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Abstract—The recursive procedure to compute the posterior
Cramér-Rao lower bound (PCRLB) for sequential Bayesian estima-
tors, derived by Tichavsky et al., provides an off-line performance bound
for a general nonlinear filtering problem. Since the corresponding Fisher
information matrix (FIM) is obtained by taking the expectation with
respect to all the random variables, this PCRLB is not well suited for
online adaptive resource management for dynamic systems. For online
estimation performance evaluation in a nonlinear system, the concept of
conditional PCRLB was proposed by Zuo et al. in 2011. In this paper, two
other online conditional PCRLBs are proposed which are alternatives to
the one proposed by Zuo et al. Numerical examples are provided to show
that the three online bounds, namely the conditional PCRLB proposed by
Zuo et al. and the two conditional PCRLBs proposed in this paper, are
very close to one another.

Index Terms—Nonlinear filtering, particle filters, posterior Cramér-Rao
lower bounds.

I. INTRODUCTION

The posterior (or Bayesian) Cramér-Rao lower bound (PCRLB, or
BCRLB) is defined to be the inverse of the Fisher information ma-
trix (FIM)1 for a random vector-valued parameter [1] and provides a
performance bound for any Bayesian estimator of such a parameter.
In [2], Tichavsky et al. provided a recursive approach for calculating
the sequential PCRLB for a general multi-dimensional discrete-time
nonlinear filtering problem. The predictive and smoothing Cramér-Rao
lower bounds for discrete-time nonlinear dynamic systems and their re-
lations with filtering CRLB were discussed in [3]. However, the useful
measurement information is averaged out making the unconditional
PCRLB [2], [3] an off-line bound which is independent of the measure-
ment history and the trajectory realization up to the current time. There-
fore, the unconditional PCRLB does not reflect the nonlinear filtering
performance for a particular system state realization very faithfully.

There are several modified versions of the PCRLB proposed in the
literature. They attempt to make the bound adaptive to the realization of
the system state, so that it can be useful for online sensor management.
In [4], a renewal strategy was used to restart the recursive unconditional
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1Throughout this paper, FIM refers to the Bayesian information matrix which
is used for random unknown vectors.

PCRLB evaluation process, where the initial time is reset to a more re-
cent past time, such that the prior knowledge of the initial system state
is more useful and relevant to the sensor management problem. There-
fore, the resulting PCRLB is conditioned on the measurements up to
the reset initial time. Based on the PCRLB modified in this manner, a
sensor deployment approach was developed to achieve better tracking
accuracy with the efficient use of limited sensor resources. When a par-
ticle filter is used in the renewal strategy, the posterior probability den-
sity function (pdf) of the system state at the reset initial time is repre-
sented nonparametrically by a set of particles, from which it is difficult
to derive the exact FIM. One may use Gaussian approximation as was
done in [4], and then the FIM at the reset initial time can be taken as
the inverse of the empirical covariance matrix estimated based on the
particles. However, Gaussian approximation may incur large errors and
discrepancy, especially in a highly nonlinear and non-Gaussian system.
Another modified version of the PCRLB, motivated by the problem of
adaptive radar waveform design for target tracking, has been presented
in [5]. The authors in [5] consider a linear Gaussian state dynamic
model and a nonlinear measurement model, and propose to retain the
unconditional recursive PCRLB derived in [2] with the exception of
one term which corresponds to the contribution of the future measure-
ments to the Fisher Information. The term with the future measurement
contribution is modified in a heuristic way so that it includes the mea-
surement history. Although the proposed method was shown to result
in good performance for adaptive waveform design, the authors did
not provide any theoretical justification for this modification. Most re-
cently, the notion of conditional PCRLB was introduced in [6], which
was shown to be different from the modified PCRLBs proposed in [4]
and [5]. The conditional PCRLB proposed in [6] provides a bound on
the conditional mean squared error (MSE) of the system state estimate,
based on the measurements up to the current time. Furthermore, the au-
thors in [6] proposed a systematic recursive approach based on a certain
approximation to evaluate the conditional PCRLB.

Our contributions in this paper are as follows. Using two different ex-
pressions for the conditional PCRLB, we propose two new conditional
PCRLBs. The first bound we propose is based on the representation of
the conditional PCRLB proposed in [6]. We call this bound the alter-
native conditional PCRLB (A-CPCRLB), since we discard the auxil-
iary FIM which is involved in the recursive update for the conditional
PCRLB presented in [6]. Instead, an alternative approximate recursive
update is proposed, which is direct, more compact and computation-
ally efficient than the one proposed in [6]. Furthermore, when the state
dynamic model is linear and Gaussian, we show that this bound re-
duces to the modified PCRLB proposed in [5]. Hence, the proposed
A-CPCRLB provides a generalization and the theoretical justification
for the bound used in [5]. The second bound we propose builds on our
earlier work [7] and is based on the direct representation of the con-
ditional PCRLB without using any recursions as in [6]. We call this
bound the direct conditional PCLRB (D-CPCRLB). Note that, a cer-
tain approximation was made in [6], to enable recursive computation
of the conditional PCRLB. Due to the recursions, it is possible for the
approximation error to accumulate through propagation over time and
result in divergence. In comparison, D-CPCRLB is not recursive in na-
ture and it is based on the target state distribution at the current time
only. We also provide an approximate computation of the exact bound,
namely the D-CPCRLB with Gaussian approximation, which is com-
putationally the least expensive one. Even though the approximation
naturally induces an error, it does not propagate with time unlike the
CPCRLB in [6] or the proposed A-CPCRLB. This new bound uses the
prediction distribution as its prior, and, therefore, it utilizes the infor-
mation contained in the measurement data up to the current time for a
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particular realization of the state trajectory making it a track-adaptive
bound. Hence, it provides a more accurate and effective real-time per-
formance evaluation than the traditional PCRLB.

The analytical calculation of our proposed bounds is not tractable ex-
cept for very restricted cases such as linear Gaussian systems. For this
reason, we develop numerical computation methods to compute these
new bounds using the sequential Monte Carlo methods, i.e., particle
filters [8], and provide analysis of computational complexities associ-
ated with our bounds. Our particle based computation methods make
the proposed bounds easily computable in real-time from the particles
already available from the underlying particle filter which is used to se-
quentially estimate the state. In our earlier work [7], we did not provide
an illustrative example that depicts the performance of D-CPCRLB in
a nonlinear Bayesian sequential estimation problem. Here, after pre-
senting derivations of the proposed bounds, we provide a benchmark
numerical example to compare the original CPCRLB [6] with our pro-
posed bounds, namely the A-CPCRLB and the D-CPCRLB. For this
particular example, we observe that the results are quite similar. Al-
though the numerical example chosen in this paper is a benchmark
problem widely used in the nonlinear tracking literature, the proposed
bounds can be applied to real world problems, such as target tracking
with radar systems. In fact, the authors in [5] used a special case of the
proposed A-CPCRLB to dynamically design polarized waveforms for a
target tracking problem using radar measurements. Moreover, a bound
similar to our proposed D-CPCRLB with Gaussian approximation was
used by the authors in [4] to deploy sensors in a submarine tracking
problem. Therefore, the proposed bounds in this paper not only provide
state realization-specific performance bounds for a sequential Bayesian
estimation problem, but they also provide us with tools that can be used
as performance metrics for dynamic sensor management problems in
real-world scenarios.

II. CONDITIONAL POSTERIOR CRAMÉR-RAO LOWER BOUNDS

Consider a��-dimensional state vector at time �� �� , whose discrete
time dynamics is defined by

���� � ��������� (1)

where �� � �� ��� � �� and �� is the white process noise with
dimension ��. The measurement model is given by

�� � ���������� (2)

where �� � �� ��� � �� � �� is the white measurement noise,��
and �� are the dimensions of the measurement and measurement noise
vectors, respectively. The process and the measurement noise distribu-
tions are denoted by �� ��� and �� ���, respectively. It is assumed
that the estimator has complete information about the state dynamic
model (1), the sensor measurement model (2) and the process and mea-
surement noise distributions.

The conditional PCRLB sets a bound on the performance of esti-
mating the state vector up to time � � �� ������, when the new mea-
surement ���� becomes available given that the past measurements
up to time �� ����, are all known, i.e., the measurements up to time �
are taken as realizations rather than random vectors. The sequence of
conditional Fisher information ������� � ������ for estimating state
vector ������ given the measurements up to time � can be computed
as follows [6]:
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An approximate recursion to compute ����� � ����� is also proposed
in [6], which is
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One should note that if (9) is used in (3), then (3) becomes an approx-
imation, instead of equality.

III. PROPOSED CONDITIONAL PCRLBS

A. A-CPCRLB

As shown in Section II, an approximated recursive update of an aux-
iliary FIM is necessary to recursively compute the conditional Fisher
information at each time step, which makes the process complex. In
this section, an alternative compact solution is proposed, such that the
process of computation is simplified and computation time can be saved
at the same time.

Proposition 1: The sequence of conditional Fisher information
������ � ����� for estimating state vectors ���� given measurements
up to time � can be computed as follows:
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where ���
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� and ���

� are given by (4) through (6).
Proof: Since �
� � ������� �� � ������� according to (8), the con-

ditional FIM given measurements up to time ��� can be decomposed
as follows:
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Thus, by applying matrix inversion formula [9], the inverse of the
lower-right block of ��������� �� � �������� i.e., the FIM for esti-
mating �� given the measurements up to � � � is
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�
� �

��
� ��

Now, considering Fisher information given measurements up to time
�, we have
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where 	���� is defined in (8), which can be decomposed as follows:
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the top-left submatrix is a function of �� , we can approximate it by its
expectation with respect to 	��� � �������. Then,
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Note that ��� follows from plugging (16) in (17), and using the defini-
tion in (14). Similarly,
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The conditional Fisher information ������ � ����� is equal to the in-
verse of the lower right submatrix of ����������� ���� � �����. There-
fore, according to the matrix inversion formula,

������ � �����

� �
��
� � � � ���

� �
�� ��

� �
� �� ����

�

��
�

���
�

� �
��
� ��

��
� �

��
� � �� � �

�
� �

��
� ��

��

�
��
�

� �
��
� ��

��
� �

��
� � ���� � �������

��
�

��
�

Based on Proposition 1, it is easy to show that the modified PCRLB
in [5] is a special case of the A-CPCRLB, as stated in the following
corollary.

Corollary 1: For the special case of linear state model with additive
Gaussian noise, i.e., ���� � ���� ��� , the conditional Fisher infor-
mation ������ � ����� is given by
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where �� is the state transition matrix of the system state equation, and
�� is the covariance matrix of the additive Gaussian noise �� .

Proof: Since we consider a linear state model with additive
Gaussian noise
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Therefore, using (13), we have
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where the last equation is due to the application of Woodbury matrix
identity [10]
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where A, U, C, V are matrices with proper dimensions.
One should note that the result in Corollary 1 is the same as the

one used in [5]. Hence, the approximation in [5] is a special case of
Proposition 1. Moreover, since the bound proposed in [5] is a heuristic
one and not theoretically justified therein, Corollary 1 in this paper
provides a theoretical justification for it and Proposition 1 generalizes
it.

Obviously, (13) is more compact than (3), since the conditional
PCRLB is directly updated at each recursion in (13) without using
the auxiliary FIM ����� � �����. The computational efficiency of the
A-CPCRLB will be analyzed in Section V in detail.

Another useful insight that can be deduced from Proposition 1 is
that in a linear and Gaussian system, the A-CPCRLB is identical to the
offline PCRLB.

Corollary 2: For the particular case of linear Gaussian dynamic
model: ���� � ���� � ��� �� � ���� � �� , where �� and ��
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are Gaussian noises with covariance matrices �� and �� respectively,
the recursive conditional Fisher information (13) in Proposition 1 is the
same as the recursive offline Fisher information ���� proposed in [2],
i.e., ���� � ������ � �����, given that �� � �����.

Proof: From Corollary 1, we already have (20), (21), and (22).
Given the linear Gaussian observation model, we have
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Gaussian. Hence, ���� � ������ � �����, given the same initializa-
tion, i.e., �� � �����.

B. D-CPCRLB

For a given track at time , all the information that is needed in
order to estimate ���� is contained in the prediction distribution
������ � �����, which is readily available from the tracking filter, and
the measurement distribution ������ ������. If the tracking filter is
a particle filter, ������ � ����� is available in the form of propagated
particles. Using this fact, we proposed a modified posterior CRLB [7],
which we call the D-CPCRLB. We used the prediction distribution at
time , i.e., ������ � �����, as our a priori distribution for time   �.
First, we present the following definitions:

Definition 1: Conditional estimator ���������� � ����� is defined as
a function of the observed data ���� given the existing measurements
���� .

Definition 2: Mean squared error of the conditional estimator at time
  � is defined as follows:
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From the posterior Cramér-Rao inequality, ��������� � ����� is
bounded as follows:
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Using the fact that ����� ���� and ���� form a first order Markov
chain, the joint conditional density in (26) can be written as
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where ����� represents the information gained from the new measure-
ments averaged over the a priori distribution, and ����� represents the
information contained in the a priori distribution
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Note that the expectations in (30)–(31) are taken with respect to the
joint conditional density ����������� � �����. Therefore, ����� in (29)
is in fact an expectation of the standard FIM over the prediction distri-
bution ������ � �����, where the standard FIM is defined by
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For a given track, D-CPCRLB can be calculated by adding ����� and
����� given in (30) and (31), respectively.

IV. COMPUTATION OF THE PROPOSED CONDITIONAL PCRLBS

USING PARTICLE FILTERS

In this section, particle filter based methods to compute the two mod-
ified PCRLBs proposed in this paper are given.

A. Particle Filter Computation of A-CPCRLB

We use the same particle filter based method as that given in [6] to
compute the A-CPCRLB. The details are not given here for the sake of
brevity. Interested readers are referred to [6] for more information.

B. Particle Filter Computation of D-CPCRLB

Note that the distribution of ���� is represented by the propagated
particles, ������� � ������ � �����. In a standard particle filtering algo-
rithm, the propagated particles are computed as
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where ����� is the standard Fisher Information quantity defined in (32),
which in many cases has a closed-form solution.
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In order to compute the second term in (29), i.e., (31), ������ � �����
should have a parametric expression. However, in our case, we have an
approximation based on particles. One way to approximate ����� is to
use a simple Gaussian approximation for the prediction distribution as
proposed in [7], i.e., ������ � ����� � � �������, where
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Then, ����� is approximated by the inverse of the covariance matrix in
(38),
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The difference between this approach and the bound used in [4] is the
following. In [4], the authors adopt the unconditional PCRLB with the
exception that, at time �, the initial FIM is updated by using the up-
dated particles at that particular time. This update is carried out by
using a Gaussian approximation, i.e., by computing the covariance of
the updated particles. This new FIM is then plugged into the recursive
unconditional PCRLB equations to compute the FIM at time ��� and
onwards. However, in our approach, at time �, we first propagate the
particles and then compute the prior FIM by using a Gaussian approx-
imation, i.e., by computing the covariance of the propagated particles.
This procedure eliminates the need for computing the recursive un-
conditional PCRLB equations, which require the computation of extra
terms as well as extra matrix operations.

Although a Gaussian approximation is appealing due to its sim-
plicity, it may not represent the actual distribution ������ � ����� for
highly nonlinear scenarios, especially for multi-modal distributions
and/or distributions with heavy tails. In those cases, the Gaussian ap-
proximation will provide inaccurate results for �����. For this reason,
inspired by the method proposed in [11] to compute entropy based
on the particle filter, we propose a numerical computation method
which can approximate ����� by using the particles already available
through the particle filter. We start deriving our approximation by first
rewriting the expression for ����� (31):
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� �� ������ � �����
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�
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�

�

�� � �
���
��� ���� �

���
� � (40)

The second step of (40) is due to the approximation in (35). Note that
������ � ����� is given as

������ � ����� �
�

������ �������� � �����	��

�
�

���

� ���� ��
���
� �

���
� � (41)

Using (41) in (40), the elements of the ����� can be computed as
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Further simplifying (42) results in (43) and (44):
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(43)

where

� �
���
��� �

�

���

� �
���
��� �

���
� �

���
� � (44)

Note that in order for the approximation in (43) to be analytically
tractable, the function  defined by ������ ������ ���� should
be twice differentiable in �	 . As long as ������ ���� satisfy this
regularity condition, ����� given in (43) can be computed using the
particles readily available through the particle filter which is used to
track the unknown system state. Note that this regularity condition is
satisfied for most of the real tracking scenarios.

V. COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of the pro-
posed bounds based on the total number of the floating-point operations
(flops).

The exact flops required for the derivative operations in (4)–(12)
depend on the structures of the pdfs ������ ���� and ���� ����
and there is no universal count. Due to this dependence, we define
new notations to represent the flops for these derivative opera-

tions: �
� 	�


��� �� �


�
�� �

� 	�

 ��� �� �
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�
�� �
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� 	�
 ��� �� �

� 
�

�� � � �� � � ��, where

	� � � represents the number of flops required for a given operation.
When defining these notations, for simplicity, we have made the im-
plicit assumption that the derivatives with respect to different elements
of the state vector require the same flops. In the following calculations,
we also assume that each particle has a non-identical weight, i.e., there
is no resampling.

We start with the calculation of flops required for the original
CPCRLB in [6]. Note that the term ���

� has two terms. Let us denote
the first and the second terms in (6) as �����

� and �
����
� , respectively.

Then, the flops of the CPCRLB, i.e., (3), can be represented as:

	������ � 	 �
����
� � 	 �
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� � 	 �

��
� � 	 �

��
�

� 	 �
��
� � 	 �

��
� � 	 �

��
� �� �

�
� � (45)

where ������ represents the computational complexity associated
with matrix inversions, multiplications and summations involved in
(3) and (9). For matrix inversion, the exact flop count depends on the
matrix and the specific technique used for inversion. Nevertheless,
the flop count required for matrix inversion can be expressed as
������ [12], which also subsumes the flops required for matrix
multiplications and summations in (3) and (9). From the particle
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based computation in [6], we can calculate the flops required for the
� terms and � terms as:
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By carefully investigating the computations required for the CPCRLB
in [6], i.e., expression in (3) and (9), and that of the A-CPCRLB, i.e.,
expression in (13), we note that the extra computation of the CPCRLB
at time � comes from the computations of ���

� � ���
� and ���

� , as well as
from a matrix inversion, multiplication and subtraction in (9). There-
fore, the A-CPCRLB saves the following number of flops, compared
to the CPCRLB in [6]:
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From the above expression, it is clear that the savings are significant
especially for large � and/or ��.

Next, we calculate the flops required to compute D-CPCRLB. From
(6) and (36), we notice that �����

� � �	�
�. In fact, the approximation
proposed in [6] to compute �����

� is essentially identical to the compu-
tation of �	�
� given in (36), i.e., �	�����

� 
 � �	�	�
�
. The inner ex-
pression inside the large brackets in (43) requires ��� first derivative
operations and ���	�� � �
	� second derivative operations. After
adding the flops required for weighted summations, squaring opera-
tions and divisions, we arrive at the following:
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Next, we calculate the flops required for D-CPCRLB with Gaussian
approximation. Let �
�
� denote the corresponding Bayesian FIM. We
note that (37) requires �	
�
 � �������. Combining computations
in (37)–(38) with the matrix inversion results in the following:
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Both the original CPCRLB and the A-CPCRLB are derived using the
whole time series, i.e., the conditional FIM of the whole time series
from time � � � to � � � � � is considered. The key strategy during
the derivation is matrix decomposition, due to which, the recursive for-
mula is derived. However, D-CPCRLB is derived by using the current

time as a snapshot, i.e., the FIM for the current time is explored di-
rectly, which avoids large matrix manipulations. However, the com-
plexity of the D-CPCRLB computed without Gaussian approximation
is �	��
 according to (53), while the complexity of both the con-
ditional PCRLB and A-CPCRLB is �	�
. The complexity of the
D-CPCRLB computed using the Gaussian approximation in (39) is
�	�
 and it does not require any heavy matrix manipulations, except
for the inversion of the empirical covariance matrix. D-CPCRLB with
Gaussian approximation saves the following number of flops compared
to original CPCRLB:
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It is also clear that D-CPCRLB with Gaussian approximation saves the
following number of flops with respect to A-CPCRLB:

����		�� � �������� 	�
�
� ���

� � �
�� ���

� �� � �� (56)

Finally, we note from (53) that the D-CPCRLB computed by using
(43) is computationally the most expensive bound as its complexity
is �	��
 and as � � �� in a typical particle filtering problem.

VI. NUMERICAL RESULTS

In this section, we consider the univariate nonstationary growth
model (UNGM), which is a highly nonlinear and bimodal model,
and perform a number of numerical experiments to compare the
performance of the following bounds: 1) Offline PCRLB [2], 2)
Conditional PCRLB proposed in [6], 3) A-CPCRLB, 4) D-CPCRLB
with Gaussian approximation, and 5) D-CPCRLB computed using
(43). The UNGM has been widely used in the nonlinear tracking
literature as a benchmark problem [6], [13], [14]. The dynamic state
space equations for a UNGM are given by

��
� � �� � �
��

� � ���
� � ���	����
 � �� (57)

�� � ���� � �� (58)

where �� and �� are zero mean white Gaussian with variances ��� and
��� , respectively. The conditional mean-squared error (MSE) is calcu-
lated as follows. At time �, the posterior pdf is computed by the particle
filter given the measurements up to time �. Then, 1000 independent re-
alizations of ��
� are generated according to (58), and the conditional
MSE, (i.e.,���	���
� � ����
), is obtained based on 1000 Monte Carlo
runs. A single realization of ��
� is randomly picked among the 1000
realizations above, and concatenated with the past measurement his-
tory to form ����
�. The particles and weights corresponding to this
particular ��
� are stored and used for the iteration at time 	� � �
.

A. Highly Nonlinear Case

In this experiment, we set the parameters for UNGM as  � �� � �
��� � � �� ��� � � ��� � � and � � �	�� to make it highly nonlinear.
Since it is difficult for conventional methods such as the Kalman Filter
or the extended Kalman Filter to track the state when the system model
is highly nonlinear, a particle filter is applied in the simulation.

In Fig. 1, the conditional PCRLB in [6], A-CPCRLB derived in
Section III-A, D-CPCRLB as well as D-CPCRLB with Gaussian ap-
proximation derived in Section III-B, the conditional MSE, and (un-
conditional/offline) PCRLB are plotted as functions of time. We can
observe that all the three CPCRLBs follow the trends of the conditional
MSE more faithfully than the (offline) PCRLB. It can also be observed
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Fig. 1. Highly nonlinear case.

Fig. 2. Weakly nonlinear case.

that the original conditional PCRLB, A-CPCRLB, and D-CPCRLB al-
most overlap with each other everywhere.

B. Weakly Nonlinear Case

In order to show that the proposed recursive update procedure in this
paper is independent of the nonlinearity of the state process model, a
weakly nonlinear example is provided in this section. Here, we set � �

�, resulting in a much smaller nonlinear component in the state process
equation. The variance of the process noise is set as ��

�
� �, smaller

than the highly nonlinear case. We set the measurement noise variance
��
�
� ����, such that the signal-to-noise ratio (SNR) is high for the

observation. Other parameters are kept the same as in Section VI-A.
Similar to Fig. 1, Fig. 2 illustrates that there is almost no difference
between the original conditional PCRLB and the proposed bounds, and

all the three CPCRLBs follow the trends of the conditional MSE more
faithfully than the (offline) PCRLB.

C. Discussion

In our particular examples shown in Figs. 1 and 2, it can be ob-
served that the offline PCRLB is more optimistic than the conditional
PCRLBs. It should be mentioned that this is not always the case,
since for some specific realizations of the system state, the conditional
PCRLB may result in values that are smaller than the unconditional
PCRLB. This is due to the fact that the online (conditional) bounds
depend on a specific realization of the system state and they provide
bounds for that specific conditional MSE. Figs. 1 and 2 each depicts
one particular realization, i.e., single Monte Carlo run.

Simulation results show that the conditional bounds proposed in this
paper are almost the same as the original one proposed in [6]. Since the
original CPCRLB in [6] and the A-CPCRLB both use approximations
at each iteration, it is possible that the error due to approximations ac-
cumulates over time. It is difficult to perform an exact error comparison
between the two recursive procedures. Nevertheless, the following in-
tuitive analysis is helpful to interpret the simulation results. In [6], the
approximation is only applied to the top left block of the auxiliary FIM
in (7), while in A-PCRLB the approximation is applied to four blocks of
the conditional FIM in (15). However, in [6], the approximated block
is involved in three inversions to complete the update at each itera-
tion, which makes the approximation propagate to all the elements of
the conditional PCRLB. Therefore, both approximations result in al-
most the same order of errors, which explains why the gap between the
two corresponding lower bounds is negligible as shown by numerical
examples.

VII. CONCLUSION

In this paper, two conditional PCRLBs have been proposed, namely
the A-CPCRLB and the D-CPCRLB for nonlinear sequential Bayesian
estimation. They achieve almost the same performance as the condi-
tional PCRLB proposed in [6] as demonstrated by numerical examples.
The proposed A-CPCRLB is more compact and more computationally
efficient than the one in [6]. The proposed D-CPCRLB is not recursive
in nature and it is an exact bound, while the D-CPCRLB with Gaussian
approximation is computationally the least expensive. Even though the
D-CPCRLB with Gaussian approximation induces an approximation
error, the error does not propagate with time which may happen in the
CPCRLB in [6] or in the A-CPCRLB. The proposed bounds do not have
any general closed forms. Therefore, we provided numerical methods
to compute our bounds using the particles available through the par-
ticle filter. Possible future work includes application of the proposed
bounds to resource management problems for target tracking and ex-
ploration of alternative approximations to compute D-CPCRLB such
as using spatial data structures [15], [16].
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Robust Fault Isolation With Statistical Uncertainty in
Identified Parameters

Jianfei Dong, Michel Verhaegen, and Fredrik Gustafsson

Abstract—This correspondence is a companion paper to [J. Dong, M.
Verhaegen, and F. Gustafsson, “Robust Fault Detection With Statistical
Uncertainty in Identified Parameters,” IEEE Trans. Signal Process., vol.
60, no. 10, Oct. 2012], extending it to fault isolation. Also, here, use is made
of a linear in the parameters model representation of the input-output be-
havior of the nominal system (i.e. fault-free). The projection of the residual
onto directions only sensitive to individual faults is robustified against the
stochastic errors of the estimated model parameters. The correspondence
considers additive error sequences to the input and output quantities that
represent failures like drift, biased, stuck, or saturated sensors/actuators.

Index Terms—Additive faults, closed-form solution, fault isolation, pa-
rameter uncertainty, statistical analysis.

I. INTRODUCTION

In classical FDI literature, fault isolation is usually enabled by pro-
jecting a residual vector onto the left null space of all but one fault
input directions in the matrix that maps faults to outputs (referred to as
fault transfer matrix in what follows), e.g. [2], [3]. But if these projec-
tion vectors are identified from data as in [3], it is difficult to quantify
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the statistical distribution of this solution against identification uncer-
tainty. In this paper, we develop a new optimization-based solution,
which searches for the projection directions in the subspace spanned
by the non-principal components of the error covariance matrix of the
identified fault transfer matrix. In other words, the residual vectors are
projected onto the least variant subspace of the error covariance matrix,
where the components of the identified parameters are most likely to
be close to the their true values.

The rest of the paper is organized as follows. We start in Section II
with the preliminaries and problem formulation. Section III goes fur-
ther to derive a closed-from optimal isolation solution against the pa-
rameter identification errors. Section IV shows the improvements in
fault isolation performance by our robustified method on aircraft dy-
namics. The notations in this paper are the same as those defined in [1,
Sec. II.A].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Fault Isolation Connected to the VARX Description

We consider the following discrete-time state-space model with ad-
ditive faults

��� � �� ������ �� ����� � ������ � �����	 (1)


��� ������ � ����� � ���� (2)

Here, ���� �
�, 
��� �

�, ���� �
�, and ����� �

�

and ����� �
� respectively stand for additive actuator and

sensor faults. For brevity, we will collect all the faults into
����

�
� ���� ���	 �

�
� ����

�
�

���, and denote ��
�
� �� �.

Compared with the more general model in the companion paper, i.e.
[1, Eqs. (1,2)], the fault model here correspond to the case where � �
��	 �� and� � ��	 ��; i.e. actuator faults share the same input channels
with the control signals, and sensor faults directly add to the output
measurements. This model can describe many commonly encountered
additive faults, e.g. drifted, biased, stuck, or saturated actuators and
sensors. The advantage of this model is that the Markov parameters
from ���� to 
��� are equal to those from ���� and 
��� to 
���, and
can hence be estimated from I/O data.

Under the existence conditions of the stabilizing Kalman gain � , as
specified in [1, Assumption 1], a closed-loop observer form of (1), (2)
is (with 	

�
� � � ��)


��� � �� �	
���� ������ � �� ������� ��
���	


��� ��
���� � �� ������ � ����

Here, ���� is the innovation signal defined in [1, Sec. II.D], and has a
covariance matrix ��.

As detailed in [1], a residual generator for fault detection along the
horizon �� � �� �	 �� takes the following form:
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� � � � ���
�
� 


	
� ����

�

� ���	��
 � ���

�
����	
� (3)

����� � ���	
� � ���	
� (4)

To avoid repetition, we shall refer to [1] for the definition of the
signal vectors ���	
�	 ���	
�	 


	
�	 ���	
�	 ���	
�	 ���� and the parametric
matrices����


� 	 ����
� 	 ���

�
� . We also denote these matrices with identified

parameters by a bar on their top, e.g. ����
�


� .
It is useful to recall that ���� � �����


� ����
� � � ���	
��, with ���	
�� �

��� �� � �� �� ��	 � � � 	 �� ����
�

. Due to its role in mapping the
fault signals to the outputs, we shall call �����


� ����
� � fault transfer ma-

trix, which will be explicitly specified later.
The fault detection method in [1] aims at detecting the change in

the mean of ���	
� due to a nonzero ���� . But to tell what components of
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