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Abstract—Existing detection systems generally are operated
using a fixed threshold and optimized to the Neyman–Pearson
criterion. An alternative is Bayes detection, in which the threshold
varies according to the ratio of prior probabilities. In a recursive
target tracker such as the probabilistic data association filter
(PDAF), such priors are available in the form of a predicted
location and associated covariance; however, the information is
not at present made available to the detector. Put another way,
in a standard detection/tracking implementation, information
flows only one way: from detector to tracker. Here, we explore the
idea of two-way information flow, in which the tracker instructs
the detector where to look for a target, and the detector returns
what it has found. More specifically, we show that the Bayesian
detection threshold is lowered in the vicinity of the predicted
measurement, and we explain the appropriate modification to
the PDAF. The implementation is simple, and the performance is
remarkably good.

I. INTRODUCTION

M OST TARGET tracking systems work with the data they
are given. By this, we mean that measurements from a

detection front-end processor are interrogated for threshold ex-
ceedances, and these “hits” are delivered to the tracking algo-
rithm. For the most part, the threshold is set and fixed according
to a false-alarm criterion that indicates that there should be,
on average, a specified number of false hits per unit volume.
There have been studies relating the tracking performance to
this threshold and suggestingglobal threshold-settings for op-
timized performance for a given expected signal-to-noise ratio
(SNR) [5]. Further, there has been some research indicating that
considerably improved performance is achievable when some
amplitude information (AI) is delivered to the tracker along with
the measurements and their locations [6], [8].

The above two points have largely been investigated as
they pertain to the probabilistic data association filter (PDAF)
[2]. The PDAF is a particularly simple and successful target
tracking algorithm. It is predicated on the assumptions that
the best one-step estimation of the target’s location should be
sufficient and that once this estimation is accomplished, the
target’s true location should be afforded a Gaussian distribution
about its estimated value. The key to this paper is in this
“posterior” distribution on the target’s location; in the PDAF
case, this is Gaussian and easy to specify.

Communication between the signal processing front-end and
the PDAF is presently one way. In this paper, we allow two-way
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Fig. 1. Representation of flow of data within proposed system. A signal
return from a known location is matched filtered and its magnitude compared
with a threshold—a threshold exceedance, along with its location, is passed to
the tracker, which is a modified PDAF. The threshold itself is determined as a
function of the predicted location of the target, the innovation covariance, and
the location of the return.

communication or, perhaps more appropriately, “feedback”
from the tracker to the detector. The form of this feedback is
of the posterior distribution on the target’s location. From the
detector’s point of view, this is prior information for its hy-
pothesis tests (i.e., its matched filters), as represented in Fig. 1.
Thus, a detector using this configuration no longer operates in
a Neyman–Pearson mode and instead becomes Bayesian, and
from a practical point of view, this amounts to a threshold that
is depressed near where a target is expected to be and elevated
where it is unexpected—this is illustrated in Fig. 2.

In this new approach, there are fewer false alarms than pre-
vious, and these are no longer uniformly distributed in space
as they would be for the PDAF. Thus, the PDAF must be mod-
ified accordingly, which we do in this paper; the resulting al-
gorithm (the PDAF-BD referring to the Bayesian detector) is
arguably simpler than the PDAF, and its performance is consid-
erably better.

As indicated above, there has emerged a new PDAF that uses
amplitude information, which has not unnaturally been coined
the PDAF-AI. In such an implementation, the Neyman–Pearson
detector structure of the PDAF is preserved, but in addition to
the locations of threshold exceedances, the corresponding am-
plitudes are reported to the tracker. The original PDAF must as-
sign threshold exceedances as true or false based only on their
location relative to that which is expected; amplitude informa-
tion refines this by functioning as a discriminating feature, and
the improvement (relative to the original PDAF) can be dra-
matic. By contrast, the PDAF-BD communicates only thelo-
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Fig. 2. Illustration of the effect of a position-dependent threshold. Thex and
y coordinates are those of the innovation, that is, of the one-step predicted
measurement subtracted from the return location. Thez coordinate shows the
probability that a return of a given strength will be missed as a function of its
normalized innovation.

cationsof threshold exceedances, but owing to the location-de-
pendent threshold, there is a form of amplitude information pre-
served in that a large innovation must have been accompanied
by a high amplitude. It is therefore not surprising that the per-
formance of the PDAF-BD lies between that of the PDAF and
the more information-rich PDAF-AI.

Emboldened by this, we also present a modification on the
PDAF-BD in which amplitude information isalso reported,
and (with apologies) we term this the PDAF-BDAI. The
PDAF-BDAI is considerably better than the PDAF-BD in terms
of performance, and indeed, in terms of lost tracks, this version
outperforms the PDAF-AI in the cases investigated.

It is worth mentioning that there are trackers other than the
PDAF, for example, the multihypothesis tracker (MHT) (e.g.,
[4]), the EM-based probabilistic multihypothesis tracker (e.g.
[1], [7], [9], [15]), and the assignment-based trackers (e.g., [12],
[14]). The idea behind the PDAF-BD, of a tracking-dependent
Bayesian detection threshold, could probably be applied to any
of these—our focus is on the PDAF as an example and due to
the nice resulting structure, which will be seen shortly.

It is also reasonable to note that present day detec-
tion/tracking systems operate in the PDAF (Neyman–Pearson
detection) mode, and modification to a PDAF-BD (or for that
matter PDAF-AI) structure may or may not be straightforward.
Similarly, the extant tracking systems as above have evolved
to deal with a number of complications such as of multiple
targets, target maneuver, and multiple sensors. It would thus be
necessary to extend the PDAF-BD and its ideas to incorporate
these before it could be a serious competitor. The goal of this
paper is, consequently, not bravely to suggest a wholesale
switch to the PDAF-BD, but rather to propose it as a promising
alternative worthy of further development and perhaps to pro-
voke designers of detection systems to consider incorporating a
Bayesian-thresholding capability in future generations of their
products.

In Section II, we present our assumed target tracking model,
the original PDAF, and the PDAF-AI. In Section III, we first ex-
plain the Bayesian thresholding and then develop the PDAF-BD
and the PDAF-BDAI—most of the theory is in the Appendices.
In Section IV, the four trackers are compared, and Section V of-
fers concluding remarks.1

II. BACKGROUND

A. Model of Tracking

Let us agree on the standard tracking terminology that

(1)

where
target state (to be estimated);
measurement;
time index.

The transition and observation matricesand are assumed
known, and the respective process and measurement noises are
independent, white, and Gaussian and have

(2)

(3)

as their associated covariance matrices. Extension to
time-varying systems is obvious and will be avoided here
for clarity. Based on , the optimal estimator would be
a Kalman filter, but target tracking is made interesting by
the data association problem that at time (scan), no single

is available, but instead, a set of candidate observations
are available. In practice, are threshold

exceedances of matched filter outputs, but for the purposes of
PDAF specification, we have the following.

Assumption 1:In the development of the PDAF, it is assumed
that , which are the observations at time, comprise con-
stituents.

1) The observation takes of the form of vectors
of the same dimension as . These are

the locations of whatever threshold exceedances have
been observed.

2) With probability , the true measurement [from
(1)] may be among the , and with probability

, it may be absent, corresponding in this latter case
to a missed detection.

3) The number offalse-alarmconstituents (either or
, depending on whether the true measurement is present)

of is accorded a Poisson distribution with mean,
in which is referred to as the spatial clutter density, and

is the observation volume.
4) False-alarm measurements are uniformly distributed

within the observation volume and are independent.
The ordering of the measurements conveys no information

and may be considered a random permutation. Thus, determi-
nation of which (if any) of the constituents of is target
generated is theassociation problem.

1Portions of this paper have appeared as [16]; however, this paper contains
considerable modifications and extensions.
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It is possible to take issue with any of the above assumptions,
but they are standard and we use them. There will be a need for
modifications for development of the PDAF-AI, PDAF-BD, and
PDAF-BDAI, and we will give these as needed.

B. Original PDAF

At the outset , let us note the informing feature of the PDAF;
it is entirely optimal,exceptthat after each scan, its poste-
rior track probability density function—ideally a mixture of
Gaussian pdfs—is converted to a single Gaussian mode having
the same mean and variance. Thus, at each scan, estimation
is built upon a Gaussian prior and converted to a Gaussian
mixture posterior, which is then forced back to Gaussianity for
the succeeding scan.

Assume that the target location up to time is estimated
as with associated covariance . The notation
in the subscripts indicates that the estimate isconditionedon

. Operation of the PDAF based on one scan of data
(the th) can be summarized as [2], [3] follows.

1) Predict the target location at scanfrom prior at scan
:

(4)

2) From , form the “innovations” ( ’s)

(5)

of all candidate measurements. Compute

(6)

for the innovations covariance of the true measurement in
which

(7)

is the prediction covariance and is calculated separately
since it is also used in a later step.

3) Assuming that , calculate the association proba-
bilities

(8)

in which ensures that . Here, is the
posterior probability that measurementis from the true
target; is the posterior probability that all measure-
ments at this scan are spurious.

4) Use these s to form a synthetic “innovation,” and update
the track according to

(9)

in which

(10)

Fig. 3. Representation of the one-step tracking as performed by the PDAF.

is the Kalman gain, and

(11)

is the “aggregate” innovation.
5) Update

(12)

for the estimation covariance. The third term in (12) is
often referred to as the “spread of the innovations.”

Reference to Fig. 3 may be helpful. The above sequence may
be unfamiliar, and the reader is encouraged examine the deriva-
tion in [2] and [3]. It should be noted that in practice, the pre-
dicted measurement is often enclosed by a “gate” whose volume
is proportional to and whose function is to reduce compu-
tation by ignoring any for which . In theory, no
gate is necessary, and the modifications to the above if a gate is
used are fairly straightforward.

C. PDAF-AI

As discussed earlier, it has recently been shown [3], [8] that
the use of amplitude information can be of significant benefit to
the PDAF.

Assumption 2:In the PDAF-AI, we have the following.

1) The observation . The s are
as in Assumption 1; now, is the amplitude associ-
ated with the th threshold exceedance at scan.

This replaces item 1 of Assumption 1.
That is, instead of “measurements” consisting simply of the

locations of threshold exceedances, these are augmented by in-
formation as to how much the threshold was exceeded. Thus,
it may be expected that a strong target return would be more
recognizable as such than if this confidence information were
thrown away by the detector, and in fact, this is so. It is inter-
esting that the PDAF structure is little altered by the presence of
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amplitude information; the only change is to the calculation of
the s. In fact, we have that (8) is replaced by

(13)
in which and are the probability distributions
of measured amplitude , respectively, under false-alarm
and true target hypotheses and conditioned on the event that
the threshold has been exceeded. Because the locations and
the amplitudes are independent, the posterior probability

should be multiplied by (for ) or (for
). It is often convenient to express quantities in

terms of dimensionless likelihood ratios, and hence, we divide
all probabilities by and renormalize to get the factor
in (13). Replacement of (8) by (13) is the only operational
difference between the PDAF and PDAF-AI. This extends to
the PDAF-BD and PDAF-BDAI; although the signal processing
(meaning the thresholding) is different from either PDAF or
PDAF-AI, the only variation with regard to tracking is again
in the calculation of the s. In the following, we show how to
form these.

III. D EVELOPMENT OF THEPDAF-BD AND PDAF-BDAI

A. Statistical Testing

We assume that a test of absence or presence of a target at
location is to be performed. Hypothesis is that there is
no target at location and, hence, that the measured return
is due simply to noise. Hypothesis is that there is indeed a
target at location and, hence, that the return is due to a
combination of noise and signal energy. That is, we write

(14)

(15)

in which is the corresponding amplitude (magni-
tude-square output of a matched filter, with a Swerling I target
fluctuation model implicit), and is the SNR.2 The usual
implementation is according to the Neyman–Pearson criterion
[13] that the probability of detection be maximized subject
to a constraint on the false alarm rate, and the resulting test
can easily be shown to be a comparison of to a fixed
threshold. From the Bayesian viewpoint, the appropriate test is

(16)
in which

hypothesis ;
pdf given hypothesis;
cost of making decisionwhen is true.

We note that these costs are not easily available.

2In the formulation given, it is apparent that the returns are assumed perfectly
prenormalized such that the target-absent mean is unity. If some other target-
model—such as a CA-CFAR distribution—is desirable, then the succeeding de-
velopment must be modified. This modification is straightforward.

The “prior” probabilities and are not
well-posed; the latter amounts to the probability that a target
is locatedexactly at the test’s coordinates given the
prior tracking information, and this is zero. If a sampling
grid of resolution cells is available, then the quantity can
be calculated, but since the answer is configuration-spe-
cific, we prefer to avoid this and simply note that

and ,

where is the volume of the validation region. Therefore, we
have

(17)

in which

(18)

is as before thespatial innovation of the th measurement at
time , and is the estimate of the state given data up
to scan . It should be noted that the prior probabilities are of
isolatedtests, meaning that each observation is tested separately,
which is fair.

At any rate, from (14)–(17), we have, with reference to Fig. 1,
the test

(19)

In (19) is a tunable parameter, meaning that the proportionality
in (17) has been absorbed within it.

B. Probabilities of Detection and False Alarm

In the case of the PDAF and PDAF-AI, the probabilities of
detection and false alarm are straightforward and do not depend
on location. The PDAF-BD has a location-dependent threshold,
and hence, these probabilities are easy only as conditioned by

—both are more probable for smaller, meaning that it is more
likely to see a threshold exceedance close to than
one further away. At any rate, it will be useful to have the un-
conditioned quantities, and these can be calculated as follows.

1) Detection: Via the test and threshold of (19), it is possible
to calculate the overall probability of detection as

(20)

by averaging over all possibletrue innovations . Here, is
the dimension of the measurement [i.e., of; see (1)].

2) False Alarm: In the PDAF (and PDAF-AI), false alarms
are assumed to be generated by an underlying Poisson point
process, and hence, we have the probability mass function (pmf)
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of the number of false alarms in a measurement space volume
as

(21)

in which is the average number of false alarms per unit volume
for the (fixed) thresholding used. The expression foris neces-
sary in the evaluation of thes. The above is so simple that it
may seem strange to devote much space to it, but in the case of
the PDAF-BD and the PDAF-BDAI, the number of false alarms
is controlled by the detection thresholding, and hence, the an-
swer is not straightforward.

For the PDAF-BD, we cannot rely on the same homogeneous
Poisson point process since the spatially varying PDAF-BD
threshold may (for small ) be below the spatially invariant
threshold assumed by the PDAF and PDAF-AI. As such, we
propose the following.

Assumption 3:There exists an underlying homogeneous
Poisson point process with spatial density. To each event in
this new process we attach an amplitude with a unit exponential
distribution, and each amplitude is independent.

Let us suppose that amplitudes from the events from this
new Poisson point process (with spatial density) are tested
against the threshold with only those which exceed being
kept and those whose amplitudes lie belowdiscarded. It is easy
to see that the result is also a Poisson point process, this time
with spatial density . This thresholded Poisson point
process (with spatial density) is that which generates false
alarms for the PDAF and PDAF-AI; the unthresholded Poisson
point process (with spatial density) models the input to the
PDAF-BD and PDAF-BDAI, but it is important to realize that
thesameunderlying Poisson point process is assumed. The hier-
archy of clutter-generating Poisson point processes is sketched
in Fig. 4.

Now, for a given event from the underlying Poisson point
process (with spatial density), the probability that it is reported
to the PDAF or PDAF-AI, meaning that it exceeds the threshold

, is . For the PDAF-BD or PDAF-BDAI, the corre-
sponding probability is

threshold exceedance

(22)

if the volume is sufficiently big. [The parameter is from
(19).] The last step in (22) follows from the identification of
the integrand as a Gaussian density function whose restriction

Fig. 4. Illustration of the underlying Poisson point process (with spatial
density ~�) as it applies to the four tracking algorithms. Input to the PDAF
consists only of locations of exceedances of a spatially invariant threshold;
input to the PDAF-AI is similar, but amplitudes also are reported. Locations of
exceedances of a spatially varying threshold are passed to the PDAF-BD, and
the PDAF-BDAI has, additionally, the corresponding amplitudes.

to a volume integrates approximately to unity, providedis
large. Now, assume that the underlying Poisson process has gen-
erated points in the volume . The probability that there are

threshold exceedances (false alarms) is binomial with mean
. That is, we have for the probability that there arefalse

alarms

(23)

in which is given in (22). Comparing of (21) to
of (23), we see that for the PDAF-BD, the number of false
alarms in a volume is again Poisson but with a different mean:

for the PDAF and

(24)

for the PDAF-BD. We note that the above expressions relate to
the special case of the nonuniform false alarm process generated
by the PDAF-BD threshold. There is a more general treatment
of these in [10] and [11] from which an alternative derivation of
(22)–(24) is possible.

C. PDAF-BD

The impact of the spatially varying detection threshold on
PDAF-BD operation is only through the posterior association
probabilities. In accordance with the standard PDAF nomencla-
ture, we refer to these as thes, in which is the probability
that measurement is target generated (and all others are
clutter), whereas is the probability that all measurements
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are clutter. It is shown in Appendix B that we have

(25)

in which is a constant such that . This is re-
markable and simple: is a constant. The anomaly is pre-
sumably due to the fact that a spatially “surprising” measure-
ment must have had a larger amplitude to exceed its threshold.
Here, the effects of large amplitude and large distance from pre-
dicted position (prior information) cancel out each other and
make a constant weighting.

D. PDAF-BDAI

Here, both locations and amplitudes of events that exceed the
(spatially varying) threshold are reported. As for the PDAF-AI
and PDAF-BD, the only algorithmic impact is through thes.
Assuming the innovation of measurementis and that the
corresponding amplitude is , it is derived in Appendix A
that we get

(26)

where, as before, is a normalizing constant such that
.

IV. COMPARISON

In this section, we compare the PDAF, the PDAF-AI, the
PDAF-BD, and the PDAF-BDAI; there is little alternative but
that the basis be simulation. For these simulations, we choose
the common two-dimensional (2-D) kinematic model with di-
rect discrete-time process noise [2]. Accordingly, we have

(27)

Fig. 5. Example of track with� = 12 dB, � = 10 m , � = 0:07,
� = 100. The PDAF loses track early; the PDAF-BDAI, PDAF-AI, and
PDAF-BD hold track for the full 100 scans.

in (1) and (3). Measurements are of position only, and the model
is in all respects linear/Gaussian. True detections are generated
along with an associated amplitude; thresholding of this ampli-
tude determines whether or not there is a miss. We then have
some notes and parameter values:

• We have chosen seconds, which is a fast but
not-unreasonable scan rate for active sonar.

• We choose a track length scans of data.
• Tracks are initialized by two-point differencing. This

common track-initiation technique means that tracks are
begun with two points for which there is no association
uncertainty: Position is initialized for the second and
velocity by the difference, with the associated initial
uncertainties easy to derive and given (for example) in
[2] and [4].

Targets begin their trajectories at scan with position coor-
dinates (0, 0) and velocity coordinates (5, 5) m/s, corresponding
to 13.8 knots. A typical—but somewhat self-serving—tracking
situation is given in Fig. 5.

Most studies of tracking performance are parameterized by
and by the clutter return density. In this case, we cannot

use the former since for the new approach,is not constant;
hence, we use the SNRinstead. Each of the schemes takes as
a parameter the detection threshold, given simply byfor the
PDAF and PDAF-AI, but in a more implicit fashion byin the
PDAF-BD and the PDAF-BDAI. We have no particular insight
at present as to how should be chosen,3 hence, we adopt the
simple and presumably fair expedient that the aggregate proba-
bilities of detection for all four schemes be the same. This means
that we have

(28)

3This would be the subject of further research. There is corresponding insight
for the PDAF, but results appear to date to be more theoretical than applied, and
there are no results for the PDAF-AI.
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from (20), in which for the PDAF and
PDAF-AI, as given by the Swerling I assumption.4 The explicit
appearance of here amplifies the fact that independent specifi-
cation of may be incompatible with , which is the standard
deviation of the measurement error for each dimension. There
is, in fact, through , an implied resolution cell grid at which
threshold exceedances are interrogated, and, for example,

m (a false alarm every m , on average) and
m (a m resolution cell) makes very little

sense indeed. Thus, we have adopted the convention that

(29)

with the intuition that resolution cells be square and of side
with the “12” arising from the implied uniform distri-

bution of a target within a resolution cell registering a hit.
For the theoretical development of the PDAF-BD and

PDAF-BDAI, it was convenient to posit an underlying
false-alarm Poisson point process having spatial densityand
associated amplitudes that have a unit-exponential distribution;
see Assumption 3. Now, since ( is the clutter spatial
density for the PDAF), the implication is that can be quite
large. There is no mathematical problem with this, but the
implementation can be very slow indeed. Thus, since the lowest
detection threshold value for the PDAF-BD is( ), we adopt
the equivalent expedient that the underlying Poisson point
process has spatial density . For each clutter point so
generated, we also form an amplitude variate with distribution

(30)

which is thresholded using for the PDAF and PDAF-AI and
using (19) for the PDAF-BD and the PDAF-BDAI.

First, we explore the relationship between the in-track per-
centage and SNR. A simulation is judged “in-track” if at the
end of 100 scans, the true and estimated positions are less than

apart.5 It is clearly shown in Figs. 6 and 7 that
the PDAF-BD offers considerable improvement with respect
to the original PDAF, and its performance is close to those of
PDAF-AI and PDAF-BDAI. Further, the PDAF-BDAI outper-
forms the PDAF-AI, at least at the operating point chosen. The
ordering is particularly apparent in Fig. 7, in which the situation
is of a more maneuvering but better observed ( ) target
than in Fig. 6.

From Figs. 8 and 9, we find that the performance of the PDAF
degrades significantly when or increases, with less of a
problem for the other algorithms. Presumably, this is due to the

4Although there is guidance—for example, see the concept of the tracker op-
erating characteristic (TOC) in [3]—for the choice of detection threshold� at a
particular SNR in the PDAF, there are no generally accepted prescriptive rules.
Consequently, for the PDAF, and indeed in the PDAF-AI,� may be thought
of as a design parameter. In the case of the PDAF-BD (and PDAF-BDAI), the
quantity� may be assigned the same role. The selection in (28) is just one pos-
sible choice: one that we hope is fair.

5There are many possible criteria for judging a track “lost,” but since a track
loss amounts to a burgeoning instability in the algorithm, for the most part, their
decisions are the same. In this case, a track is considered lost if the estimation
error is greater than ten times the measurement standard deviation per dimen-
sion.

Fig. 6. In-track percentage (out of 500 Monte Carlo runs) as a function of SNR,
with � = 10 m (for the PDAF),� = 0:01, � = 100. The behavior of
the two amplitude-dependent algorithms for high SNR appears to be a Monte
Carlo artifact.

Fig. 7. In-track percentage (out of 500 Monte Carlo runs) as a function of
SNR, with� = 10 m , � = 0:1, � = 10.

relatively high SNR ( dB), meaning that all three other algo-
rithms can maintain track via their respective uses of amplitude
information.

Now, we compare the performance of four algorithms in
different situations. The results are given in Tables I and II,
respectively (of thein-trackpercentage and tracking RMSE, the
former is generally accorded higher importance). From Table I,
we observe that the PDAF-BD has tracking performance
between that of the PDAF and PDAF-AI, which is generally
and gratifyingly closer to the latter than to the former. The
PDAF-BDAI has the best performance.



24 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

Fig. 8. In-track percentage (out of 500 Monte Carlo runs) as a function of�,
with SNR = 12 dB, � = 0:01, and� = 10.

Fig. 9. In-track percentage (out of 500 Monte Carlo runs) as a function of� ,
with � = 10 m , � = 0:01, SNR = 12 dB.

The tracking error is the RMSEover the whole trackfor those
simulations in whichall the algorithms keep in-track at their
conclusion; naturally, inclusion of those tracks that become lost
skews the results well beyond interpretability. From Table II, we
can see that the PDAF-BD has lower RMSE than PDAF in most
situations. The PDAF-AI and PDAF-BDAI are comparable in
this regard and have the best RMSE.

V. SUMMARY

The usual target tracking model is of separation between
detection and tracking subsystems. In the absence of information
from the latter, the former has little choice but to do the best
job it can. It provides Neyman–Pearson optimal performance:
the most powerful test subject to a constraint on false-alarm

TABLE I
IN-TRACK PERCENTAGE FORVARIOUS SITUATIONS. THE LAST FOUR

COLUMNS REFER TO THEPDAF, THE PDAF-BD, THE PDAF-AI, AND

PDAF-BDAI, RESPECTIVELY

rate. If thereis some information flow from tracker to detector,
particularly in terms of predicted measurement location and
associationconfidence(innovationscovariance), thenaBayesian
detector is appropriate. The difference is not in the statistic
tested, but rather in the threshold. In fact, assuming that
the prior probability is Gaussian (which fits with the PDAF
assumptions, hence, our use of this model), the threshold
is proportional to the normalized innovation and, hence, is
lowest near where a detection is expected (at the predicted
measurement).

In this paper, the threshold shape has been derived, and appro-
priate modification to the PDAF—we call it the “PDAF-BD,”
for BayesDetector—is made. Simulation has revealed that the
performance of PDAF-BD is considerably better than that of
the PDAF and is often only slightly degraded relative to the
PDAF-AI, which is that version of the PDAF appropriate to
transmission from detector to tracker of full amplitude infor-
mation forall returns. One perhaps remarkable feature of the
PDAF-BD is that the posterior association probabilities (that
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TABLE II
RMSEFOR VARIOUS SITUATIONS. RMSE IS CALCULATED OVER THE WHOLE

TRACK BUT ONLY FOR THOSESITUATIONS FOR WHICH THE TRACK IS
MAINTAINED UNTIL THE FINAL SCAN. A BLANK MEANS THAT NO RELIABLE

TRACKS WERE REPORTED. THE LAST FOUR COLUMNS REFER TO THEPDAF,
THE PDAF-BD,THE PDAF-AI, AND THE PDAF-BDAI, RESPECTIVELY

a given threshold exceedance is target-generated rather than a
false-alarm) areuniform and independent of location. This is
in distinction to the PDAF behavior in which closer (to the ex-
pected target location) returns are accorded a higher posterior
association probability, and it presumably arises from the spa-
tially varying detection threshold, whose implication is that a
more-distant measurement must have had a higher amplitude in
order that an exceedance occurred.

Through its use of a spatially varying threshold, the
PDAF-BD can be thought of as exploiting amplitude informa-
tion, as does the PDAF-AI, with this confidence information
implicit and never requiring transmission. The PDAF-AI
outperforms the new PDAF-BD, but it appeared appropriate
to develop the PDAF-BDAI, which is the extension of the
PDAF-BD in which amplitude information (that is, the amount
by which the detection threshold was exceeded) is explicitly
transmitted from detector to tracker (an extension parallel to that

from the PDAF to PDAF-AI). Accordingly, the PDAF-BDAI
outperforms the PDAF-AI in almost all situations studied.

We offer these further notes.

• This study has focused on extension of the PDAF to in-
corporate Bayesian detection. The Gaussian distributions
assumed by the PDAF mesh well with Bayes detection,
as has been seen. However, there exist other tracking al-
gorithms, and there is no reason why the Bayes detection
idea could not be applied to them.

• Since, in effect, only detections close to the predicted mea-
surement are allowed, the PDAF-BD is less of a computa-
tional load than the others. This might be considered an in-
telligent “gating” mechanism, and certainly relatively few
threshold exceedances are registered. Thus, the Bayesian
detector idea may fit nicely with data fusion in which data
transmission requirements (from detectors to tracker) may
be strict.

• As far as we are aware, there is at present no detection
system that allows nonconstant thresholding, at least not
on the scale proposed here. Thus, this work is several gen-
erations ahead of its platform.

• While there is guidance in this regard (see [3]), the choice
of the detection threshold for the PDAF is something
of an art. In the PDAF-BD, there is no fixed detection
threshold, but, perhaps unfortunately, there is a tunable
parameter whose role is similar. Exploration of the effect
of on tracking performance, and indeed of its robustness
with respect to , has not been explored in this paper and
should be considered a suggestion for further research.

Future work on the PDAF-BD and its underlying ideas
should include the incorporation of target maneuver, its use for
multiple targets, and its development for multiple sensors and
data fusion. An additional concern is that the feedback between
tracking and detection may render the decision process of track
acceptance/rejection more difficult than for the PDAF and
PDAF-BD since in those cases, the quantity and locations of
false alarms are arguably independent of the track estimation
process.

APPENDIX A
PDAF-BDAI

Modification on the PDAF to any of the other algorithms
(PDAF-AI, PDAF-BD, and PDAF-BDAI) discussed in this
paper requires only a reformulation of the posterior association
probabilities—these are thes of (8). No other filtering steps
need to be modified. In this appendix, we derive thes for
the PDAF-BDAI. Results for the PDAF-BD are found by
stripping away the amplitude information and are presented in
the succeeding Appendix.

Assuming that at the present scan we have
threshold exceedances, then according to [2], we define the
events such that means that the
th measurement is target generated and that the others are

false alarms, and means that all measurements are
false. We denote by the probability, conditioned on all
measurements in the current scan (and naturally, implicitly, on

), that is true.
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We first require the conditional observation probability den-
sities

(31)

and for , we have (32), shown at the bottom of the page,
where (22) is used as threshold exceedance at . This
is particularly interesting; under the new detection model, any
randomly chosen false alarm has a spatial Gaussian distribution.
For the standard PDAF model, this probability is, naturally, uni-
form.

Let us denote and
as the full respective innovation

and amplitude information available at theth scan. Let us also
define and to be, respectively, the innovation and return
amplitude for thetrue target; note that it is not known to the
tracker which return is true, and in fact, the true return may be
missed (below threshold). For the case , we have the joint
probability

(33)

which is a joint probability (density) of mixed type, involving
both real and discrete random variables. One ingredient to (33)
is

(34)

from (32) and the fact that if is unit exponential, then

Two other ingredients are the straightforward binary expres-
sions

(35)

and

(36)

in which is the indicator function, unity if its argument is
true, and zero otherwise. The last ingredient is the product for
the explicit pdf of the innovation and return amplitude from the
true target:

(37)

threshold exceedance at event at
threshold exceedance at

(32)
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Substituting (34)–(37) into (33), we get

(38)

Consider now the case that . Let us define and
such that , and ; that is, and
are from the false alarms. We again seek

(39)

As before, we have the ingredients

(40)

and

(41)

and

(42)

Repeated from (36) and (37), we get
and . There is no need to integrate, so we have

(43)

Putting (38) and (43) together, and using formula (23) for the
false-alarm pmf , we have the expression shown at the
bottom of the next page.
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Thus, we get (26); that is

in which is a constant such that .

APPENDIX B
PDAF-BD

In the previous Appendix, we derived the posterior associa-
tion probabilities (the s) for the PDAF-BDAI. It is a simple
matter, in this Appendix, to remove the amplitude information
(AI). We have

(44)

There is little difference here from the previous Appendix, ex-
cept the lack of the amplitudes “.” Hence

(45)

Now, for , we get

(46)

The above terms are similar to those in the previous Appendix.
Thus, we have

(47)
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Putting (45), (47), and (26) together, we have

and for

as in (25), in which normalizes the sum of the probabilities to
unity.
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