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Abstract—Several sampling schemes and their corresponding
sequential detection procedures in autoregressive noise are pre-
sented in this paper. Two of them use uniform sampling procedures
with high and low sampling rates, respectively. The other two
employ groups of samples, which are separated by long intergroup
delays such that the intergroup correlations are negligible. One
of the group-sampling schemes also employs optimal signaling
waveforms to further improve its energy-efficiency. In all the
schemes, data sampling and transformation are designed in such a
way that Wald’s sequential probability ratio test (SPRT) can still
be implemented. The performances of different schemes, in terms
of average termination time (ATT), are derived analytically. When
all the schemes employ the same sampling interval and under
a constant signal amplitude constraint, their performances are
compared through analytical and numerical methods. In addition,
under a constant power constraint, their ATTs and energy-effi-
ciency are compared. It is theoretically proved that the scheme
using groups of samples with the optimal signaling waveform is
the most energy-efficient.

Index Terms—Autoregressive noise, colored noise, sampling, se-
quential detection.

I. INTRODUCTION

S INGLE sample detection may work well when the
signal-to-noise ratio (SNR) is relatively high. However,

in many practical cases, such as the detection of an aircraft at
a very long range based on radar signal returns, the SNR is
so low that a decision can not be made with high reliability
based on a single sample. In such cases, detection is typically
performed based on multiple observation samples to improve
the detection performance. A usual multiple-sample procedure
is fixed-sample-size (FSS) detection. In a FSS detection system,
a predefined number of samples are collected and the detection
is based on these samples. The sample size is determined by the
performance level to be achieved. Another powerful procedure
for the multiple-sample detection problem is Wald’s sequential
probability ratio test (SPRT) [1]. Contrary to FSS procedures,
its sample size is a variable. It is well known that to get a
required detection performance, SPRT on the average needs
much fewer samples than FSS procedures. As a result, the
sequential detection procedure has drawn continued interest for
decades.
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In most sequential detection literature, authors have made the
assumption of independent and identically distributed (i.i.d.)
noise statistics. In practice, this assumption does not always
hold. For example, for weak signal detection in underwater
acoustics, due to high-rate sampling and temporally and spa-
tially dependent noise and interference, the correlation between
adjacent data samples can not be ignored [2]. Hence, the se-
quential detection problem in colored noise is a very important
topic to be studied. Its solution can find many applications, such
as target detection in radar/sonar systems and signal detection
in communication systems. In [3], the operating characteristic
(OC) and the average sample number (ASN) were derived for
a SPRT working with dependent observations, which were
assumed to form a finite Markov chain. There already exist sev-
eral publications on nonparametric SPRTs with dependent data.
In [4], authors have proposed nonparametric SPRT methods for
Markov-dependent input data. A generalized sequential sign
detector was studied in [5].

The optimal parametric SPRT with dependent data remains
a challenging problem. In [6] and [7], authors have shown
that the optimum sequential detector for dependent samples is
in the form of a generalized sequential probability ratio test
(GSPRT), in which the thresholds are time-varying as opposed
to the constant thresholds employed in the SPRT for the i.i.d.
noise case. However, the problem of determination of the
time-varying thresholds is still not solved. In [8], the SPRT
with constant thresholds and the sequential linear detector
(SLD) are compared in an autoregressive noise in terms of
the ASN. An interesting result is that when the correlation
coefficient is positive, the SLD has better performance than the
SPRT. This indicates that the SPRT with constant thresholds is
not optimal in colored noise. Recently in [9], authors show that
under certain regularity conditions, in a multichannel system,
a simple generalized SPRT with constant thresholds, which is
different from the GSPRT with time-varying thresholds in [6]
and [7], is asymptotically optimal for general non-i.i.d. data,
when the probabilities of false alarms and missed detections
are low.

Our main contribution in this paper is to tackle the chal-
lenging problem of sequential detection with correlated data
from a system design point of view. To solve the problem of
or even take advantage of the correlation between samples, we
propose several schemes with different sampling patterns and
signal waveforms. To the best of our knowledge, little previous
work on sampling design for sequential detection in colored
noise has been documented in the literature. Two of the pro-
posed sampling schemes use uniform sampling procedures with
high and low sampling rates, respectively. The other two are
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based on the group sampling idea, where groups of consecutive
samples are transformed to single variables. One of the group
sampling schemes adopts the optimal signal waveform to im-
prove its efficiency. In all the sampling schemes proposed in this
paper, the signals are sampled and processed in such a way that
the resulting samples can be used by the standard framework of
a SPRT. We will analyze and compare the performances of the
different sampling schemes in terms of the average termination
times (ATTs), under the constraints of a constant amplitude and
a constant power, respectively. In the process, many theoretical
results will be developed. We will show later that the scheme
using group sampling with an optimal signal is much more effi-
cient than other schemes, especially when the sampling intervals
are small (or the correlation between adjacent samples is high).

The group sampling idea is similar to the one that appeared
in [10] and [11], where group sampling has been employed
to perform nonparametric FSS detection with dependent data.
Other related work includes [12] and [13]. In [12], a memory-
less grouped-data sequential (MLGDS) procedure has been pro-
posed. In MLGDS, at each stage, a group of samples is taken
to perform a two-threshold test. If either one of the thresholds
is crossed, a decision is made in favor of the corresponding
hypothesis; otherwise, the group of samples is discarded and
the test continues to the next stage. In [13], a multisensor de-
centralized sequential test utilizing the MLGDS has been pro-
posed. Clearly, by discarding samples from previous stages, the
MLGDS entails performance loss. Two of the sequential test
procedures proposed in this paper are also based on group sam-
pling, but they are different from the MLGDS, since no sam-
ples are discarded in these procedures. As shown later in the
paper, the proposed sequential detection approaches based on
group sampling require much less ASNs and incur much less
energy consumption to achieve the same prespecified detection
performance than that based on uniform sampling. The use of
the optimal signaling waveform, which maximizes the SNR at
the matched filter output under a fixed energy constraint, in con-
junction with group sampling can further improve energy-effi-
ciency. Another advantage of group sampling schemes lies in
the fact that they could be very flexible and achieve a desired
tradeoff between ATT and energy efficiency. The proposed se-
quential detection approaches are very general and could find
applications in communications, biological signal processing
and radar/sonar systems.

Note that sampling designs for FSS detection problems have
been investigated in [14]–[16], where nonuniform sampling
designs or even random sampling schemes [14] have been
proposed to improve detection performance. For simplicity, we
focus only on the uniform sampling schemes where sample
points are either equally spaced over the entire observation
interval (in the first two sampling schemes) or equally spaced
within sample groups (in the last two sampling schemes).

In Section II, some background about the SPRT including
notations and the system model are introduced. In Section III,
four sampling schemes along with their associated sequential
tests are proposed, and their corresponding average termination
times (ATTs) are derived. Under the condition of identical signal
amplitude and identical sampling interval, the ATTs for the four
procedures are compared in Section IV. Under the constraint of

constant signal power, an energy efficiency comparison is made
in Section V. Finally, the work is summarized in Section VI.

II. SPRT AND SYSTEM MODEL

A. Background on Wald’s Sequential Probability Ratio Test

In this paper we will investigate different sampling schemes,
which are designed by taking into account the correlations be-
tween the samples, for sequential detection. Before we describe
different sampling schemes, we briefly introduce the standard
SPRT here.

Consider the problem of testing a simple hypothesis
versus a simple alternative . The successive observations are
denoted by and they are assumed to
be statistically independent and identically distributed (i.i.d.)
for the given hypothesis. Wald’s SPRT for testing against

can be described as follows: at each stage of the
test, the sum is computed, and the following test is
performed

(1)

where

(2)

is the log-likelihood ratio of the sample , and and
denote the parameters that characterize the likelihood functions
under and , respectively. The choice of the test thresholds

and depends on the desired values of the error probabilities
and , where is the probability of deciding when

is true, and is the probability of deciding when is the
true hypothesis. It has been shown [1] that the thresholds can be
approximated as

(3)

The performance of an SPRT is characterized in terms of
the OC and ASN functions [1]. Ignoring excesses over the test
thresholds, the ASN required for decision making is

(4)

where is the OC function, defined as the probability that
the sequential test will terminate with the acceptance of
when is the true value of the parameter [1]. Clearly by def-
inition, and . denotes the
expected value of the log-likelihood ratio when is the true
value of the parameter. Note that a more accurate estimate for
the ASN can be obtained by taking into account the excesses
of the likelihood ratio over the thresholds [17]. We will show
in Appendix I that (4) is a good approximation when the data
sample’s SNR is low, a typical scenario for a SPRT to be used.
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Fig. 1. Four sequential detection sampling schemes in colored noise.

In this paper, we assume that the SNR is very low and (4) is ac-
curate for different sampling schemes.

B. System Model

In this paper, we consider a binary hypothesis testing problem

(5)

where is the received noisy observation, is the trans-
mitted signal, and the noise is a Gaussian random process
with zero mean and covariance function . We further as-
sume that the Gaussian random process is wide-sense stationary
and its autocorrelation function is

(6)

where indicates the rate at which the correlation decays and
is related to the bandwidth of the noise process .

To convert the continuous-time detection problem into a dis-
crete-time one, the signal is sampled according to a certain
sampling procedure. For example, one can uniformly sample the
observation , as illustrated in Fig. 1(A). After sampling, the
discrete-time hypothesis testing problem can be cast as

(7)

where , ,
, is the sampling interval, and is the

number of samples in the observation interval. In this paper,
sampling schemes and signal design will be discussed and their
effects on the performance of the SPRT will be investigated.

From [18], we know that because is a wide-sense
stationary Gaussian process, is also a wide-sense stationary
Gaussian sequence with autocorrelation

(8)

where is the correlation coefficient between adja-
cent samples. Without loss of generality, we assume for
notational simplicity. With this assumption, the time interval
could be deemed as being normalized with respect to .

If is sampled at a high rate, or is small, the correla-
tion between samples can not be ignored. The traditional SPRT,
which requires i.i.d. data samples, can not be used directly here.
In this case, the optimum detector is in the form of a generalized
sequential probability ratio test (GSPRT) [6], [7]

(9)

where

(10)

is the likelihood ratio, and and are the thresholds that
are functions of . However, the determination of and is
still an open problem. In addition, with each new data sample,
the GSPRT needs to recalculate the likelihood ratio involving all
the previous samples as defined in (9) and (10) contrary to the
simple addition operation in a SPRT as illustrated in (1). Hence,
signal designs and sampling schemes that generate near-inde-
pendent data samples are preferred so that the elegant frame-
work of the SPRT can still be implemented.

In this paper, we propose four different signal design and
sampling schemes, which are illustrated in Fig. 1. In Scheme
A, the signal is transmitted and sampled at a relatively high
rate, and data samples are processed by a whitening filter whose
output data samples are independent. In Scheme B, the signal
is transmitted and sampled at such a low rate that the correla-
tion between adjacent samples is negligible. In both Schemes C
and D, adjacent signal sample groups are separated by a large
inter-group delay , so that the inter-group correlation can be
ignored. Therefore, in these schemes the super samples, gener-
ated by combining samples within a group, are deemed as inde-
pendent. Note that Scheme D adopts optimal signal waveform
to improve its energy-efficiency, as opposed to the signal with
constant amplitude used in other schemes. In summary, all the
four sampling schemes generate independent or near-indepen-
dent samples or super samples, which enable a straightforward
application of the SPRT for a sequential hypothesis test.

As shown in Fig. 1, and are the intervals between ad-
jacent samples within a group for Schemes C and D, respec-
tively. In this paper, we assume that Schemes A, C, and D use
the same sampling interval, namely , in order
to obtain theoretical results. However, numerical results for un-
equal , , and are obtained and are available in Figs. 5
and 8. Further, to facilitate a comparison between them under
a constant power constraint, these schemes may take different
signal amplitudes, which are denoted by for Schemes
A through D, respectively.

III. SAMPLING AND SEQUENTIAL DETECTION SCHEMES

In this section, four sampling schemes and their corre-
sponding sequential detection algorithms are introduced.

A. Uniform Sampling at High-Rate

The most common sampling procedure is to uniformly
sample the received observation . This sampling scheme
(Scheme A) is shown in Fig. 1(A). After sampling, the detection
problem has been formulated in Section II-B and the noise
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Fig. 2. The autoregressive noise model and the whitening filter for Scheme A.

sequence with an autocorrelation
function defined in (8) can be modeled as an autoregressive
sequence

(11)

where the sequence is i.i.d. and

(12)

In addition, is uncorrelated with for and
. Note that due to the assumptions made about

the autocorrelation function by (6) and (8), we have .
To employ the framework of the SPRT, we use a whitening

filter to make the noise sequence i.i.d. The generation of
the autoregressive noise and the whitening filter are illustrated
in Fig. 2. This is nothing but a first-order finite impulse response
(FIR) filtering operation

(13)

We define the sample sequence after filtering as

(14)

Therefore, the new sequential detection problem becomes

(15)

where denotes the constant signal amplitude for Scheme A.
Note that we have assumed the knowledge of the noise auto-
correlation function, which is provided in (6). In practice, the
autocorrelation function and hence is unknown and needs to
be estimated via training data. Study of the impact of the esti-
mation accuracy of on the sequential detection performance is
beyond the scope of this paper and could be carried out in future
work.

With (12) and being an i.i.d. Gaussian sequence, it is
easy to show that the log-likelihood ratio for each sample is

(16)

Therefore

(17)

According to Wald’s first equation [1], namely (4), the ASNs
for this problem are

(18)

where denotes the number of samples required by the SPRT
to terminate in Scheme A. It is clear that the ASN under either
hypothesis is inversely proportional to , up to a cer-
tain constant that is determined solely by the type I and type II
error probabilities. Therefore, no matter what type I and II error
probabilities are, the results and conclusions derived in the paper
remain the same. For simplicity and without loss of generality,
we assume that the type I and type II error probabilities are the
same, namely . Thus, according to (3), , and the
ASNs are the same under both hypotheses and

(19)

With (19), a phenomenon reported in [8], where the SPRT
has a better performance for a negative than with a positive ,
can be explained analytically. As demonstrated in (19), the ASN
required by the SPRT is a monotonically increasing function of

when . Thus, a positive leads to a larger ASN
than a negative . Here in this paper, due to the autocorrelation
functions that we have adopted in (6) and (8), we focus only on
cases with positive correlation between samples.

To facilitate the comparison between different detection
schemes, we have constructed a new metric, the average ter-
mination time (ATT), which is the average time needed before
either threshold is crossed in a SPRT test. We have defined this
new metric due to its flexibility. If time delay is a crucial issue
for the system, the ATT is a very natural and fair metric, espe-
cially for a system with constraints on sampling rate and signal
amplitude. In this case, the ATT measures on the average how
fast a decision can be reached by the sequential detector, for a
system operating with the highest sampling rate and the largest
signal amplitude (equivalently the largest sample energy). On
the other hand, if energy-efficiency is a major concern, the
ATT is also an appropriate metric when there is a constraint
on the average signal power, since in this case the ATT is
proportional to the total energy required for the test to stop.
Further in Section V-C, the ASNs are derived and compared for
different schemes with constraints on sampling rate and signal
amplitude, and their relationships with ATTs are investigated.
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The ATT for scheme A is

(20)

where

(21)

is the hyperbolic cotangent function, and the identity of
in (19) has been used. One property of

is that it is monotonically increasing, which can be proved
by checking the first and second derivatives of . As a result,

is a monotonically increasing function of , which means
that the higher the sampling rate, on the average, the faster the
sequential detection will terminate.

B. Uniform Sampling at Low-Rate

As discussed in [8] and in Section III-A, we know that there
is a performance degradation for the SPRT when the noise cor-
relation between adjacent samples is positive. This implies that
the positive correlation between samples should be avoided to
improve efficiency. This is the motivation behind Scheme B,
as shown in Fig. 1(B). In this scheme, the sampling rate is low
enough such that the correlation coefficient between adjacent
samples is negligible, meaning that,

(22)

where is the sampling interval and is a very small constant.
Equivalently, we can write

(23)

Data samples collected at this sampling rate can be taken as
independent and a standard SPRT can be applied for the hypoth-
esis testing

(24)

where is the signal amplitude and is assumed to be
an i.i.d. sequence with zero mean and variance . The log-
likelihood ratio for each sample is

(25)

Therefore

(26)

The ASNs for this case are

(27)

where denotes the number of samples required by the SPRT
to terminate in Scheme B. The ATT is, therefore

(28)

Comparing (20) and (28), it is clear that if , as ,
, since . This means that when is

large or equivalently is sufficiently small, the performance of
Scheme A converges to that of Scheme B.

C. Group Sampling With Constant Amplitude

The scheme (Scheme C) is illustrated in Fig. 1(C). Within
each individual group, uniformly spaced samples are collected.
The delay (T) between adjacent groups, identical to that defined
in Section III-B, is large enough so that the intergroup correla-
tion is negligible.

The samples within each group are combined to form a super
sample and an SPRT is performed for these super samples. Note
that in Scheme C, the SPRT incorporates one super sample at
each time step, meaning that only an integer number of groups
are taken for the test. We denote the amplitude of each sample
as , the sampling interval for samples belonging to the same
group as , and the number of samples of each group as

. Within the group, the hypothesis testing problem is

(29)

where , , and
, which follows a Gaussian distribution:

(30)

where

...
...

...
. . .

...

(31)

and .
The log-likelihood ratio of each super sample is

(32)

Therefore

(33)

The average group number (AGN) and ATT for Scheme C are
provided in the following theorem.
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Theorem 1: For sampling scheme C with a group size and
interval between adjacent samples within a group, the AGN is

(34)

where denotes the number of groups required by the SPRT
to terminate in Scheme C, and the ATT is

(35)

where

(36)

Proof: According to (33), needs to be determined in
order to derive the AGN and ATT for Scheme C. An analytical
solution for the inverse of a matrix in the form of can be
obtained [19]

(37)

where

. . .
...

. . .
. . .

. . .
...

. . .

(38)

Substituting (37) into (33), it follows that

(39)

The AGNs for this scheme are, therefore

(40)

Note that within a sample group, it takes the time to
collect samples and the intergroup delay is . Also, only an
integer number of groups are taken for the test. As a result, the
ATT is

(41)

TABLE I
SOLUTION OF � � � �� � FOR VARIOUS � AND �

Note that as increases, de-
creases, but increases. Hence, it is an optimiza-
tion problem to find the best sampling interval for Scheme C.
Actually, under certain sufficient conditions, is convex,
and its minimum can be found by solving the equation

This result has been summarized in the following theorem.
Theorem 2: Provided and

, as a function of , is convex for
. Its minimum lies in , and can be obtained

by solving the following equation:

(42)

Proof: See Appendix II.
Note that the sufficient condition, namely

, is easy to satisfy. For example,
corresponds to a correlation coefficient of 0.0295.

For a much smaller , a much larger is needed in the sampling
schemes.

Also, if the sampling interval falls in a certain range (actu-
ally in most of the interval of for a large T), is
a monotonically decreasing function of , as provided by the
following.

Proposition 1: For , is monotonically
decreasing function of N, where .

The proof of Proposition 1 is straightforward, if we check the
first derivative of with respect to and use the property
that is a monotonically increasing function of .

Note that for a very small , or equivalently a very large ,
. This is due to the fact that

In Table I, for different values of is listed. It is clear that as
increases, quickly converges to .
In the following numerical examples, we set , and

. In Fig. 3, as a function of is plotted. We
can see for all the four cases, namely and 16,
there exists a minimum for , as stipulated by Theorem 2.
It is clear that by choosing an optimal sampling interval, the
ATT required to achieve a certain detection performance is sig-
nificantly reduced. We also observe that for , as in-
creases, decreases, as indicated by Proposition 1. This
means that a larger group size leads to a faster termination of
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Fig. 3. ������ as a function of �.

Fig. 4. Top: Optimal sampling interval �. Bottom: Minimum ������ for dif-
ferent � .

the sequential test. Note that this conclusion is based on the as-
sumption that the SNR of a super sample is very low so that the
AGN formula of (34) is accurate, as discussed in Appendix I. As
shown by (87) in Appendix I, when increases, the variance
and the SNR of a super sample increase, (34) may not be an ac-
curate estimate of the AGN any more, and Proposition 1 should
be applied with caution. The optimal sampling interval as a
function of is shown in the top of Fig. 4. As we can see, for a
large group size , a smaller will result in faster termination.
In the bottom of Fig. 4, the minimum , obtained using
the optimal sampling interval , is shown as a function of . It
can be seen that as group size increases, the ATT decreases
as expected.

As will be shown later, Scheme C’s performance lies some-
where between Schemes A and B, either in terms of ATT or
in terms of energy efficiency. The advantage of this scheme is
that it is very flexible. By adjusting the number of samples
within a group, a desired tradeoff between the energy efficiency
and the ATT can be achieved.

D. Group Sampling With Optimal Signal Waveform

Scheme D is still based on the group sampling idea as in
Scheme C. The only difference is that the constant-amplitude
signal within each group is replaced with the optimal signal that
is designed to take the best advantage of the correlation between
samples. It is well known that the eigenvalues of a positive def-
inite covariance matrix are all real and positive. According to
[20, Ch. 4.4.1], for a fixed energy constraint, the optimal signal
that maximizes the SNR at the matched filter output is the eigen-
vector of the noise covariance that corresponds to the min-
imum eigenvalue. For example, if group size , we have

(43)

where is the correlation coefficient. The eigenvalues
are and . The corresponding eigenvectors are

and , respectively. Therefore, the optimal signal
is in the form of , as shown in Fig. 1(D) for the case of

.
Let us assume that each group has samples. The corre-

sponding covariance matrix has been provided in (31). We
denote the minimum eigenvalue and corresponding eigenvector
of this covariance matrix as and , respectively. We
further assume that has an energy of , meaning that

(44)

Different from that described in (29), the hypothesis testing
problem with the optimal signal is now

(45)

Similar to the derivation of (32), we have the log-likelihood
ratio of each super sample given as

(46)

Hence

(47)

By the definitions of eigenvalue and eigenvector, it can be
readily shown that

(48)

Substituting (48) and (44) into (47), we have

(49)

Therefore, the AGNs for Scheme D are

(50)
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where denotes the number of groups required by the SPRT
to terminate in Scheme D, and the ATT is

(51)

IV. PERFORMANCE COMPARISON IN TERMS OF ATT

In this section, the performances of different schemes are
compared in terms of their ATTs. We assume that for Schemes
A, C, and D, , and that Schemes B, C, and D
use the same . In addition, the amplitudes of the signal are all
the same for different schemes, meaning that

. ATT for different schemes is evaluated next.

A. Analytical Comparison

For Scheme A, we rewrite (20) as

(52)

where

(53)

Similarly, for Scheme B, (28) is rewritten

(54)

For Scheme C, from (35), we have

(55)

Let us now compare the ATT of Scheme C with those of
Schemes A and B. It turns out that the ATT of Scheme C lies
between those of Schemes A and B, as stated here.

Corollary 1: Provided and , where
has been defined in Proposition 1, ,

implying that the ATT of Scheme C is less than that of Scheme
B, but more than that of Scheme A.

Proof: This corollary can be deduced from Proposition 1.
Scheme A can be deemed as a special case of Scheme C, as
when we have

(56)

A direct application of Proposition 1 results in

(57)

as long as and .
Now let us prove . Scheme B is actually another

special case of Scheme C, since

Based on Proposition 1, we have

(58)

for and .

From Corollary 1, we gain very interesting insights that
Schemes A and B are nothing but two special cases of Scheme
C, when and , respectively. This enables
Scheme C to be very flexible. We will show later that Scheme A
is not very energy-efficient. Therefore, by adjusting , Scheme
C can achieve a suitable tradeoff between the ATT and energy
efficiency.

Now let us consider Scheme D. We know that when ,
the optimal signal is in the form of and the signal has a
constant amplitude. For cases where , the optimal signal
for Scheme D does not have a constant amplitude and we will
investigate them in Section V. Using the fact that ,

and (51), we have

(59)

Obviously, this is a monotonically increasing function of . This
means a smaller leads to a smaller ATT of the sequential test.

Another observation is that when , all the schemes
become Schemes B, and their ATTs approach that of Scheme B,

. This can be proved mathematically. Plugging and
into (52), (55), and (59), respectively, we can show

that , and are approximately .

B. Numerical Results

Note that the ATTs of four schemes that we have derived have
a common factor, , which is inversely
proportional to the SNR , meaning that the higher the
SNR, on the average the faster the schemes will terminate their
corresponding sequential tests. We take and hence

. The ATT normalized with respect to for dif-
ferent schemes are plotted in Fig. 5. It is clear that the curve for
Scheme C lies between those of Schemes A and B, as predicted
by Corollary 1. Also, when , Scheme D always has less
ATT than Scheme C. This is because

which is always greater than

From this figure, it is clear that when the sampling interval is
small, Scheme D has the best performance. This is
because the high correlation between samples benefits Scheme
D and compromises Scheme A to some extent. When sampling
interval is medium or large, Scheme A results in the smallest
ATT. However, because all the schemes have identical signal
amplitude, Scheme A requires the highest power, with its uni-
form sampling procedure. We will discuss the energy efficiency
of the schemes in the next section. When the sampling interval
tends to , basically the performances of all the schemes tend to
that of Scheme B. This is because the correlation between sam-
ples is so weak that all the schemes become a standard SPRT.

V. ENERGY EFFICIENCY COMPARISON

We have compared the ATTs for different schemes under the
equality constraint on the signal amplitude. It is of much impor-
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Fig. 5. Average termination times for different schemes.

tance to compare their ATTs under a power constraint as well,
since in many practical applications, such as target detection at
a long range with a radar, the SPRT works with a very low SNR
and the power is a major issue. In this section, we assume a con-
stant average system power for all the sampling schemes. The
energy efficiency is measured in terms of the ATT again, since
the scheme that has a smaller ATT will also consume less en-
ergy under the constant average power constraint. Also, let us
assume that . We analyze and compare their
ATTs both theoretically and numerically. We will also show that
the ATTs for different schemes under a constant average power
constraint are proportional to the corresponding ASNs under a
constant signal amplitude constraint, up to a common factor.
Hence, all the comparison conclusions made for the energy-ef-
ficiency are also valid for the ASNs under a constant signal am-
plitude constraint.

A. Schemes A, B and C

For Scheme A, the average power is

(60)

Substituting the above into (20), it follows that

(61)

where

(62)

For Scheme B, the average power is

(63)

According to (28), it follows that the ATT is

(64)

For Scheme C, the average power is

(65)

Plugging the above into (35), we have

(66)

Obviously, both and are monotonically de-
creasing functions of , meaning that the longer the sampling
interval is, the more efficient the two schemes are. When

(or approximately ), both and tend
to . This implies that both Scheme A and Scheme C
are always less efficient than Scheme B. It is also very easy to
show that

(67)

for . Therefore, if they have the same sampling interval
, Scheme C is always more efficient than Scheme A. Also,

in (66) is a monotonically increasing function of N and
as

(68)

Therefore, as the group size increases, the energy efficiency de-
creases. When is very large, the performance of Scheme C
will converge to that of Scheme A.

In summary, we have

(69)

meaning that Scheme C’s ATT again lies between those of
Schemes A and B. This is not surprising since Schemes A and
B are two extreme cases of Scheme C for and ,
respectively.

B. Scheme D

For Scheme D, the average power is

(70)

Using the above equation and (51), we have

(71)

We have shown that Scheme D is more efficient than Scheme
B, which is summarized in the following theorem.

Theorem 3: The smallest eigenvalue of the noise covariance
matrix defined in (31) is always less than or equal to , or

.
Proof: In [19], three approximations of the eigenvalues of

the matrix defined in (38), as well as their error bounds are
provided. We use one of the approximations to prove Theorem
3. As shown in [19], for , the largest eigenvalue of can
be estimated by

(72)
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with an error bound given by

(73)

where is the true value of the largest eigenvalue of .
Since , its smallest eigenvalue is given by

. To complete the proof, we need to
show that

(74)

Substituting (72) into (73), and after simplification, we get

(75)

Since , we have

(76)

Plugging (76) back to (75), the inequality (74) can be readily
established.

With Theorem 3, we finally have

(77)

Namely, sampling Scheme D is the most energy-efficient among
all the schemes.

The monotonicity of is very difficult to establish
since no closed-form solution exists. We instead study its esti-
mated value using the approximation provided in [19], and the
results are provided in Proposition 2.

Proposition 2: , the estimated value of the min-
imum eigenvalue of , is a monotonically increasing function
of , and a monotonically decreasing function of , where

(78)

Proposition 2 can be shown based on (78), and we skip the proof
for brevity.

This proposition implies that the longer the sampling
interval is, the less efficient Scheme D is. As ,

, indicating that Scheme D converges to
Scheme B for a very large .

We use numerical methods to find the minimum eigenvalue
of the noise covariance matrix , which is then compared with
the estimated value obtained through the approach discussed in
Proposition 2. For this purpose, we take . The normal-
ized minimum eigenvalues as functions of sampling
interval and group size are shown in Figs. 6 and 7, respec-
tively. As we can see, is a monotonically increasing func-
tion of , meaning that the smaller the sampling interval, the
better the performance is. This is not surprising, since smaller
sampling interval gives rise to higher correlation between sam-
ples, which helps Scheme D perform a better noise cancella-

Fig. 6. Minimum eigenvalues for Scheme D.

Fig. 7. Minimum eigenvalues for Scheme D.

tion. Note that is a monotonically decreasing function of
, meaning that the larger the group size, the better the perfor-

mance. However, when group size is greater than 10, the im-
provement becomes much less significant.

It is also clear that (78) provides a reasonably good estimate
of , especially when is large. The estimation accuracy
improves as increases, a trend that is consistent with the error
bound given by (73). The estimation approach proposed in [19]
is very useful when is large, since the numerical calculation
of the eigenvalues of , a matrix, will become more
complex and costly.

C. ASN Comparison Under a Constant Amplitude Constraint

Here as in Section IV, we assume that the amplitudes of the
signal are all the same for different schemes, namely

. Let us derive the ASNs for different schemes.
For Scheme A, based on (19), the ASN is

(79)
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where has been defined in (53). Now the
relationship between defined in (61), which is the ATT
under the constant average power constraint, and is very
clear. is proportional to , and vice versa. This is
not surprising since both ATT under a constant average power
constraint and the ASN under a constant signal amplitude con-
straint are measures of the total energy required for the SPRT to
reach a decision.

Following a similar procedure, it is straightforward to derive
that for Scheme B,

(80)

Now let us study the ASN for Scheme C. Note that in this case,
the ASN is the AGN multiplied by the group size . Based on
(34), we have

(81)

Similarly, for Scheme D, we have

(82)

Comparing these equations with (64), (66), and (71), it is clear
that they are all proportional to their corresponding ATTs under
a constant average power constraint. Therefore, the result de-
rived in the last subsection remains the same, and we rewrite
(77)

(83)

This implies that Scheme D requires the least number of samples
with the constant amplitude constraint.

D. Numerical Comparison

In the numerical example, we take and hence
. The ATTs normalized with respect to , under

the assumption of identical signal average power for different
schemes, are plotted in Fig. 8. One observation is that as group
size increases, Scheme C becomes less efficient (or needs a
larger ATT), since is a monotonically increasing function
of , as discussed in Section V-A. From this figure, it is
evident that Scheme A has the worst efficiency. On the other
hand, Scheme D has the best performance, especially when
sampling rate is high and group size is large. For a numerical
example, when , the ATTs required by Schemes
A, C , C , B, D , and D
are , respectively. It is
also noteworthy that as , all the schemes’ performances
converge to that of Scheme B again.

VI. CONCLUSION

In this paper, we have proposed four different sampling
schemes for sequential detection in autoregressive noise.
Scheme A adopts a uniform sampling procedure with a high

Fig. 8. Average termination times for different schemes.

sampling rate. The correlated data are processed by a whitening
filter to generate a white sequence. Scheme B also uses uniform
sampling, but it employs a low sampling rate such that the cor-
relation between samples can be ignored. Both Schemes C and
D are based on the group sampling idea. The intergroup delay
is large enough to avoid intergroup correlation. In Scheme C,
within each group, the signal amplitude is constant; whereas,
Scheme D uses an optimal signal waveform for each group.

Based on the assumptions of constant signal amplitude and
identical sampling rates, the schemes have been compared in
terms of ATT. Scheme D has the best performance when sam-
pling rate is very high. Otherwise, Scheme A has the smallest
ATT. However, Scheme A requires larger signal power than any
other scheme. Therefore, a comparison of energy efficiency is
conducted. Under a constant power constraint, Scheme B, C,
and D are all more energy-efficient than Scheme A. Taking full
advantage of the correlation between data samples, Scheme D
has the highest efficiency.

In all the proposed sampling schemes, the samples are equally
spaced either over the entire observation interval or within a
group. In our future work, this restriction will be relaxed by
considering nonuniform sampling within a group, similar to the
nonuniform sampling designs for FSS detection that have been
investigated in [14]–[16]. In the paper, the problem is formu-
lated as detecting a deterministic signal in the presence of addi-
tive Gaussian noise. In practical radar and communication sys-
tems, the signal is typically random due to fluctuating targets or
multipath channel fading. The current work will be extended to
take into consideration of the randomness of the signal.

APPENDIX I
IMPROVED ASN OR AGN APPROXIMATION

The ASN provided in (4) is typically underestimated when
the excesses of the likelihood ratio over the test thresholds
are neglected. By approximating rather than neglecting the
excesses, the accuracy of estimating ASN can be improved
[17], [21]. In [21, Theorem 2], a more accurate ASN expression
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(89)

(94)

is derived by applying corrected Brownian motion approxima-
tions

(84)

where , , , and
when is a Gaussian random variable [17].

It is easy to show that for Schemes A to D, we have

(85)

(86)

(87)

(88)

It is clear from these equations that the correction terms
are related to the SNR. When the SNR is very small, which is
the typical situation that necessitates a sequential detector, the
correction terms have a negligible effect in (84). For example,
if we set , and use Scheme C with ,

, and 0 dB SNR , we have
and .

APPENDIX II
PROOF OF THEOREM 2

We first derive the first order derivative of with re-
spect to as shown in (89) at the top of the page. The second
order derivative can been readily derived also

(90)

where

(91)

It is obvious that if the sum of the last two terms in
the right-hand side (RHS) of (91) is positive, or equivalently

(92)

The above inequality implies that when ,
always holds; for the case , if ,

still holds. Let us consider the case where . It suffices to
prove that

(93)

Since , we can prove instead
that [see (94), shown at the top of the page]. Define

, we have

(95)

and

(96)

which means that , and is a monotoni-
cally increasing function. A direct result is

(97)

Also note that for . Plugging (97) and
into (94) and after some manipulations, we have

(98)

Since , it is easy to show that

(99)

Hence is a weaker condition
than , and once the former is satisfied, is
convex even for .

Now let us define , it
follows that

(100)

Therefore, , or .
According to (89), and considering , we have

Also

Therefore, the minimum of , or the solution of ,
lies in .
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