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For a multi-sensor target tracking system, the effects of

temporally staggered sensors on system performance are

investigated and compared with those of synchronous sensors. To

capture system performance over time, a new metric, the average

estimation error variance (AEV), is proposed.

For a system that has N sensors with equal measurement noise

variance, numerical results show that the optimal staggering

pattern is to use N uniformly staggered sensors. We have also

shown analytically that the AEV of the system with N uniformly

staggered sensors is always smaller than that of the system with N

synchronous sensors.

For sensors with different measurement noise variances, the

optimal staggering pattern can be found numerically. Practical

guidelines on selecting the optimal staggering pattern have

been presented for different target tracking scenarios. Due to

its simplicity, uniform staggering can be used as an alternative

scheme with relatively small performance degradation.
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I. INTRODUCTION

Almost all conventional target tracking systems,
both single sensor and multi-sensor, rely on sensors
that provide measurements on a regular schedule,
i.e., on a fixed-interval basis. This is due to technical
limitations of sensors such as sonar and rotating
radars, and also due to the desire to keep operational
systems as simple as possible. Electronically scanned
radars allow the possibility of altering the regular
schedule by collecting measurements in a nonuniform
manner. Recently, Daum [6] and Zhang, et al.
[16] have suggested that this additional degree of
freedom for nonuniformly scheduled measurements
be exploited to enhance system performance. In fact,
this issue of temporal effects has been studied by
Zhang et al. [16] in some detail. They have compared
the performance of nonuniform sampling schemes
with that of uniform sampling schemes. They found
that if a multi-scan tracker is used, then nonuniform
sampling could outperform uniform sampling. This is
a significant result in that it establishes the importance
of measurement scheduling in tracking.
There has been an increasing interest in employing

multiple sensors for target tracking due to the
significantly improved estimation accuracy and
robustness of the system. In [2] and [12], different
types of multi-sensor tracking system architectures
are discussed and algorithms for tracking and
fusion are presented. In almost all the system
architectures considered, measurements are assumed
to arrive synchronously and temporal effects of
the measurement process are ignored. In practice,
maintenance of synchronism is difficult and
measurements arrive in an asynchronous manner that
are often out of sequence. Recently, many authors
have investigated the so-called problem of “out
of sequence measurements (OOSM).” This means
in a multi-sensor system, a delayed measurement
with time stamp ¿ arrives after the target state
has been updated to time t > ¿ . In [3] an exact
solution to update with OOSMs for the single lag
case is presented for the linear dynamic and linear
measurement models with additive Gaussian noises.
An algorithm to deal with multiple lags and multiple
dynamic models is developed in [10]. In [4] authors
use a one-step solution to solve the general OOSM
problem with multiple lags. An exact solution to
update with OOSMs for the multiple-lag case for the
linear dynamic and linear measurement models with
additive Gaussian noises is presented in [15]. In [11]
authors present a multiple-lag OOSM algorithm for a
dwell-based multi-sensor multi-target multi-hypothesis
tracking system with missed detections and clutter.
While the OOSM problem has recently been

considered, not much attention has been paid to
multi-sensor tracking systems with asynchronous
sensors, which collect observations at different
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times. The lack of synchronization can be just the
result of a real-life system with sensors that have
coarse synchronization, and/or the result of a system
with sensors with different sampling rates. Another
possibility is that the sensors are deliberately designed
to be temporally staggered for potential performance
enhancement. This sensor time management function
could be implemented as a part of level 4 fusion
of the JDL fusion process model [9]. We explore
here the issue of temporally staggered sensing in
multi-sensor tracking systems in some detail. This
idea was independently mentioned in a related work
[16]. Our work is different from [16]. In [16], authors
compared the uniform and nonuniform sampling
schemes for single-sensor systems. There, numerical
and simulation results were given to compare the
performances in terms of the traditional metrics,
namely the estimation error variance and track life.
We investigate temporal staggering schemes for
multi-sensor systems. Many analytical closed-form
results are provided and the performances are
compared and studied in terms of several new metrics,
which are introduced to measure the estimation
accuracy over time.
We also investigate the following issues related to

asynchronous sensors.

1) What are the effects of asynchronous sensors
on system performance?
2) Can we benefit from asynchronous sensors in

terms of performance?
3) If so, how can we design the asynchronous or

temporal staggering pattern to maximize the benefit?

The scheme using staggered sensors may seem
very unusual at first. In a multi-sensor target tracking
system, estimation accuracy with asynchronous
sensors right after the system is updated with new
measurements is not as good as a system with
synchronous sensors. However, we see later in this
work that system performance is enhanced based
on the metrics that we define. Here we assume the
absence of false alarms and missed detections. The
presence of these is addressed in [14].
In Section II, we introduce the dynamic model

of the target and the corresponding steady state
estimation error covariance matrix. For simplicity,
we assume there is only one target in the whole
surveillance region of the tracking system. In
Section III, a simple example is given that provides
the motivation for the use of staggered sensors. We
also define a new metric to measure the performance
of the tracking system–the error variance averaged
over time (AEV). In Section IV, for the case of
multiple sensors with the same measurement noise
variance, we numerically find the optimal staggering
scheme and derive corresponding analytical results.
In Section V, the case where multiple sensors have
different measurement noise variances is studied,

and the best pattern for staggering sensors is found
numerically. The conclusions are drawn in Section VI.

II. SYSTEM MODEL

A 1-dimensional direct discrete white noise
acceleration model [1] is used here. An alternative is
the discretized continuous white noise acceleration
model. Both of them are approximations of the
target motion and there is little difference between
them. We choose the direct discrete time white noise
acceleration model because of the availability of the
closed-form steady state error covariance matrix for
this model, which makes our analysis much easier.
We assume a target moving along a coordinate »,

and the state of the target is

x= [» _»]0: (1)

The state equation for the piecewise constant white
acceleration model is

x(k+1) = Fx(k)+¡º(k) (2)

where

F =
·
1 T

0 1

¸
(3)

¡ =

24 T22
T

35 (4)

and T is the sampling interval of the system. The
process noise covariance matrix is

Q = E[¡º(k)º(k)¡ 0]

= ¾2º

264
T4

4
T3

2
T3

2
T2

375 : (5)

The measurement model is

z(k) =Hx(k)+!(k): (6)

We assume that only position (range) measurements
are available, meaning that

H = [1 0]: (7)

The measurement noise autocorrelation function is

E[!(k)!(j)] = ¾2!±kj : (8)

The target maneuvering index [1] is defined as

¸=
¾ºT

2

¾!
: (9)

¸, which is the ratio of the motion uncertainty and
the observation uncertainty, measures the degree of
elusiveness of the target to be tracked; for a fixed ¾!,
higher ¸ implies larger uncertainty about the motion
of the target.
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Fig. 1. Measurement pattern for two synchronous sensors versus
two staggered sensors. Sampling intervals satisfy T = T1 +T2.

In [1, 7, 8], the steady state filter, known as the
®-¯ filter, and its closed-form expression for the
steady state error covariance are available when the
system has a constant sampling interval.
The steady state estimation error covariance matrix

is

P =
·
p11 p12

p12 p22

¸

= ¾2!

264 ®
¯

T
¯

T

¯(®¡¯=2)
T2(1¡®)

375 (10)

where

®=¡ 1
8 (¸

2 +8¸¡ (¸+4)
p
¸2 +8¸) (11)

¯ = 1
4(¸

2 +4¸¡¸
p
¸2 +8¸): (12)

The analysis is performed here in only one
dimension. However, the results can be easily
extended to multi-dimensional cases if the target
dynamics and measurements in different dimensions
are independent (uncoupled).

III. NEW PERFORMANCE METRIC

A. Motivating Example

First of all, we denote the time just before and just
after the new measurements arrive at the conventional
tracker with synchronous measurements as

kT¡ and kT+, k = 1,2, : : :

respectively, where T is the sampling interval. Let us
consider two different data collection schemes for a
two-sensor tracking system, as shown in Fig. 1. In
one system, both sensors collect data at the same time
kT; while in the other system, one sensor collects
measurements at kT, and the other one at kT+T1.
Both systems process data in a centralized manner.
The transient and steady state position estimation

error variances based on the model introduced in
Section II for these two systems are plotted in Figs. 2
and 3. In this particular case, we assume T1 = T2 = T=2

Fig. 2. Transient position estimation error variances for system
with synchronous sensors (dashed line) and system with

temporally staggered sensors (solid line) as illustrated in Fig. 1.
T = 1 s, T1 = T2 = 0:5 s, SD of measurement noise at two sensors:
¾!1

= ¾!2 = 1 m, SD of state process noise for synchronous

sensors: ¾º = 1 m/s
2.

Fig. 3. Steady state position estimation error variances for system
with synchronous sensors and system with temporally staggered
sensors as illustrated in Fig. 1. System parameters are same as

those listed in Fig. 2.

and the two sensors have the same measurement
noise variance. In both systems, their Kalman filters
are initialized using two-point differencing [1]. As
shown in Fig. 2, the system with temporally staggered
sensors always has a smaller maximum prediction
error variance than the system with synchronous
sensors, except its prediction made just one step after
the initialization of its Kalman filter, which has the
largest error variance. As we can see in Figs. 2 and 3,
after the systems reach the steady state, at time kT+,
the system with synchronous sensors has a better
performance than that with temporally staggered
sensors. This is because at each updating time kT, it
has two measurements, i.e., more information about
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the target. For the system with staggered sensors,
although the performance is a little worse between
kT+ and (k+ 1

2)T
¡, it has much better performance

between (k+ 1
2)T

+ and (k+1)T¡ due to its more
frequently updated data. Also, the maximum value
of the position error variance is much smaller in the
staggered sensors case. This suggests that temporally
staggered sensors are a better choice when the major
concern of the system is to keep maximum prediction
error or average estimation error low. It motivates us
to explore different sensor staggering schemes over
time.
For a nonlinear system with a nonlinear

measurement equation (sensor nonlinearity), a
well-known estimator is the first- or second-order
extended Kalman filter (EKF) [1], which is obtained
by a Taylor series expansion of the measurement
equation around the predicted target state, with terms
up to first or second order. Temporally staggered
sensors give rise to a smaller steady state prediction
error just before the update of the target state, as
shown in the above example and later in this work.
This could be of potential benefit for the EKF,
because smaller prediction error means that the
predicted target state is closer to the true target
state, and thus the approximation by Taylor series
expansion is more accurate. However, for simplicity,
we concentrate on the effect of sensor staggering on
linear systems in the steady state regime in this paper.

B. New Metric-Generalized Error Variance

From Section IIIA and Fig. 3, we note that as
a function of time, the nature of estimation error
variance for the system with synchronous sensors and
the system with staggered sensors are quite different.
In order to capture the system performance over time,
we define a new metric which can facilitate different
types of performance evaluation and comparisons. The
generalized error variance (GEV) is defined as

GEV=
Z (k+1)T¡

kT

V(t)w(t)dt (13)

where w(t) is a weighting function which satisfiesZ (k+1)T¡

kT

w(t)dt= 1 (14)

and V(t) is the estimation error variance. In (13) and
(14), k should be large enough such that the system
has reached steady state.
Actually, w(t) specifies how important the system

performance at a specific time is. For example, if

w(t) = ±(t¡ kT+) (15)

then the metric GEV is the estimation error
variance just after the system is updated with new
measurements. We call it the updated estimation

error variance (UEEV), and call the corresponding
covariance matrix as updated covariance matrix
(UCM).
For

w(t) = ±(t¡ (k+1)T¡) (16)

the metric GEV becomes the maximum prediction
error variance (MPEV) just before the system
is updated with new measurements. We call the
corresponding covariance matrix as maximum
covariance matrix (MCM).
If

w(t) =

( 1
T

kT · t < (k+1)T
0 else

(17)

then GEV is the estimation error variance averaged
over time. We define it as the average error variance
(AEV). We call the corresponding covariance matrix
as average covariance matrix (ACM). AEV is a
reasonable metric because we are interested in system
performance over the entire time of operation instead
of at a specific time. We mainly study and compare
system performance in terms of AEV.
For a Kalman filter, the steady state prediction

error covariance matrix at time kT+ t (0· t < T) is

P(kT+ t j kT)
= F(t)P(k j k)F(t)0+Q(t)

=
·
1 t

0 1

¸·
p11 p12

p12 p22

¸·
1 0

t 1

¸
+
¾2ºT

t

264
t4

4
t3

2
t3

2
t2

375

=
·
1 t

0 1

¸·
p11 p12

p12 p22

¸·
1 0

t 1

¸
+¾2ºT

264
t3

4
t2

2
t2

2
t

375 :
The process noise variance ¾2º in (5) is replaced

here by ¾2ºT=t. This is because the time at which
prediction is made is a variable. To model the same
amount of target motion uncertainty, the state process
noise variance has to be rescaled [1].
Hence the position prediction error variance and

the velocity prediction error variance at time t are

Vp(t) = p11 +2p12t+p22t
2 + 1

4¾
2
ºTt

3 (18)

Vv(t) = p22 +¾
2
ºTt (19)

resulting in the trace of the prediction error covariance
matrix at time t given by

Tr[P(t)] = Vp(t) +Vv(t)

= p11 +p22 + (2p12 +¾
2
ºT)t+p22t

2 + 1
4¾

2
ºTt

3:

(20)
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IV. STAGGERING SENSORS WITH EQUAL
MEASUREMENT NOISE VARIANCES

A. Optimal Staggering Schemes for Identical Sensors

We now consider the general case in which
a system has N sensors and each sensor receives
a position measurement corrupted by Gaussian
noise with the same variance ¾2!. For a system with
synchronous sensors operating in a centralized
manner, its performance is the same as a system with
one composite sensor with smaller variance ¾2!=N. By
using (9)—(12), we can easily obtain the steady state
covariance matrix P. Then the average position and
velocity error variances for this system are

AEVp =
1
T

Z T

0
Vp(t)dt

= p11 +p12T+
1
3p22T

2 + 1
16¾

2
ºT

4 (21)

and

AEVv =
1
T

Z T

0
Vv(t)dt

= p22 +
1
2¾

2
ºT

2 (22)

respectively.
For the system with temporally staggered sensors,

each sensor has the sampling rate 1=T and we define
the time interval between sensor Si and the next sensor
Si+1 as ¢i. Therefore, we have

NX
i=1

¢i = T: (23)

Again, because the sampling intervals are variable, to
model the same target motion uncertainty, the state
process noise variance ¾2ºi , which is associated with
interval ¢i, has to be rescaled. Namely

¾2ºi =
¾2ºT

¢i
(24)

where ¾2º is the state process noise variance used
by the system with synchronous sensors. Then the
average position error variance is

AEVp =
1
T

Z T

0
Vp(t)dt

=
1
T

NX
i=1

"
pi11¢i+p

i
12¢

2
i +

pi22¢
3
i

3
+
¾2ºi¢

5
i

16

#

=
1
T

NX
i=1

·
pi11¢i+p

i
12¢

2
i +

pi22¢
3
i

3
+
¾2ºT¢

4
i

16

¸
:

(25)
Similarly,

AEVv =
1
T

NX
i=1

h
pi22¢i+

1
2¾

2
ºT¢

2
i

i
(26)

Fig. 4. Average position error variance AEVp, average velocity
error variance AEVv, and trace of average covariance matrix
(TACM) as functions of ¢1. T = 1 s, ¾! = 1 m, target

maneuvering index ¸= 0:1.

where Pi is the steady state estimation error
covariance matrix associated with the ith sensor Si

Pi =
·
pi11 pi12

pi12 pi22

¸
: (27)

It is very difficult to derive the closed-form of
Pi when ¢is are not identical. Instead, we compute
the steady state estimation error covariance matrices
numerically.
From (20), it is evident that for both the system

with synchronous sensors and that with temporally
staggered sensors, the trace of the average covariance
matrix (TACM) is

TACM=Tr
·
1
T

Z T

0
P(t)dt

¸
=
1
T

Z T

0
Tr[P(t)]dt

=AEVp +AEVv: (28)

1) System with Two Sensors: We now consider
the simple case of a two-sensor system and present
the numerically obtained results for two different
values of ¸. From Figs. 4 and 5, it is clear that the
system attains the minimum average position and
velocity error variances, and the minimum TACM,
when ¢1 = 0:5T, no matter what the ¸ is.
This is not surprising because from (25) and (26),

we know that AEVp and AEVv are both polynomials
of staggering intervals ¢is. The updated estimation
errors (pijs) only affect the lower order terms in AEVp
and AEVv. The dominant highest order terms are
independent of pijs and depend solely on ¢is. So the
best thing to do is to prevent the ¢i from becoming
too large. Due to the symmetry of the sensors, the
optimal solution is staggering them uniformly over
time.
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Fig. 5. Average position error variance AEVp, average velocity
error variance AEVv, and trace of average covariance matrix
(TACM) as functions of ¢1. T = 1 s, ¾! = 1 m, target

maneuvering index ¸= 10.

Hence, even though synchronous sensors can offer
better updated estimation at the update time, they do
not result in smaller overall average error variance.
2) System with Multiple Sensors: To find the best

staggering pattern for a system with N sensors is an
optimization problem:

min
~¢
AEV(~¢) (29)

under the constraint that
NX
i=1

¢i = T (30)

and
0·¢i · T, i= 1, : : : ,N: (31)

Through numerical methods, we have obtained
results for the general case where a system has
multiple (N > 2) sensors. The optimal way to attain
minimum AEVp and AEVv is again to stagger sensors
uniformly over time.

B. Performance Analysis

1) Updated Estimation Error Variance: A system
with N uniformly staggered identical sensors is
equivalent to a system with one sensor that has N
times the sampling rate

T1 =
T

N
: (32)

The standard deviation (SD) of measurement noise for
each sensor is

¾!1 = ¾!: (33)

Similar to (24), the associated process noise variance
is rescaled and

¾º1 =
p
N¾º: (34)

And from (9), the corresponding target maneuvering
index is

¸1 =
¾º1T

2
1

¾!1

=

p
N

N2
¸ (35)

where ¸ is the target maneuvering index for each
individual sensor. Replacing ¾!, T, ®, ¯, and ¸ in
(10), (11), and (12) with ¾!1 , T1, ®1, ¯1, and ¸1
respectively, we have the steady state estimation error
covariance matrix for the system with uniformly
staggered sensors:

A=
·
a11 a12

a12 a22

¸

= ¾2!

2664 ®1
N¯1
T

N¯1
T

N2¯1(®1¡¯1=2)
T2(1¡®1)

3775 : (36)

Hence the UEEV for position estimation is

UEEVp1 = ¾
2
!®1 (37)

and the UEEV for velocity estimation is

UEEVv1 =
¾2!
T2
N2f(¸1) (38)

where

f(¸) =
¯

µ
®¡ ¯

2

¶
1¡®

=
¸
p
¸2 +8¸¡¸2

2
: (39)

The performance for a centralized fusion system
with N identical synchronous sensors is the same as a
system with one composite sensor with variance ¾2!=N

¾!2 =
¾!p
N
: (40)

For synchronous sensors, the sampling interval
remains the same and there is no need to rescale the
process noise variance. As a result, we have

T2 = T (41)

and
¾º2 = ¾º: (42)

The target maneuvering index for this composite
sensor is

¸2 =
¾º2T

2
2

¾!2

=
p
N¸: (43)

Replacing ¾!, T, ®, ¯, and ¸ in (10), (11), and (12)
with ¾!2 , T2, ®2, ¯2, and ¸2, respectively, we have the
steady state covariance matrix for the system with
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synchronous sensors:

B =
·
b11 b12

b12 b22

¸

=
¾2!
N

266664
®2

¯2
T

¯2
T

¯2

µ
®2¡

¯2
2

¶
T2(1¡®2)

377775 : (44)

Therefore,
UEEVp2 = ¾

2
!

®2
N

(45)

and

UEEVv2 =
¾2!
T2
f(¸2)
N

: (46)

Note that the trace of the updated covariance
matrix (TUCM) is

TUCM=UEEVp +UEEVv: (47)

The relative performance of the two systems can
be summarized in the following theorem.

THEOREM 1 The system with synchronous sensors has
a smaller UEEV and a smaller TUCM than that with
uniformly staggered sensors, i.e., UEEVp1 >UEEVp2 ,
UEEVv1 >UEEVv2 , and TUCM1 > TUCM2.

PROOF See Appendix A.

In Figs. 6 and 7, the updated position and velocity
estimation error variances for both systems are
compared for N = 2. The system with synchronous
sensors always has better performance especially
when ¸ is high. This is just as we expected. At
the update time (kT), the system with synchronous
sensors updates its estimation with measurements
from N sensors while the system with staggered
sensors has measurements only from one sensor.
Hence, the system with synchronous sensors has more
information about the target and generates a more
accurate estimate.
2) Maximum Prediction Error Variance: For

a system with N uniformly staggered sensors, by
replacing pij in (18) with aij in (36), we get the
maximum predicted position error variance:

MPEVp1 = [a11 +2a12t+ a22t
2 + 1

4¾
2
ºTt

3]jt=T=N

= ¾2!

2664®1 +2¯1 + ¯1
µ
®1¡

¯1
2

¶
1¡®1

3775+ ¾2ºT44N3

= ¾2!

·
g(¸1)+

¸2

4N3

¸
(48)

where

g(¸) = ®+2¯+
¯

µ
®¡ ¯

2

¶
1¡®

= 1
8

£¡¸2 +8¸+(¸+4)p¸2 +8¸¤: (49)

Fig. 6. Normalized updated position estimation error variance for
uniformly staggered sensors and synchronous sensors (N = 2).

Fig. 7. Normalized updated velocity estimation error variance for
uniformly staggered sensors and synchronous sensors (N = 2).

Replacing pij in (19) with aij in (36), the
maximum predicted velocity error variance for the
system with N uniformly staggered sensors is

MPEVv1 = (a22 +¾
2
ºTt)jt=T=N

= ¾2!

N2¯1

µ
®1¡

¯1
2

¶
T2(1¡®1)

+
¾2ºT

2

N

=
¾2!
T2

·
N2f(¸1)+

¸2

N

¸
: (50)

For a system with N synchronous sensors,
similarly, with (18) and (44) the maximum predicted
position error variance is

MPEVp2 = [b11 +2b12t+ b22t
2 + 1

4¾
2
ºTt

3]jt=T

= ¾2!

·
g(¸2)
N

+
¸2

4

¸
: (51)
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Fig. 8. Normalized maximum predicted position error variance
for uniformly staggered sensors and synchronous sensors (N = 2).

With (19) and (44), the maximum predicted velocity
error variance is

MPEVv2 = (b22 +¾
2
ºTt)jt=T

=
¾2!
T2

·
f(¸2)
N

+¸2
¸
: (52)

The trace of the maximum covariance matrix (TMCM)
is given by

TMCM=MPEVp +MPEVv: (53)

The relative performance of the two systems is
given by the following theorem.

THEOREM 2 The system with uniformly staggered
sensors has a smaller MPEV and a smaller TMCM
than that with synchronous sensors, i.e., MPEVp1 <
MPEVp2 , MPEVv1 <MPEVv2 , and TMCM1 <
TMCM2.

PROOF See Appendix B.

In Figs. 8 and 9, the maximum predicted position
and velocity estimation error variances for systems
with synchronous and uniformly staggered sensors
are compared for N = 2. The system with uniformly
staggered sensors always has better performance
especially when ¸ is high. This is not surprising. In
the system with staggered sensors, more frequent
estimation updating with measurements from single
sensors helps keep the maximum prediction error
under control. We also observe that when target
is highly maneuvering, it is more important to use
staggered sensors to prevent the prediction error from
getting too large.
3) Average Error Variance: For the system with

N uniformly staggered sensors, replacing piij and ¢i in
(25) with aij in (36) and T=N, respectively, it is easy

Fig. 9. Normalized maximum predicted velocity error variance
for uniformly staggered sensors and synchronous sensors (N = 2).

to get

AEVp1 = ¾
2
!

2664®1 +¯1 + ¯1
µ
®1¡

¯1
2

¶
3(1¡®1)

3775+ ¾2ºT
4

16N3

= ¾2!

·
h(¸1)+

¸2

16N3

¸
(54)

where

h(¸) = ®+¯+
¯

µ
®¡ ¯

2

¶
3(1¡®)

=
(¸+12)

p
¸2 +8¸¡¸2
24

: (55)

Replacing piij and ¢i in (26) with aij and T=N,
respectively, we have the average velocity error
variance for a system with uniformly staggered
sensors:

AEVv1 =
¾2!
T2

2664N2 ¯1
µ
®1¡

¯1
2

¶
1¡®1

3775+ ¾2ºT22N

=
¾2!
T2

·
N2f(¸1)+

¸2

2N

¸
: (56)

For the system with N synchronous sensors,
replacing pij in (21) with bij , it is easy to get

AEVp2 =
¾2!
N

2664®2 +¯2 + ¯2
µ
®2¡

¯2
2

¶
3(1¡®2)

3775+ ¾2ºT416

= ¾2!

·
h(¸2)
N

+
¸2

16

¸
: (57)

Replacing pij in (22) with bij , we have the
average velocity error variance for a system with N
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Fig. 10. Normalized average position error variance for
uniformly staggered sensors and synchronous sensors (N = 2).

synchronous sensors

AEVv2 =
¾2!
T2

¯2

µ
®2¡

¯2
2

¶
N(1¡®2)

+
1
2
¾2ºT

2

=
¾2!
T2

·
1
N
f(¸2)+

¸2

2

¸
: (58)

Once again, the relative performance of the two
systems in terms of AEV is expressed as follows.

THEOREM 3 The system with uniformly staggered
sensors has a smaller AEV and a smaller TACM than
that with synchronous sensors, i.e., AEVp1 <AEVp2 ,
AEVv1 <AEVv2 , and TACM1 < TACM2.

PROOF See Appendix C.

In Fig. 10, the average position variances for
systems with synchronous and uniformly staggered
sensors are compared. The system with uniformly
staggered sensors always has better performance
especially when ¸ is high. When ¸= 1, the AEVp1
is 15% smaller than AEVp2. For ¸= 10, the AEVp1
is 63% smaller than AEVp2. And as the number of
sensors (N) increases, there will be even greater
improvement by using uniformly staggered sensors.
The system with uniformly staggered sensors also

outperforms the system with synchronous sensors in
terms of average velocity error variance AEVv. The
curves for AEVv1 and AEVv2 are plotted in Fig. 11.
From Figs. 10 and 11, we find that the two curves
for uniformly staggered sensors and synchronous
sensors are almost indistinguishable when ¸ is low
(¸ < 0:1). Hence we cannot gain much in terms of
AEV by using staggered sensors when ¸ is small.
Low ¸ means low target motion uncertainty and thus
the prediction error for the system will not get too
large even if we use synchronous sensors.

Fig. 11. Normalized average velocity error variance for
uniformly staggered sensors and synchronous sensors (N = 2).

V. STAGGERING SENSORS WITH DIFFERENT
MEASUREMENT NOISE VARIANCES

For simplicity, we only consider a system with two
sensors with different measurement noise variance. We
define r as the ratio between the measurement noise
SD of the two sensors

r =
¾!2
¾!1
: (59)

Without loss of generality, we assume that sensor S1
is no worse than sensor S2, i.e., r ¸ 1. The equivalent
measurement noise variance of the composite sensor
(when two sensors are synchronous) can be found as
follows:

1
¾2!c

=
1
¾2!1

+
1
¾2!2

=
1+ r2

r2
1
¾2!1
: (60)

To make fair comparisons for cases with different r,
we keep ¾2!c , the measurement noise variance of the
composite sensor, as a constant.
The results for optimal staggering patterns to attain

minimum AEVp and AEVv are obtained numerically
and are shown in Figs. 12 and 13, respectively. Here
¸ is the target maneuvering index for the composite
sensor:

¸=
¾ºT

2

¾!c
: (61)

First of all, ¢1 is always greater than or equal to
T=2. Since updated estimation based on sensor S1
will be more accurate than that based on sensor S2,
intuitively the time ¢1 should be no less than ¢2.
Second, optimal ¢1 for a system with a higher r is

always greater than that for a system with a lower r.
Higher r means that the degree of accuracy of sensor
S1 over sensor S2 is larger, and thus estimation based
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Fig. 12. Optimal staggering time ¢1 to obtain minimum AEVp
for different measurement noise SD ratio r between the two

sensors.

Fig. 13. Optimal staggering time ¢1 to obtain minimum AEVv
for different measurement noise SD ratio r between the two

sensors.

on sensor S1 is used for a longer time after the system
is updated with its measurement.
When ¸ is small, the optimal ¢1 depends on r

as follows: if r is small, meaning that measurements
from the two sensors have similar quality, the ¢1
is close to T=2, or the optimal pattern is close to
uniform staggering; when r is large, optimal ¢1
tends to T. This is because the accuracy of sensor S2
is so poor compared with S1, that the system gains
little by updating with measurements from S2 and
has to be immediately updated once again with data
from S1. Hence the optimal pattern is close to using
synchronous sensors. This phenomenon is evident on
the left side of Figs. 12 and 13, i.e., when ¸ is close
to 10¡2. For these values of ¸, as r increases, ¢1=T
increases to 1.
When ¸ is very high, the optimal ¢1 for both

AEVp and AEVv tends to T=2 no matter what r is,

Fig. 14. Average position error variance for different staggering
schemes (r = 5).

meaning that uniform staggering is the best pattern.
This is not surprising as we have similar results for
the case of equal-quality sensors. When ¸ (or ¾º if
¾! and T are fixed) is high, the last terms in (25) and
(26) are dominant, and the other terms are negligible.
And the effect of quality difference between S1 and
S2 on the system are negligible. Therefore, the two
sensors are symmetric in some sense under this
situation.
For intermediate values of ¸ (¸ between roughly

0.1 and 10) and relatively high values of r (r > 4), we
observe an interesting behavior. For a given value of r
in this range, as ¸ increases, ¢1=T first decreases then
it increases before finally decreasing to 0:5. This is
due to the interplay between values of r and ¸ that is
not obvious and not easily explained.
In Fig. 14, AEVp for three different staggering

patterns is plotted for r = 5. AEVp for synchronous
sensors is much worse than that of uniformly and
optimally staggered sensors especially when ¸ is high.
And the performances of uniformly staggered sensors
and optimally staggered sensors are very close to each
other.
To compare uniform staggering and optimal

staggering schemes, we plot the ratio of their AEVp
in Fig. 15. As we can see, when r is small or medium
(r · 5), the AEVp of uniform staggering is no more
than 15% worse than that of optimally staggered
sensors. Even when r is as large as 10, the AEVp for
uniformly staggered sensors is still no more than 30%
worse than that for optimally staggered sensors. This
suggests that for simplicity, we can use uniformly
staggered sensors at the cost of a little degradation
in performance.
In Fig. 16, the AEVp is plotted for the optimally

staggered sensors case. In Fig. 17, the AEVp for the
optimally staggered sensors case is normalized by the
AEVp for the optimally staggered case for identical
sensors (r = 1). Because we keep ¾2!c , the composite
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Fig. 15. Ratio between AEVp for uniformly staggered sensors
(AEVpu ) and AEVp for optimally staggered sensors (AEVpo ).

Fig. 16. AEVp of optimally staggered sensors for different r.

sensor measurement noise variance, as a constant,
we can make fair comparisons for different r. These
figures show that for the same composite sensor and
associated constraints, the smaller the r is, the better
the performance is. This means that if we have control
over how a constrained resource (the inverse of the
composite sensor’s measurement noise variance) is
assigned to each individual sensor, we want to divide
the resource evenly to two sensors and to uniformly
stagger the sensors.
The results for AEVv that we have obtained are

very similar to those for AEVp and we do not provide
them here.

VI. CONCLUSIONS AND DISCUSSION

The effects of temporally staggered sensors on the
target tracking performance of multi-sensor systems
have been studied and a new metric-average error
variance, has been defined to more accurately reflect
system performance temporally.

Fig. 17. AEVp of optimally staggered sensors normalized by
AEVp of optimally staggered sensors with same measurement

noise variance (r = 1).

For the case where sensors have the same
measurement noise variances, numerical results show
that it is best to use uniformly staggered sensors
to obtain low AEVp and AEVv, especially when
target maneuvering index ¸ is high. The higher the
¸ is, the more we can benefit by using temporally
staggered sensors. When ¸ is very low or when the
target motion is more predictable, there is very little
improvement by using staggered sensors. Many
closed-form results have been derived. We have
analytically shown that the system with uniformly
staggered sensors outperforms that with synchronous
sensors both in terms of MPEV and AEV.
For the case where sensors have different

measurement noise variance, the guideline for
staggering schemes can be found via numerical
methods. When the target maneuvering index ¸ is low
or medium, we use the estimation based on the more
accurate sensor for a longer time. If ¸ is very high,
uniformly staggered sensors should be used regardless
of the quality difference between measurements of
different sensors. For simplicity, uniform staggering
schemes can be used as an alternative with relatively
small performance degradation. If we have control
over system design, for a fixed resource (the inverse
of the composite sensor measurement noise variance),
we should always divide equal resource to each sensor
and use uniform staggering schemes.

APPENDIX A. PROOF OF THEOREM 1

A. Updated Position Estimation Error Variance

According to (37) and (45), UEEVp1 >UEEVp2 is
equivalent to

®1 >
1
N
®2 (62)
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or

¡ 1
8

·
¸21 +8¸1¡ (¸1 +4)

q
¸21 +8¸1

¸
>¡ 1

8N

·
¸22 +8¸2¡ (¸2 +4)

q
¸22 +8¸2

¸
:

(63)
We define

¸0 =
p
N¸: (64)

From (35) and (43), we have

¸1 =
¸0
N2

(65)

and
¸2 = ¸0: (66)

Substituting these two equations into (63) and
simplifying it, we have

¸20 +8N
2¸0¡ (¸0 +4N2)

q
¸20 +8N

2¸0

<N3
·
¸20 +8¸0¡ (¸0 +4)

q
¸20 +8¸0

¸
(67)

or

N3(¸0 +4)
q
¸20 +8¸0¡ (¸0 +4N2)

q
¸20 +8N

2¸0

< (N ¡ 1)¸0[(N2 +N +1)¸0 +8N2]: (68)

We have·
N3(¸0 + 4)

q
¸20 +8¸0

¸2
¡
·
(¸0 + 4N

2)
q
¸20 +8N

2¸0

¸2
= ¸20[(N

6¡ 1)¸20 +16N2(N4¡ 1)¸0 +80N4(N2¡ 1)]
(69)

which is always positive as long as N > 1 and ¸0 > 0.
Since each term on the left side of (68) is positive,
(69) proves that the left side of (68) is positive. After
squaring both sides of (68) and some derivations, we
get

¸30 +8(N
2 +1)¸20 +8N(N

2 +8N +1)¸0 +128N
3

< (¸0 +4)(¸0 +4N
2)
p
¸0 +8

q
¸0 +8N2:

(70)
Again, after squaring both sides of the above
inequality and simplifications, we get

(N ¡ 1)2¸0[(N2 +N +1)¸30 + 8(N
4 +N3 +3N2 +N +1)¸20

+4N2(31N2 +14N +31)¸0 +512N
4]> 0 (71)

which always holds when N ¸ 2 and ¸0 > 0.

B. Updated Velocity Estimation Error Variance

According to (38) and (46), UEEVv1 >UEEVv2 is
equivalent to

N2f(¸1)>
f(¸2)
N

: (72)

Using (39) and substituting (65) and (66) into the
above inequality, we have

¸0

q
¸20 +8N

2¸0¡¸20 >N
·
¸0

q
¸20 +8¸0¡¸20

¸
:

(73)
After simplification, it becomes

(N ¡ 1)¸0 >N
q
¸20 +8¸0¡

q
¸20 +8N

2¸0: (74)

Taking squares of the both sides, we havep
¸0 +8

q
¸0 +8N2 > ¸0 +8N: (75)

Taking squares of both sides once more, we finally
have

(N ¡ 1)2 > 0 (76)

which is always true.

C. Trace of Updated Covariance Matrix

In Sections A and B, we have shown that
UEEVp1 >UEEVp2 and UEEVv1 >UEEVv2 . Since

TUCM=UEEVp +UEEVv

we have
TUCM1 > TUCM2:

APPENDIX B. PROOF OF THEOREM 2

A. Maximum Predicted Position Error Variance

According to (48) and (51),

MPEVp1 <MPEVp2 , g(¸1)+
¸2

4N3
<
g(¸2)
N

+
¸2

4
:

(77)

After substituting (64), (65), (66), and (49) into the
above inequality and simplifications, we have

¸20 +8N
2¸0 + (¸0 +4N

2)
q
¸20 +8N

2¸0

<N3
µ
¸20 +8¸0 + (¸0 +4)

q
¸20 +8¸0

¶
(78)

or

N3(¸0 +4)
q
¸20 +8¸0¡ (¸0 +4N2)

q
¸20 +8N

2¸0

> (1¡N)¸0((N2 +N +1)¸0 +8N2): (79)

In addition, we have·
N3(¸0 +4)

q
¸20 +8¸0

¸2
¡
·
(¸0 +4N

2)
q
¸20 + 8N

2¸0

¸2
= ¸20[(N

6¡ 1)¸20 + 16N2(N4¡ 1)¸0 +80N4(N2¡ 1)]
(80)
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which is positive when N > 1. Therefore, the left hand
side of (79) is positive. The right hand side of (79) is
always negative. Hence, inequality (79) holds.

B. Maximum Predicted Velocity Error Variance

According to (50) and (52), MPEVv1 <MPEVv2 is
equivalent to

N2f(¸1)+
¸2

N
<
f(¸2)
N

+¸2: (81)

Using (39) and substituting (64), (65), and (66) into
the above inequality, we have

¸0 +
q
¸20 +8N

2¸0 <N

µ
¸0 +

q
¸20 +8¸0

¶
: (82)

Because
¸0 <N¸0q

¸20 +8N
2¸0 <N

q
¸20 +8¸0

(83)

the inequality (82) always holds.

C. Trace of Maximum Covariance Matrix

In Sections A and B, we have shown that
MPEVp1 <MPEVp2 and MPEVv1 <MPEVv2 . Since

TMCM=MPEVp +MPEVv

we have
TMCM1 < TMCM2:

APPENDIX C. PROOF OF THEOREM 3

A. Average Position Error Variance

From (54) and (57), we have

AEVp1 <AEVp2 , h(¸1)+
¸2

16N3
<
h(¸2)
N

+
¸2

16
:

(84)

After substituting (64), (65), (66), and (55) into the
above inequality and simplifications, we have

¸20(N
3¡ 1)
2

> (¸0 + 12N
2)
q
¸20 +8N

2¸0¡N3(¸0 + 12)
q
¸20 +8¸0:

(85)

First, the left side of (85) is positive. Secondly, we
have·
N3(¸0 +12)

q
¸20 + 8¸0

¸2
¡
·
(¸0 +12N

2)
q
¸20 +8N

2¸0

¸2
= ¸20[(N

6¡ 1)¸20 +32N2(N4¡ 1)¸0 + 336N4(N2¡ 1)]
(86)

which is positive. Therefore, the right side of (85) is
negative and the inequality (85) holds.

B. Average Velocity Error Variance

According to (56) and (58), AEVv1 <AEVv2 is
equivalent to

N2f(¸1)+
¸2

2N
<
1
N
f(¸2)+

¸2

2
: (87)

Using (39) and substituting (64), (65), and (66) into
the above inequality, we haveq

¸20 +8N
2¸0 <N

q
¸20 +8¸0: (88)

This is always true when N > 1. Hence, the inequality
(87) holds.

C. Trace of Average Covariance Matrix

In Sections A and B, we have shown that AEVp1 <
AEVp2 and AEVv1 <AEVv2 . Since

TACM=AEVp +AEVv

we have
TACM1 < TACM2:
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