine (size: d*1)

K - the number of nearest neighbors

lambda - the regularization parameter

Output:

test_label - the test labels predicted by ALH classifier (size: m*1)

