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Sequential Bayesian Estimation With Censored
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Abstract—In this paper, a new framework for sequential
Bayesian estimation in sensor networks is proposed, which con-
sists of two processes: censoring of measurements at local sensors
and fusion of both received measurements and missing ones at the
fusion center (FC). In our scheme, each local sensor maintains a
Kalman filter (KF) for a linear Gaussian system or an extended
Kalman filter (EKF) for a nonlinear system and the FC runs a
particle filter (PF) to track the system state. Informative mea-
surements are selected for transmission by an innovation based
per-sensor censoring process executed at the sensors at each time.
Though the less informative measurements are not sent to the FC,
their absence still conveys some information, and the proposed
scheme exploits such information from the missing messages. Nu-
merical results show that, under the same bandwidth constraint,
the proposed scheme outperforms the one that ignores missing
data information and the one that selects sensors randomly for
information transmission.

Index Terms—Sensor censoring, missing data, particle filters, se-
quential Bayesian estimation, target tracking, sensor networks.

I. INTRODUCTION

I N the literature, the sequential Bayesian estimation problem
has been mainly investigated for three fundamental net-

work architectures: centralized, distributed and decentralized
networks. In a centralized structure, the local sensor nodes
transmit either analog [1] or quantized measurements [2]–[4]
to a FC, where the sensor data are fused by a Bayesian filter to
update the system state estimate in a straightforward manner.
If all the analog sensor data are transmitted to the FC, the FC
yields the optimal estimation performance, meaning that no
other network architecture can deliver a better performance.
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But a centralized network requires a large amount of commu-
nication between the sensors and the FC, and it is vulnerable to
the failure of the FC.
In a distributed network, each local sensor node runs a local

Bayesian state estimator, and makes its own local state estimate
based on its local measurements. These local estimates, or state
posterior probability density functions (PDFs), are transmitted
to a global FC, where they are fused to get a more accurate
global state estimate. The distributed network has reduced
communication requirements, since instead of transmitting
raw sensor data at the sensor sampling rate, each sensor could
transmit state estimates at a much lower rate. Furthermore,
the distributed network is much more robust, since each local
sensor node maintains its own state estimate. However, one
challenging problem for fusion of estimates is that all the local
estimates are dependent since all the local filters are estimating
the same Markov stochastic process [1]. The problem of dis-
tributed Kalman filtering has been investigated in [1], [5]–[10].
For nonlinear filtering in distributed networks, the optimal
fusion scheme was developed in [11], [12] which involves the
transmission of the local state posterior PDFs to the FC and
high dimensional integrals at the FC.
In a decentralized network, each sensor fuses its own local

state estimate with information received from its neighboring
sensors, and each local sensor communicates only with its
neighbors. Due to its diffusive communication strategy, this
architecture does not require specialized routing, and in general
avoids bottleneck in communications. It is scalable and very
robust to single point of failure. However, the implementation
of the optimal fusion algorithm, the so-called channel filter [5],
[13], [14], is very challenging and existing fusion algorithms in
decentralized networks are typically suboptimal approaches. In
decentralized networks, estimate consensus among distributed
agents has drawn much attention. For linear estimation prob-
lems in decentralized networks, algorithms have been proposed
to reach a consensus among all the nodes [15]–[18]. For non-
linear problems, efforts have been made to develop consensus
particle filtering [19]–[22].
The framework we propose in this paper combines the ad-

vantages of both the centralized and distributed networks to
achieve communication efficiency, improved estimation perfor-
mance, and robustness. In this framework, each local sensor
node runs its local state estimator, which facilitates censoring
of its measurement so that only informative measurements are
sent to the FC. Since local state estimation is performed at each
local sensor, it is robust against single point of failure. Com-
pared to the centralized network, it has reduced communication
rate through sensor censoring. However, different from a typical
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distributed architecture but similar to a centralized architecture,
only informative raw sensor measurements are sent to the FC in
our proposed framework.
As discussed earlier, in a sensor network with a FC, the ideal

scenario is for all the sensors to send their observations to the
FC for sequential Bayesian estimation. However, due to band-
width constraints or energy limitations in the network, it is usu-
ally desirable to have only a subset of sensors transmit their data
at each time step. This gives rise to two interesting problems:
1) In a centralized sensor management framework, for the next
time step(s), how does the FC select the subset of sensors which
are the most informative based on the accumulated information
up to the current time step? 2) In a distributed sensor manage-
ment system, where each local sensor generates a local estimate
based on its local measurements, how does each local sensor de-
termine whether or not its current local measurement, which is
already in hand, is informative enough to merit its transmission
to the FC?
The first problem is a typical sensor management or sensor

selection problem and a lot of effort has been devoted to it by
different authors [2], [4], [23]–[31]. For linear and Gaussian
filtering problems, since the Kalman filter state covariance ma-
trices can be evaluated offline, one can determine the optimal
sensor selection and scheduling strategies offline [25], [27],
[28]. For nonlinear filtering problems, efficient sensor selec-
tion/management should be performed in an online manner
using all the past observation information. In such problems,
the informativeness of the sensors could be measured by
information theoretic measures, such as entropy and mutual
information [24], [29], the posterior Cramér-Rao lower bound
(PCRLB) on the mean squared state estimation error [2], [4],
[30], or the covariance matrix calculated by the extended
Kalman filter (EKF) [31].
The second problem results in the so called censoring method

in the area of distributed detection [32]–[35]. In [32], under a
constraint on communication, an optimal censoring structure is
proposed, through which, local sensors censor their likelihood
ratios before sending them to the FC. Only the local likelihood
ratio falling in the send region is sent to the FC for making the
global decision. Later in [33], the fusion of decisions from cen-
soring sensors transmitted over wireless fading channels was
investigated, where optimal and suboptimal fusion rules were
designed based on the knowledge of fading channels. Some
practical issues on the design of censoring sensor networks in-
cluding joint dependence of sensor decision rules, randomiza-
tion of decision strategies, and partially known distributions of
observations were further addressed in [34]. Per-sensor cen-
soring scheme was also employed in [35], in which an ordering
approach follows censoring to reduce the number of transmis-
sions in the network, and the sensors with more informative ob-
servations transmit first. Sensor censoring has also been used to
solve estimation problems [36]. The authors in [36] proposed
another transmission scheme in which the sensor transmissions
are ordered according to the magnitude of their measurements,
and the sensors with magnitude smaller than a threshold, do not
transmit.
Methods used to solve problems 1) and 2) can be categorized

as data selection methods and all of them result in missing data

from the viewpoint of the FC. Then, a crucial issue is whether
the fact that variables are missing is related to the underlying
values of the variables in the data set [37], and this would cate-
gorize missing data into three mechanisms according to [37]: i)
missing completely at random (MCAR), i.e., missingness does
not depend on the data values; ii) missing at random (MAR),
i.e., missingness depends only on the observed components,
not on the missing ones; iii) not missing at random (NMAR),
i.e., missingness depends on the missing values. Obviously, the
missing data issue due to the data selection methods such as cen-
soring when solving problem 2) belongs to the third mechanism
mentioned above. In this paper, we focus on missing data due
to the third mechanism, namely, on NMAR. Since the missing
data also convey some information, they can be exploited to
obtain better inference. In fact, the information conveyed by
missing data due to NMAR has been considered implicitly in the
distributed detection problem [32]. The parameter estimation
problem that takes into account the NMAR missing data infor-
mation has been considered in [38]. Nevertheless, to the best of
our knowledge, for the Bayesian sequential estimation problem
in the context of data selection/sensor censoring, such kind of
approach has not yet been explored. A related but different work
has been reported in [39] and references therein, which exploits
‘negative’ sensor evidence (expected but missing sensor data)
for target tracking and data fusion. Though the work in [39]
is similar to ours, it is different from this paper in two major
aspects: first, the missing measurements in [39] are due to the
failed attempt by a radar system to detect a target, while in our
work certain sensor data are missing because sensors censor
their local data in a distributed manner to conserve communi-
cation bandwidth and send more informative sensor data to a
FC; second, the missing information or ‘negative’ information
in [39] is exploited in terms of fictitious measurements given
by appropriate sensor models which is designed based on the
background information on the sensor characteristics, while in
our work, the missing information is exploited in terms of the
statistics of the missingness which can be computed giving the
prior knowledge on the censoring rule. Hence, the two novel-
ties of our work are: censoring measurements at local sensors to
select informative measurements in a distributed manner, and
fusing both received measurements and missing ones at the FC
to exploit the information conveyed by the missingness of data.
Some preliminary results based on our work were presented in
[40], which are extended significantly in this paper.
The main contribution of this paper is that we propose a

scheme which provides better performance for target tracking
in a sensor network when the bandwidth constraint and/or
energy cost at local sensors is important to increase the lifetime
of the network. In the proposed scheme, firstly, the local sensors
censor their measurements in a distributed manner, and then
the FC fuses both the received observations and missing ones.
The proposed scheme is shown to be applicable to both linear
and nonlinear systems, and both scalar and vector observa-
tions. Furthermore, we investigate the relationship between
the censoring rule based on the innovation and the one based
on the Kullback-Leibler (KL) divergence between the prior
state distribution before the measurement is available and the
posterior state distribution after the measurement is obtained.
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For the convenience of discussion throughout this paper, we
call the proposed scheme Censoring and Fusion with Missing
Data (CFwMD), since in this scheme, a censoring method is
employed at the sensors and the FC fuses data considering
the information of missing data that are NMAR. We call the
scheme which uses the same censoring method at the sensors
but ignores the information about the missing data at the FC
as Censoring and Fusion without Missing Data (CFoMD). The
scheme, which does not use censoring at the sensor level but
a probabilistic transmission strategy, which results in missing
data that are MCAR, is called random-selection throughout this
paper. Numerical results demonstrate that CFwMD incurs less
performance loss compared to the all-send case (all sensors
send their measurements to the FC) than CFoMD, while they
both outperform the random-selection under the same band-
width constraint.
The rest of this paper is organized as follows. In the next

section, we formulate the problem. Then, we present the pro-
posed CFwMD scheme for linear Gaussian systems when scalar
observations are obtained at local sensors in Section III, fol-
lowed by the discussion on the equivalence between the cen-
soring rule based on the innovation and the one based on the
KL divergence in Section IV. Section V discusses the frame-
work when vector observations are available at local sensors,
and Section VI generalizes the framework to nonlinear systems.
We provide simulation results in Section VII and conclude this
paper in Section VIII.

II. PROBLEM FORMULATION

A. System Model

In this paper, we consider a sequential Bayesian estimation
problem in a sensor network with N sensors. Sensors report
measurements to the FC for the inference task, i.e., estimation
of the system state, for example, the position and velocity of the
target in the target tracking problem. Throughout this paper, the
channels between local sensors and the FC are assumed to be
perfect.
The state model of the system is given as follows:

(1)

where is the state transitionmatrix, is the state vector
and is the white Gaussion process noise with zero-mean and
covariance matrix . Sensor’s measurements are given by

(2)

where is the observation matrix which maps the state space
into the observation space and is white Gaussian measure-
ment noise with zero-mean and covariance . In this paper, we
first discuss the case in which scalar observations are obtained
at local sensors, i.e.,

(3)

where is the measurement vector, the superscript denotes
vector/matrix transpose and is white Gaussian noise with
zero-mean and variance .

In our CFwMD scheme, we design a censoring rule which
measures the informativeness of the measurements at the sensor
level, i.e., at each time step, the th sensor first examines its
measurement according to the designed censoring rule. When
the measurement falls in the send region, i.e., it is informa-
tive enough, the th sensor sends it to the FC. Otherwise, it is
censored and not sent. For the Bayesian sequential estimation
problem, we design the following measurement censoring rule
based on the normalized innovation squared (NIS) [41]:

(4)

where is the innovation [41] of the
th sensor at time is the variance of , given by

in the KF update procedure [41] ( is
the covariance of the state prediction at the th sensor), and
is a certain threshold that is designed based on performance re-
quirements or bandwidth constraints. Hence, the censoring rule
given by (4) implicitly requires that the th (for )
sensor should perform a KF covariance update at each time, in
order to compute the variance of its innovation. Note that (4) is
a reasonable way to select informative measurements. One can
get an intuition by considering a special case: when sensors are
identical, then , and a larger magnitude of can
pass the censoring threshold more easily. This indicates that the
measurement that gives a larger magnitude of is more infor-
mative, since a larger magnitude of means larger difference
between the measurements and the prediction.
At time , the complete measurement vector is

, where denotes the ob-
served values at the FC and denotes the missing values. For
the NMAR problem induced by (4), we define a missing-data
indicator vector for , where
is the indicator variable for the th sensor, which takes value 1
if the measurement is sent to the FC and 0 otherwise. That is,

(5)

Under the assumption that the channels between the local
sensors and the FC are perfect, a missing sensor measurement
means that it has been censored by the corresponding sensor
node. Hence, , which contains the information on missing-
ness, is available at the FC, and the actual observed data at the
FC consist of . In order to exploit the information
conveyed by the missing data, the corresponding likelihood
function of the underlying state of the system, which is denoted
as should be computed by the FC, and how to
compute it will be considered in Section III.B.

B. Particle Filter at the FC

In the proposed CFwMD scheme, a PF is adopted at the FC.
The KF is known to provide the optimal solution to the Bayesian
sequential estimation problem when the system is linear and
Gaussian. An EKF can provide suboptimal estimation by lin-
earizing the nonlinear state dynamics and/or nonlinear measure-
ment equation locally in nonlinear systems. However, even for
linear and Gaussian systems, when the sensor measurements are
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quantized, the EKF does not perform very well [42]. The cen-
soring process defined in (4) can be treated as a special case of
measurement quantization, since if the measurement falls in the
send region, a continuous value is sent; otherwise, no data are
sent, which is equivalent to a quantization of the sensor data to
the symbol “0”. Hence, the PF is a reasonable choice at the FC
for Bayesian sequential estimation.
As we know, the main idea of the PF is to represent the pos-

terior distribution by a set of particles with
associated weights . Let denote the total number of
particles used in the PF. The posterior distribution can be then
approximated as [43]

(6)

The missing data information can be exploited by using the
full likelihood instead of the simple likelihood

to update the weights of particles at time . Hence,
in the CFwMD scheme, after the FC has received all the mea-
surements sent by local sensors at time , it computes the full
likelihood and uses it to update the particle weights.

C. Censoring Threshold Design

The threshold in (4) is designed such that on an average,
sensors send their measurements to the FC at time . Thus, we
have

where

(7)

and is due to the definition of (5).
Since , we have , the

chi-square distribution with degree of freedom , and is
the dimension of the innovation . Since scalar observations
are obtained at local sensors, their innovations have the same
dimension , which is equal to 1. Hence,

, which implies
. Then, we can obtain , where

represents the critical value such that the probability
greater than it is equal to . Note that completely depends
on the rate of transmission at time and the dimension of
the innovation . Hence, once is set to be the same value for
any given time, remains constant over the entire duration of
tracking, and it can be computed offline and independently by
local sensors and the FC without extra transmission, i.e.,

(8)

III. CENSORING AND FUSION WITH MISSING DATA

A. Overview

The proposed CFwMD scheme consists of two major proce-
dures: censoring and fusion, the former is executed at each local
sensor while the latter is executed at the FC. At the initial step,
local sensors and the FC compute independently according to
(8). Then, at any given time , each local sensor updates the co-
variance of its innovation following the covariance update of
the standard KF, and then determines whether its measurement
at the current time is informative enough or not by the proposed
innovation based censoring rule (4). Only if the measurement is
informative, it is sent to the FC. At the FC, after it gathers all the
informative measurements from the local sensors, it fuses them
to infer the target state. In this paper, it is assumed that the de-
lays in transmitting sensor measurements to the FC are all less
than the sampling interval of the sensors, so that the FC can fuse
the arriving measurements in time. We also assume that the FC
knows the censoring rule. Since the channels in the system have
been assumed to be perfect, the only cause of a missing mea-
surement is that it is not informative enough. Then, based on
the two assumption above, the FC can compute the statistics of
the missing measurements, which we propose to incorporate in
the fusion procedure for better inference performance. Note that
the FC maintains a particle filter to track the target. In order to
fuse both the received measurements and missing ones, we pro-
pose to use the full likelihood function, the details of which will
be given in the following section, to update the particle weights.
To make the CFwMD scheme more clear to the readers, we

describe one cycle of the scheme in the following algorithm:

Algorithm 1: The CFwMD scheme

Initial step: Design by (8)

At time k:

At the th local sensor, :

(A1.1) (KF update)

(A1.2) Apply the censoring rule (4) to measurement

At the FC: (PF with particles, )

(A1.3) (Propagating particles)

(A1.4) full likelihood function

(A1.5) Normalize weights and estimate the state by

(A1.6) Resampling to get

B. The Full Likelihood Function

One of the critical elements of our CFwMD scheme is the full
likelihood function which includes the missing data information
according to the previous section. In this section, we derive the
full likelihood function at time for two cases, i.e., for a feed-
back system as well as for a non-feedback system, depending
on whether the state prediction is a global one or a local
one.
1) Feedback System: The system is called a feedback system

when at the beginning of time , certain global information,
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such as prediction of the target state , is broadcast to the
local sensors by the FC.
Proposition 1: For the linear Gaussian system (1) with mea-

surement model (3), if censoring strategy (4) is used and the
state prediction is fed back from the FC to the local sen-
sors, then the full likelihood of the system state at time , which
is used to update the weights of particles at the FC at step (A1.4)
in Algorithm 1 of the CFwMD scheme is given as

(9)

where is the complementary cumulative distribution func-
tion of a normal random variable with zero mean and unit vari-
ance,

, the conditional mean of sensor’s innovation, and
is defined in (5).
Proof: At time , given , the full likelihood func-

tion is . Let denote the number of
received observations, and denote the number of missing
observations, then

(10)

The last line in (10) is due to the fact that local sensor observa-
tions are conditionally independent.
By decomposing the product inside the integral in (10) into

two parts: one related to the received observations, and the other
related to the missing observations, we can obtain

(11)

Obviously, , and

(12)

where is due to the fact that scalar observations are obtained
at local sensors. Given and is Gaussian with mean

(13)

and covariance

Hence,

(14)

where is given by (8). Thus, we can obtain (9) by plugging
(14) in (11).
Remark 1: (I) We assume that the FC knows each local

sensor’s measurement model and it maintains a KF covariance
update for each local sensor, and, therefore, the full likelihood
given by (9) is completely computable at the FC without extra
transmission from the local sensors. (II) It is not necessary for
each sensor to run a complete KF, including the state update
and the covariance update. But, at each sensor, the KF covari-
ance update recursion is still needed to calculate its innovation
covariance , which is required to censor its measurement.
(III) The threshold is designed by assuming that local state
predictions are employed to calculate the innovations, but in
the feedback system, the innovations are obtained by using
the global state prediction fed back by the FC. This
implies that the communication rate constraint specified in (7)
may not be strictly satisfied in a feedback system, which can
be understood by checking the definition of innovation and its
covariance right below (4). One can see that, in a feedback
system, since the innovation is computed by the global
instead of the local estimate , it is not strictly Gaussian
with covariance which is still computed by using local

. Therefore, (7) is not strictly true which indicates
that the communication rate constraint is not strictly satisfied.
Nevertheless, if the FC also feeds back which is an
empirical estimate by the PF, then the bandwidth constraint can
be more strictly satisfied with the cost of extra transmission,
which gives us Proposition 2.
Proposition 2: For the linear Gaussian system (1) with mea-

surement model (3), if censoring strategy (4) is used and the
state prediction and the related covariance are
fed back from the FC to the local sensors, then the full likeli-
hood of the system state at time is given as

(15)
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where
, the conditional mean of th sensor’s innovation, and

is defined in (5).
Proof: The result can be obtained by following similar pro-

cedures as in the proof of Proposition 1, and we skip the details
for brevity.
Remark 2: (I) The superscript ‘ ’ in Proposition 2 indicates

that the global state prediction covariance instead of the
local is involved in the computation of the covariance

of the innovation. (II) Since the global in the Proposi-
tion is an empirical estimate, (12) through (14) involved in the
proof are approximate ones. One should keep in mind that, for
the feedback system, a feedback step should be added at the be-
ginning of the CFwMD scheme given in Algorithm 1. If only
the state prediction is fed back, the remaining parts remain un-
changed; if both the state prediction and related covariance are
fed back, at step (A1.1) should be replaced by the global

state prediction covariance . Thus, we do not repeat the
algorithm here for brevity.
2) Non-Feedback System: In a non-feedback system, local

sensors censor their measurements according to (4) using the
innovations computed by their own system state prediction,
which implies that each local sensor needs to run a KF. The
full likelihood in the non-feedback system is derived and given
as follows.
Proposition 3: For the linear Gaussian system (1) with mea-

surement model (3), if censoring strategy (4) is used, then the
full likelihood of the target state at time is given as

(16)

where , and

, which is the conditional mean of th
sensor’s innovation. is defined in (5) and

is the joint PDF of the local sensor
state predictions given the current true state, which will be
given later in the paper.

Proof: Let denote the
local sensors’ state predictions.

(17)

Similar to the feedback case, we split observed data and missing
data in the inner integral, then,

(18)

Again, we have in (18). Now,

we compute in (18) by following a sim-
ilar procedure as for the feedback system:

(19)

Thus,

(20)

Hence, we can obtain (16) by using (20) in (18).
Note that the joint PDF is a mul-

tivariate normal distribution with mean and covariance
, where is given by

with dimension , and denotes the identity ma-
trix. That is, the mean is the concatenation by true
states . The diagonal elements of the covariance
are filled with , the covariance of each sensor’s own
prediction, and the remaining terms of are filled with

, cross-covariance between the th sensor’s prediction
and the th sensor’s. Thus,

...
...

. . .
...

(21)
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For two arbitrary sensors :

(22)

where according to [1]

(23)

and is the Kalman gain at time .
Note that (23) is recursive, and once the initialization

is given, at any given time step can be computed re-
cursively, based on which (21) can be evaluated.
We should point out that, for the non-feedback system, a KF

state update should be added to step (A1.1) in Algorithm 1, but
the remaining steps are kept the same.
It should be noted that the CFoMD follows the same pro-

cedure as the CFwMD, except that the full likelihood is re-
placed by the simple likelihood, i.e., in step (A1.4)
of Algorithm 1.

IV. CENSORING BASED ON AN INFORMATION
THEORETIC METRIC

In the previous sections, we proposed to use innovations in
the censoring rule to select informative measurements. Though
we have given an intuitive motivation for this choice, one may
wonder about its optimality. In this section, we use an informa-
tion theory based metric to measure the informativeness of mea-
surements. A good metric which can measure whether or not
a measurement is informative enough is the KL divergence
between the prior distribution before the measure-
ment is available and the posterior distribution after
the measurement is obtained. The censoring rule based on KL
divergence can be expressed as

(24)

where denotes the distance between two distributions
in terms of KL divergence, which is defined as

for distributions and of the continuous random variable .
We show that under certain conditions, the proposed innova-

tion based censoring rule is equivalent to that based on the KL
divergence.

Theorem 1: For the linear Gaussian system (1) with
measurement model (3), if scalar measurements are ac-
quired, then the censoring rule based on the metric

in (24) is equivalent to the one
based on the NIS .

Proof: For a linear Gaussian system, we
have , and

. Then, according to [44]

(25)

Since and are determined offline for a linear
Gaussian system, and in (25) is the dimension of the state
, they are all deterministic once the system is determined.

Therefore, (24) is equivalent to

(26)

where . Note that
the censoring is performed at each local sensor which maintains
a KF. Thus,

(27)

where is the KF gain, which is a column vector if scalar
measurements are obtained. Then,

(28)

Thus, (26) is equivalent to

(29)

When scalar measurements are obtained, both
and are scalars. Hence, by comparing (29) to (4), we con-
clude that they are equivalent when appropriate thresholds are
selected.
Theorem 1 indicates that the innovation based censoring rule

selects more informative measurements to send, which is intu-
itively pleasing. The above result can be easily extended to sym-
metric KL divergence.
Corollary 2: For the linear Gaussian system (1) with mea-

surement model (3), if scalar measurements are obtained, then
the censoring rule based on the symmetric KL divergence

(30)

is equivalent to that based on the NIS .
Proof: See Appendix A.
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V. THE VECTOR OBSERVATION CASE

So far, our discussion was limited to the scalar observation
case.When vector observations are obtained at the local sensors,
i.e., the measurement model (2) is used, we still propose to use
NIS based censoring rule, i.e.,

(31)

Again, we use as the indicator variable for the th sensor,
which takes the value 1 if the vector measurement of sensor is
sent to the FC and 0 otherwise.
As in the scalar measurement case, we design such that, at

time , there are only sensors that are active. Without loss of
generality, we assume that local sensors’ innovations have the
same dimension . If is set to be the same value at any given
time and the dimension of the innovation remains unchanged
over time, i.e., the measurement model (2) remains unchanged,
then we still have

(32)

According to the discussion above, Algorithm 1 can be straight-
forwardly applied to the vector observation case by replacing

by . Then,
the main concern now is to compute the corresponding full like-
lihood for the vector observation case which are discussed in the
following sub-sections.

A. Feedback System

Proposition 4: For the linear Gaussian system (1) with vector
measurement (2), when the global state estimate feedback from
the FC is available, and the censoring strategy (31) is used, the
full likelihood of the system state at time is given as

(33)

where .
Proof: Following a similar procedure as in Proposition 1,

we can obtain

(34)

where

Denoting , we have

(35)

(36)

Since

(37)

we can obtain

(38)

Therefore, .
Following a similar discussion as that in Remark 1 (III), we

provide the following result.
Proposition 5: For the linear Gaussian system (1) with vector

measurements (2), when the global state prediction and
its covariance are fed back from the FC to the sensors,
the full likelihood of the system state at time is given as

(39)

where , and
is computed using the global state prediction covariance

instead of the local one.
Proof: The result can be obtained by following a similar

procedure as in the proof of Proposition 4, and we skip the de-
tails for brevity.

B. Non-Feedback System

Proposition 6: For the linear Gaussian system (1) with vector
measurements, when global estimate feedback from the FC is
not available, if censoring strategy (31) is used, then the full
likelihood of the system state at time is given as

(40)

where .
Proof: The result can be obtained in a straightforward

manner following a similar procedure as in Proposition 3 and
Proposition 4.
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VI. CENSORING AND FUSION WITH MISSING DATA FOR
NONLINEAR SYSTEMS

In the previous sections, we have discussed the proposed
CFwMD scheme for linear Gaussian systems. To make it more
general, we extend the scheme to a general nonlinear system
in this section. Consider the following nonlinear state-space
model

(41)

and measurement model for the th sensor

(42)

where is the state process noise, and
is the measurement noise. We first consider the

scalar observation case. Note that, due to the nonlinearity of the
system, when the CFwMD scheme is used in the considered
nonlinear system, each local sensor maintains an EKF and the
FC uses a particle filter to infer the target state. We should point
out that the nonlinearity of the system makes it different from
the linear Gaussian system in several aspects:
1) The innovation is no longer exactly distributed as
Gaussian with zero mean and variance , but can be
approximated as .

2) Since , where

, and

cannot be evaluated offline as in the case
of linear systems.

Inspired by the linear Gaussian systemwe have discussed ear-
lier, we propose that, for a nonlinear system, the th sensor again
censors its measurement based on the NIS, i.e., at
time k, where , and it is approximated as a
Gaussian distribution with zero mean and covariance .
The censoring threshold can also be designed by the band-

width constraint as in linear Gaussian systems, given the ap-
proximation that . Following a similar procedure
as in Section II.C, we have

(43)

where , since scalar observations are obtained.
For the considered nonlinear system, if the global state esti-

mate is fed back from the FC to the local sensors, the full like-
lihood function in the CFwMD scheme is provided in the fol-
lowing proposition.
Proposition 7: For a general nonlinear system given by

(41)–(42), if innovation based censoring strategy is used with
threshold given by (43) and the global estimate of the state

is fed back to the local sensors, then the full likeli-
hood of the system state at time of the CFwMD scheme is
given as

(44)

where is defined in

(5), , the conditional mean of th
sensor’s innovation, and .

Proof: Following a procedure similar to that in Proposition
1, we can obtain (44) in a straightforward manner.
Remark 3: (I) As in the linear Gaussian system, we assume

that the FC knows each local sensor’s measurement model and
it performs an EKF covariance update for each local sensor.
Note that an EKF is also maintained at each local sensor, and
each local sensor computes the linearized state transition ma-
trix and measurement matrix (vector) using the global
state estimate fed back from the FC. Also, since the
local sensors using the global feedback in its cen-
soring process, and the FC maintains an EKF covariance up-
date for each local sensor, the FC is able to compute in-
volved in and in the proposition above, and there-
fore, (44) is completely computable by the FC without requiring
extra information from local sensors. (II) In addition to the state
estimate , the FC can also feed back the covariance

to local sensors as in the linear Gaussian system. Note
that, due to the nonlinearity, is approximated as Gaussian
distributed . Nevertheless, if the FC also feeds back
the global covariance , and then, can be approx-
imated as (the global contributes to the
computation of ), which is more accurate than the previous
approximation.
Proposition 8: For a general nonlinear system given by

(41)–(42), if innovation based censoring strategy is used with
the threshold given by (43) and both the global estimate of the
state and the related covariance are fed
back to local sensors, then the full likelihood of the system state
at time of the CFwMD scheme is given as

(45)

where is defined
in (5), , the conditional mean of th
sensor’s innovation, and .

Proof: Following a procedure similar to that in Proposition
1 and the discussion Remark 1 (III), we can obtain (45) in a
straightforward manner.
Remark 4: (I) The global contributes to the com-

putation of . (II) If vector observations are obtained by local
sensors, one can follow a similar procedure as in Section V to
get the corresponding full likelihood for the nonlinear system
with feedback (feedback consists of state estimate with/without
covariance), which is not provided here for brevity. (III) For the
considered nonlinear system without feedback, one may expect
to get a similar result as in Proposition 3. But, this is not true. The
reason is as follows: consider the joint PDF in the
nonlinear system. Let us approximate it as Gaussian with mean

and covariance , which has the same structure as
(21). However, it can be easily found that the diagonal element

in depends on the state estimate , and
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the off-diagonal element depends on the state estimate

and , which prevents us from obtaining a
similar result to that in Proposition 3.

VII. SIMULATION RESULTS

In this section, we show the advantage of the proposed
CFwMD scheme for both linear and nonlinear systems via
simulation. For linear systems, we show that, for a certain
threshold, the CFwMD scheme achieves less performance loss
than CFoMD, while saving the same amount of communica-
tion resources compared to the all-send case. We also show
that among the three schemes, i.e., CFwMD, CFoMD and
the random-selection method, the proposed CFwMD scheme
performs the best, under the same bandwidth constraint. We
explore the performance comparison for both feedback and
non-feedback scenarios. For nonlinear systems, the advan-
tage of the proposed CFwMD scheme over the CFoMD and
random-selection schemes is shown by simulations when
feedback is included in the system.

A. Linear System—The Scalar Observation Case

A one-dimensional target tracking system is considered in
this scenario, with state vector , state transition
matrix

and observation matrix , where second,
which is the sampling interval.Without loss of generality, in this
example, we use identical sensors to track the target which
moves only along the x-axis following the white noise acceler-
ation model. The state process noise covariance is set as

where . The measurement noise variance is set as
for . The initial state of the target is chosen to be

. We observe the target for 20 seconds, namely, we track
the target over time steps for each Monte-Carlo trial.
The number of particles used in the particle filter at the FC is

.
1) Feedback System: In this example, at the beginning of

each time step in a trial, the FC broadcasts the global state pre-
diction to local sensors. We compare the RMSEs, averaged over
5000 Monte-Carlo trials at each time, for the random-selection,
CFwMD, CFoMD and all-send cases. To perform the compar-
ison under the same bandwidth constraint, we set the censoring
threshold for the CFwMD and CFoMD schemes at the value
such that the average number of active sensors is at any
given time, and we let each sensor send its measurement to the
FC with a probability for the random-selection scheme.
In Fig. 1, there are sensors. Since we set the censoring

threshold to constrain the average number of active sensors as
at any given time, both the CFwMD and CFoMD schemes

save 50% transmissions, compared to the all-send case. How-
ever, the CFoMD incurs a larger performance loss according to

Fig. 1. RMSE comparison for the feedback system with . Solid line
with circle: random-selection, solid line with triangle: CFoMD, solid line with
square: CFwMD, solid line with plus: all-send.

Fig. 1. The reason is that the censoring process selects more in-
formative measurements, and the missing data due to censoring
process in the CFoMD is NMAR, i.e., is non-ignorable [37]. Ig-
noring the data as in CFoMD will certainly result in some infor-
mation loss. We can also observe that there is only a small gap
between the performances of CFwMD and that of the all-send
case. Since in the random-selection scheme, each sensor has
probability of 1/2 to send its observation, it also saves 50%
transmissions on an average, compared to the all-send case. But,
it performs the worst among the four schemes as expected, since
the per-sensor censoring process in the CFwMD and CFoMD
schemes select more informative data than random selection.
In Fig. 2, we compare the RMSEs of two feedback cases with

different values of , i.e., , when the total
number of sensors is increased to . The CFwMD in the
figure is the case when only the global state prediction is
fed back, while the CFwMD2 is the case when both the global
state prediction and its covariance are fed back
at any given time . We can observe that, when , the
CFwMD2 performs better than the CFwMD, due to the extra
feedback from the FC. However, when , the CFwMD2
does not provide much performance improvement. This is be-
cause, on the average three sensors’ observations, the FC can
provide very good estimation performance. Therefore, the extra
feedback does not contribute much. On the other hand, it can be
observed that the performance of the CFwMD is better than that
of the CFwMD2 when . The reason is as follows: when

, the probability that at a particular time none of the sen-
sors sends data, which is , is much greater than
that when , which is . If at a certain time
step, no data are sent to the FC, it would be more likely that at
the next time step no sensor data are sent to the FC either. This
is because if no data are available for the FC to update its state
estimate at time , both and will increase
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Fig. 2. RMSEs for the CFwMDwith/without covariance feedback for different
.

TABLE I
AVERAGE NUMBER OF TRANSMISSIONS (SCALAR OBSERVATION)

significantly. A larger , which is fed back to local sen-
sors in the CFwMD2 scheme, results in a larger and makes
it more difficult for the sensor data to pass the censoring rule
defined in (4) at time , while in CFwMD, , which com-
pletely depends on the system model, is not affected by the esti-
mation process at all. Hence, the probability that no data are sent
for several consecutive time steps is much larger for CFwMD2
when . This has been verified by Monte-Carlo simula-
tions, where we observe more instances of no sensor data being
sent over several consecutive time steps in the case of CFwMD2
than those in CFwMD when . Indeed, in Table I, one can
observe that, when , the experimental average number of
transmissions of CFwMD2 is smaller than that of CFwMD. We
did not observe similar phenomena for the cases when the state
process noise is smaller or when the observation is a vector
consisting of both position and velocity observations, the latter
of which will be given later in the paper. This is because
is smaller in either of these two cases.
Another observation from Table I is that, for each , the av-

erage number of transmissions of CFwMD2 is closer to the the-
oretical value than that of CFwMD, which justifies our expecta-
tion that the bandwidth constraint of CFwMD2 should be more
strictly satisfied than CFwMD.
2) Non-Feedback System: For a non-feedback system,

again the RMSEs of the four schemes, i.e., random-selection,
CFwMD, CFoMD, and all-send, are compared. In Fig. 3, the
results for a system with sensors are presented. As in
the feedback system, it is obvious that CFoMD outperforms

Fig. 3. RMSE comparison for the non-feedback system with . Solid
line with circle: random-selection, solid line with triangle: CFoMD, solid line
with square: CFwMD, solid line with plus: all-send.

random-selection, and CFwMD performs the best among the
three schemes, i.e., random-selection, CFoMD and CFwMD.
By observing Fig. 3, we can also conclude that, though the
random-selection saves 50% transmissions when , it
incurs a large loss of performance as expected.

B. Linear System—The Vector Observation Case

In this example, the same one-dimensional moving target is
tracked as that in Section VII.A. But, the observation matrix is
set as , an identity matrix with dimension 2 2. Thus,
both the position and the velocity of the target can be observed
by local sensors. Again, identical sensors are used,
and the measurement covariance is set as for

. As in Section VII.A, we design the censoring threshold
such that there is only one active sensor, i.e., , at any

given time on the average. The target is tracked for 20 sec-
onds for each Monte-Carlo trial and 5000 Monte-Carlo trials
are performed. We compare the RMSEs for the random-selec-
tion, CFwMD, CFoMD and all-send cases. In Fig. 4, the results
for the feedback system with vector observations are presented.
Obviously, similar conclusion as that in Section VII.A can be
drawn here.
In Fig. 5, as in the scalar observation case, the position

RMSEs of the CFwMD with only global state feedback and the
CFwMD2 with both the global state and covariance feedback
are compared for different , and the total number of sensors
is again set as . Obviously, CFwMD2 outperforms
CFwMD for each , which is due to the extra feedback. Similar
results can be observed for the RMSE comparison of the ve-
locity, which is omitted here for brevity. On the other hand, the
experimental average number of transmission of CFwMD2
for each , especially when , provided in Table II is closer
to the theoretical one than that of CFwMD, which again verifies
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Fig. 4. RMSE comparison for the feedback system with (vector ob-
servation). Solid line with circle: random-selection, solid line with triangle:
CFoMD, solid line with square: CFwMD, solid line with plus: all-send.

Fig. 5. RMSEs for the CFwMDwith/without covariance feedback for different
s (vector observation).

TABLE II
EXPERIMENTAL AVERAGE NUMBER OF TRANSMISSIONS

(VECTOR OBSERVATION)

that the bandwidth constraint of CFwMD2 is more strictly
satisfied due to the feedback of the global covariance.
The results for the non-feedback system with vector obser-

vations are provides in Fig. 6. Obviously, we can draw similar
conclusions as that in Section VII.A2.

Fig. 6. RMSE comparison for the non-feedback system with (vector
observation). Solid line with circle: random-selection, solid line with triangle:
CFoMD, solid line with square: CFwMD, solid line with plus: all-send.

We should point out that simulation approach has been used to
compute the probability to get the full likelihood
function (33) when using the CFwMD scheme for a feedback
system. That is, we first draw samples from the normal dis-

tribution , and then count
the number of samples which satisfy the condition ,
denoted as . Then, the probability can be approximated by

. The same approach is also used to compute the proba-
bility involved in (40) for a non-feedback system.

C. Nonlinear System

In this experiment, we assume sensors are grid de-
ployed in a m 20 m surveillance area, and an acoustic
or an electromagnetic source is moving in this region, as shown
in Fig. 7. Target motion is defined by the white noise accelera-
tion model (1) with state vector , where the state
transition matrix and the state noise covariance are given
as follows

At time , the signal power received at the th sensor is given
as , where denotes the signal power

of the target, is the distance between the target and the th
sensor at time and are model parameters, and is
Gaussian noise with zero mean and variance . Without loss
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Fig. 7. Target trajectory and sensor deployment in the ROI.

of generality, local sensors are set up with the same measure-
ment noise variance in this example.
We set , and . The target’s initial state
is assumed to be Gaussian with mean

and covariance (i.e., a poor prior on the
initial state). The state process noise parameter is set as 0.1,
indicating that the target trajectory has relatively large uncer-
tainty. Measurements are assumed to be taken at regular inter-
vals of seconds and the tracking length is 10 seconds,
namely, we track the target over time steps for each
Monte-Carlo trial. 200 Monte-Carlo trials are performed in this
experiment. The number of particles used in the particle filter at
the FC is .
As in linear systems, the RMSEs, averaged over the Monte-

Carlo trials at each time, for the random-selection, CFwMD,
CFoMD and all-send cases are compared. The average number
of transmission at any given time in this experiment is con-
strained as .
In Fig. 8, the RMSE comparison results are shown. Note

that only state estimate is fed back in this figure. It can be ob-
served that the proposed CFwMD outperforms CFoMD and
random-selection under the same bandwidth constraint. On the
other hand, compared to the all-send case, CFwMD loses not
much performance but saves 78% transmission. One may ob-
serve that RMSEs increase with time at later time steps in Fig. 8.
This is because the target is moving out of the region of interest
(ROI) monitored by the sensors, so there is less and less infor-
mation available for the estimator.
In Fig. 9, the RMSEs of the four schemes, namely, the

random-selection, CFoMD, CFwMD, and all-send, are plotted
as a function of the average number of transmissions at any
time step. One can observe that, when the allowed number of
transmissions is small, the proposed CFwMD has significant
advantage over both CFoMD and random-selection. It incurs a
little bit performance loss compared to the all-send case. As we
increase the allowed number of transmissions, the RMSEs of
the four schemes approach each other, especially when is close

Fig. 8. RMSE comparison for the nonlinear system with feedback.

Fig. 9. RMSEs as a function of the average number of transmission at each
time.

to the total number of sensors in the network. This is
intuitively reasonable, since when the number of transmissions
is large enough, the received observations can already provide
enough information for good inference performance, and then
either the censoring procedure or the information conveyed by
the missing data cannot improve the performance much.
For the nonlinear system, we are also interested in the perfor-

mance comparison between the two feedback scenarios: 1) only
global state estimate feedback is available; 2) the feedback con-
sists of both the global state estimate and its covariance, and the
results are provided in Fig. 10 for (the total number
of sensors in the ROI is ). It can be observed that, as
in the linear Gaussian system, CFwMD2 performs better than
CFwMD as time goes along for each , since extra global infor-
mation is fed back to local sensors by the FC. Again, the exper-
imental average number of transmissions over 200 Monte-carlo
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Fig. 10. RMSEs for the CFwMD with/without covariance feedback for dif-
ferent s in a nonlinear system.

TABLE III
EXPERIMENTAL AVERAGE NUMBER OF TRANSMISSIONS (NONLINEAR SYSTEM)

trials provided in Table III indicates that the bandwidth con-
straint of CFwMD2 is more strictly satisfied than CFwMD.

D. Discussion

It should be noted that the models used in the simulations
have relatively low dimension and the network size is rather
small. However, such scenarios are frequently used in the target
tracking literature [41], [1], [4]. Therefore, we think that they
are appropriate to illustrate the effectiveness of the proposed al-
gorithm. We would like to point out that the proposed method-
ology can also be applied to moderately high dimensional sys-
tems without requiring large computation effort if feedback is
available from the fusion center to local sensors. This is clear
if one checks (9), (15), (33) and (39) for linear systems, and
(44) and (45) for nonlinear systems. For a non-feedback system,
if the dimensionality of the dynamic system is high and/or the
number of sensors is large, the proposed methodology involves
computationally intensive multiple integrals in (16) and (40).
However, if the fusion center is very powerful, the proposed
methodology can still be applicable relying on efficient numer-
ical integration approaches, such as those based on Monte Carlo
integration techniques [45]. Note that in this paper, we have im-
plicitly assumed that identical dynamical model is observed at
each sensor. However, this may not be true in some realistic sce-
narios such as very large-scale dynamical systems [46], [47],
and this will be addressed in future work.

VIII. CONCLUSION

In this paper, we have proposed a new scheme to solve linear
Bayesian sequential estimation problems by combining the
censoring procedure at local sensors and the fusion procedure
which fuses both received observations and missing ones, due
to the censoring process, at the FC. Both scalar observation
and vector observation cases have been discussed in the paper.
In addition, for scalar observation case, it has been shown that
the proposed innovation based censoring rule is equivalent to
that based on the KL divergence between the prior state PDF
and the posterior state PDF. Then, we extended the proposed
CFwMD to a general nonlinear filtering problem when feed-
back is available. Numerical results show that, for both linear
and nonlinear filtering problems we considered in this paper,
CFwMD achieves less performance loss than the CFoMD,
while both save the same amount of transmissions, compared
to the all-send case. In addition, under the same bandwidth
constraint, the proposed CFwMD is shown to perform the
best among the three schemes, i.e., CFwMD, CFoMD and
random-selection. Future work will theoretically analyze the
performance of the proposed CFwMD scheme. In the current
work, the channels between the local sensors and the FC are
assumed to be perfect. Then, taking a fading channel into
consideration is another interesting future work.

APPENDIX A
PROOF OF COROLLARY 2

Proof: When symmetric KL divergence is used, the metric
to select more informative data in (26) is changed to

(46)

Following the same manipulation on as in the proof of The-
orem 1, we can obtain

(47)

Again, since scalar measurements are obtained,

is a scalar, so is . Therefore, we have

(48)
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