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Integration of Bayes Detection with Target Tracking

Peter Willett Senior Member, IEERRuixin Niu, and Yaakov Bar-Shalaonfrellow, IEEE

Abstract—Existing detection systems generally are operated
using a fixed threshold and optimized to the Neyman—Pearson Modified
criterion. An alternative is Bayes detection, in which the threshold PDAF
varies according to the ratio of prior probabilities. In a recursive
target tracker such as the probabilistic data association filter
(PDAF), such priors are available in the form of a predicted
location and associated covariance; however, the information is
not at present made available to the detector. Put another way,
in a standard detection/tracking implementation, information
flows only one way: from detector to tracker. Here, we explore the
idea of two-way information flow, in which the tracker instructs
the detector where to look for a target, and the detector returns
what it has found. More specifically, we show that the Bayesian
detection threshold is lowered in the vicinity of the predicted
measurement, and we explain the appropriate modification to
the PDAF. The implementation is simple, and the performance is
remarkably good.
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|. INTRODUCTION
) . Fig. 1. Representation of flow of data within proposed system. A signal
OST TARGET tracking systems work with the data theyeturn from a known location is matched filtered and its magnitude compared
are given. By this, we mean that measurements fromvih a threshold—a threshold exceedance, along with its location, is passed to

detection front-end br r are interr ted for threshold the tracker, which is a modified PDAF. The threshold itself is determined as a
etectio ont-énd processor are Interrogated 1o €snold gffiction of the predicted location of the target, the innovation covariance, and

ceedances, and these “hits” are delivered to the tracking alg@@-location of the return.

rithm. For the most part, the threshold is set and fixed according

to a false-alarm criterion that indicates that there should be L . “ R
o . . communication or, perhaps more appropriately, “feedback

on average, a specified number of false hits per unit volu

) . ; ¥rom the tracker to the detector. The form of this feedback is
There have been studies relating the tracking performance e \ )
. . . of the posterior distribution on the target’s location. From the
this threshold and suggestiggpbal threshold-settings for op- ; . : . s . _
timized performance for a given expected signal-to-noise ra K()etectors point of view, this is prior information for its hy-
P 9 P 9 {he5|s tests (i.e., its matched filters), as represented in Fig. 1.

e o)
(SNR) [5]. Further, there has been some research indicating tﬁﬁus, a detector using this configuration no longer operates in

considerably improved performance is achievable when som . .
y imp P a?\leyman—Pearson mode and instead becomes Bayesian, and

amplitude information (Al) is delivered to the tracker along Wiﬂfrom a practical point of view, this amounts to a threshold that

the measurements and their locations [6], [8]. . .
. . . is depressed near where a target is expected to be and elevated
The above two points have largely been investigated a o L2 S
ere it is unexpected—this is illustrated in Fig. 2.

they pertain to the probabilistic data association filter (PDAIA')’ In this new approach, there are fewer false alarms than pre-

[2]. The PDAF is a particularly simple and successful target : L .
tracking algorithm. It is predicated on the assumptions thap s and these are no longer uniformly distributed in space
the best one-step estimation of the target’s location should | séthey would be for the PDAF. Thus, the PDAF must be mod-

sufficient and that once this estimation is accomplished, tI!1|eEd accordingly, which we do in this paper; the resulting al-

target’s true location should be afforded a Gaussian distributigﬁmhm (the PDAF-BD referring to the Bayesian det_ector) IS
arguably simpler than the PDAF, and its performance is consid-

about its estimated value. The key to this paper is in this

N L 4 oo rably better.
Cp;c;sétetrrl]ci)sr isdgglubsustilgz g: dtf;g;;;%estselcoifyatlon, in the PDAF” As indicated above, there has emerged a new PDAF that uses

L . . amplitude informationwhich has not unnaturally been coined
Communication between the signal processing front-end and : :

: : he PDAF-AL In such an implementation, the Neyman—Pearson
the PDAF is presently one way. In this paper, we allow two-

W&etector structure of the PDAF is preserved, but in addition to
the locations of threshold exceedances, the corresponding am-
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In Section Il, we present our assumed target tracking model,
the original PDAF, and the PDAF-AI. In Section Ill, we first ex-
plain the Bayesian thresholding and then develop the PDAF-BD
and the PDAF-BDAI—most of the theory is in the Appendices.
In Section IV, the four trackers are compared, and Section V of-
fers concluding remarkis.

Il. BACKGROUND
A. Model of Tracking
Let us agree on the standard tracking terminology that

Xp+1 = Fxp + vy = Hxy + wi 1)

where
syt x  target state (to be estimated);
x ooordinate y  measurement;

. _ y k  time index.
Fig. 2. 'IIIustranon of the effect qfa pos'ltlon-dept_andent threshold. 4 had ' Tge transition and observation matrid@sand H are assumed
y coordinates are those of the innovation, that is, of the one-step predicte . )
measurement subtracted from the return location. Theordinate shows the KNOWn, and the respective process and measurement noises are
probability that a return of a given strength will be missed as a function of ifndependent, white, and Gaussian and have

normalized innovation.
E{vivi} =Q 2)

cationsof threshold exceedances, but owing to the location-de- E{w,wI} =R ©)
pendent threshold, there is a form of amplitude information pre-
served in that a large innovation must have been accompanégd their associated covariance matrices. Extension to
by a high amplitude. It is therefore not surprising that the pefime-varying systems is obvious and will be avoided here
formance of the PDAF-BD lies between that of the PDAF anér clarity. Based on{y;}, the optimal estimator would be
the more information-rich PDAF-AL. a Kalman filter, but target tracking is made interesting by

Emboldened by this, we also present a modification on titiee data association problem that at time (scanho single
PDAF-BD in which amplitude information islso reported, yx is available, but instead, a set of candidate observations
and (with apologies) we term this the PDAF-BDAI. TheZi = {zx(l)}*, are available. In practiceZ;, are threshold
PDAF-BDAI is considerably better than the PDAF-BD in termgxceedances of matched filter outputs, but for the purposes of
of performance, and indeed, in terms of lost tracks, this versiBfPAF specification, we have the following.
outperforms the PDAF-AI in the cases investigated. Assumption 1:1n the development of the PDAF, it is assumed

It is worth mentioning that there are trackers other than t#@atZx, which are the observations at tirhecompriser,. con-
PDAF, for example, the multihypothesis tracker (MHT) (e.gStituents.
[4]), the EM-based probabilistic multinypothesis tracker (e.g. 1) The observationZ; takes of the form ofn; vectors
[1], [7], [9], [15]), and the assignment-based trackers (e.g., [12],  {zx(!)};, of the same dimension &g }. These are
[14]). The idea behind the PDAF-BD, of a tracking-dependent  the locations of whatever threshold exceedances have
Bayesian detection threshold, could probably be applied to any been observed.
of these—our focus is on the PDAF as an example and due to2) With probability P, the true measuremetiy . } [from
the nice resulting structure, which will be seen shortly. (1)] may be among théz, (1)}, and with probability

It is also reasonable to note that present day detec- 1— Fu,itmay be absent, corresponding in this latter case
tion/tracking systems operate in the PDAF (Neyman—Pearson {0 & missed detection. . _
detection) mode, and modification to a PDAF-BD (or for that 3) The number ofalse-alarmconstituents (€ither;, orn, —
matter PDAF-AI) structure may or may not be straightforward. 1, dépending on whether the true measurementis present)
Similarly, the extant tracking systems as above have evolved ©f 2x is accorded a Poisson distribution with me#n,
to deal with a number of complications such as of multiple N which A is referred to as the spatial clutter density, and
targets, target maneuver, and multiple sensors. It would thus be V' iS the observation volume. _ o
necessary to extend the PDAF-BD and its ideas to incorporate?) False-alarm measurements are uniformly distributed
these before it could be a serious competitor. The goal of this_ Within the observation volumg and are independent.
paper is, consequently, not bravely to suggest a wholesald he ordering of the measurements conveys no mformatlon_
switch to the PDAF-BD, but rather to propose it as a promisir@f)Jd may be considered a random permutation. Thus, determi-
alternative worthy of further development and perhaps to pration of which (if any) of the;, constituents ofZ; is target
voke designers of detection systems to consider incorporating@erated is thassociation problem [

Bayesian-thresholding capability in future generations of theiripgions of this paper have appeared as [16]; however, this paper contains
products. considerable modifications and extensions.

y coordinate
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Itis possible to take issue with any of the above assumptiol
but they are standard and we use them. There will be a need

% (thetrue
measurernent)

modifications for development of the PDAF-AI, PDAF-BD, anq

PDAF-BDAI, and we will give these as needed.

Flkl
(estitnated
track)

B. Original PDAF

At the outset , let us note the informing feature of the PDAF
it is entirely optimal,exceptthat after each scan, its poste-
rior track probability density function—ideally a mixture of
Gaussian pdfs—is converted to a single Gaussian mode hav
the same mean and variance. Thus, at each scan, estime
is built upon a Gaussian prior and converted to a Gaussi
mixture posterior, which is then forced back to Gaussianity fi

19

S
(irmovations
covariance)

(8}
(innovation)

predicted
location

Pk-llt~l

the succeeding scan. (8 (estimation
Assume that the target location up to tife- 1 is estimated e covance)

asxy_1jx—1 With associated covarian®®,_,;_1. The notation
in the subscripts indicates that the estimatedaditionedon

i=—00"

(the £th) can be summarized as [2], [3] follows.

1) Predict the target location at scanfrom prior at scan
k-1

Xijh—1 = FXp_qjp—1. (4)

2) From Z,, form the “innovations” ¢'s)

Fig. 3. Representation of the one-step tracking as performed by the PDAF.
{Z;}¥=1 . Operation of the PDAF based on one scan of data

is the Kalman gain, and

vy = zk: B(6)v(6)
6=1

is the “aggregate” innovation.

5) Update

(11)

P = B(0)Prjr—1 + 2/3(9)[Pk|k_1 — WS W]

l/k(l) = Zk(l) - H)A(k (5)
nk
of all n;, candidate measurements. Compute + W, Zﬁ(&)uk(e)uk(e)T -l | WE (12
=1
Sy = HP,_ H" + R (6) for the estimation covariance. The third term in (12) is

often referred to as the “spread of the innovations.”
for.the innovations covariance of the true measurement ingeference to Fig. 3 may be helpful. The above sequence may
which be unfamiliar, and the reader is encouraged examine the deriva-
T tion in [2] and [3]. It should be noted that in practice, the pre-
Prp—1 = FPrqp 7 +Q ( dicted measurementis often enclosed by a “gate” whose volume
is proportional tdS;| and whose function is to reduce compu-

is the prediction covariance and is calculated separat(:t:gﬁon by ignoring any;.(1) for which 3(1) ~ 0. In theory, no

since it is alr.:,o usedina Ilatelr ste% . 5o 92t is necessary, and the modifications to the above if a gate is
3) Assuming that;, > 0, calculate the association probayseq are fairly straightforward.

bilities
(1= Py s . C. PDAF-AI
B(6) = ¢ P, V 278k, - ©) As discussed earlier, it has recently been shown [3], [8] that
the use of amplitude information can be of significant benefit to

oo~ (/D@8 O 1 < g <y the PDAF

in which ¢ ensures thali* , #(8) = 1. Here 3(6) is the Assumption 2:In the PDAF-AI, we have the following.
posterior probability that measuremeis from the true 1) The observatio®, = {zx (1), ax(l)};2,. Thez,(l)s are

target;3(0) is the posterior probability that all measure- s in Assumption 1; now; (1) is the amplitude associ-
ments at this scan are Spurious' ated with thdth threshold exceedance at séan
4) Use thesg@s to form a synthetic “innovation,” and updateThis replaces item 1 of Assumption 1. O

the track according to That is, instead of “measurements” consisting simply of the

locations of threshold exceedances, these are augmented by in-
X = FXp_qjpm1 + Wi (9) formation as to how much the threshold was exceeded. Thus,

it may be expected that a strong target return would be more

in which recognizable as such than if this confidence information were

thrown away by the detector, and in fact, this is so. It is inter-
Wi = Pk|k_1HTS;1 (10) esting that the PDAF structure is little altered by the presence of
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amplitude information; the only change is to the calculation of The “prior” probabilities Pr(H) and Pr(K) are not

the gs. In fact, we have that (8) is replaced by well-posed; the latter amounts to the probability that a target
_ is located exactly at the test's coordinates,(!) given the
CT\/DWSH, 6=0 prior tracking information, and this is zero. If a sampling
8(6) = ¢ grid of resolution cells is available, then the quantity can
ce— /2078 v (8) <M)7 1<6<n, be calculated, but since the answer is configuration-spe-
fo(ax()) 13) cific, we prefer to avoid this and simply note thRt(kK)
in which fo(-) and fi(-) are the probability distributions \/D;—SJ e~/ @ and Pr(H) o (1/V),

of measured amplitudes;, respectively, under false-alarmyhereV is the volume of the validation region. Therefore, we
and true target hypotheses and conditioned on the event thgle

the threshold has been exceeded. Because the locations and Pr(K

the amplitudes are independent, the posterior probability Pr(¥) o e~ /DTS e () (17)
3(6) should be multiplied byfo(-) (for & = 0) or f1() (for Pr(H)

1 < 6 < ng). Itis often convenient to express quantities ifn which

terms of dimensionless likelihood ratios, and hence, we divide

all probabilities byf, and renormalize to get thef, / fo) factor (1) = za(l) — HF X151 (18)

in (13). Replacement of (8) by (13) is the only operational o i

difference between the PDAF and PDAF-AL. This extends {8 25 before thespatlgl mnovat.lon of thelth measgrement at
the PDAF-BD and PDAF-BDAI; although the signal processing™® k, andx;_, ., is the estimate of the state given data up
(meaning the thresholding) is different from either PDAF d scank — 1. It should be noted that the prior probabilities are of
PDAF-AI, the only variation with regard to tracking is agair{'solatedtests, meaning that each observation is tested separately,

in the calculation of thess. In the following, we show how to which is fair.

form these Atany rate, from (14)—(17), we have, with reference to Fig. 1,
' the test
[ll. DEVELOPMENT OF THEPDAF-BD AND PDAF-BDAI I>& ot 1
A. Statistical Testing ar(l) < v ()78 () + - (19)

H 2p
We assume that a test of absence or presence of a targgf, ¢ g),, is a tunable parameter, meaning that the proportionality

locationz; () is to be performed. Hypothesi is that there is in (17) has been absorbed within it.

no target at locatiom; (1) and, hence, that the measured return

is due simply to noise. Hypothesls is that there is indeed aB. Probabilities of Detection and False Alarm

target at !ocatlorz;?(l) and, _hence, that the return is dge oa In the case of the PDAF and PDAF-AI, the probabilities of
combination of noise and signal energy. That is, we write . .
detection and false alarm are straightforward and do not depend

H: f(a(])=c O (14) on location. The PDAF-BD has a location-dependent threshold,
1 and hence, these probabilities are easy only as conditioned by
K: fla(l) e (/Fe) (15) »—both are more probable for smallermeaning that it is more

_ ) ) 1+ _ ) likely to see a threshold exceedance closHI0X;, _;|;—; than

in which ax(I) is the corresponding amplitude (magnipne further away. At any rate, it will be useful to have the un-
tude-square output of a matched filter, with a Swerling | targgbnditioned quantities, and these can be calculated as follows.
fluctuation model implicit), andp is the SNRe The usual 1) petection: Via the testand threshold of (19), it is possible

implementation is according to the Neyman—Pearson criterighcslculate the overall probability of detection as
[13] that the probability of detection be maximized subject

to a constraint on the false alarm rate, and the resulting test Py = / Pr(detection|v) f(v) dv
can easily be shown to be a comparisonagf!) to a fixed

threshold. From the Bayesian viewpoint, the appropriate testis  _ /e—(1/(p+1))[(n+1/2n)vTS*‘v+n1 1
K V27 8|
<L cor D/ (140) :> fic(ar()) > Pr(H)[cxn = el s
1+p fra(a(D)) H Pr(K)[carx — cx k] 1 . i
16 _ o=/ (140) / o~ W2 o/ (S MY gy,
in which V27|
Pr(j) hypothesisi(e {H, K}); n./2
f;(-)  pdf given hypothesig; = <L) e~/ (P ) (20)
Cij cost of making decisionwhenj is true. P +1 . ) ) )
We note that these costs are not easily available. by averaging over all possibleue innovationsy. Here,n, is

the dimension of the measurement [i.e.yaf see (1)].

2In the formulation given, it is apparent that the returns are assumed perfectlyz) False Alarm: In the PDAF (and PDAF-AI) false alarms
prenormalized such that the target-absent mean is unity. If some other target- ’

model—such as a CA-CFAR distribution—is desirable, then the succeeding f&€ assumed to be generated by an Unqerly'ng POIS_SOH point
velopment must be modified. This modification is straightforward. process, and hence, we have the probability mass function (pmf)
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. to PDAF
of the number of false alarms in a measurement space volu T r T T T ¢

V as PDAF-BD < >
[ threshold

M e to PDAF-AT
R

m!
>

p(m) = (21)

PD&F
threstiold

A

in which A is the average number of false alarms per unit volun
for the (fixed) thresholding used. The expressioryfds neces-
sary in the evaluation of thgs. The above is so simple that it
may seem strange to devote much space to it, but in the cas
the PDAF-BD and the PDAF-BDAI, the number of false alarm

is controlled by the detection thresholding, and hence, the ¢

swer is not straightforward. S

For the PDAF-BD, we cannot rely on the same homogeneq | roee

Poisson point process since the spatially varying PDAF-Bo <
threshold may (for small’) be below the spatially invariant Fig. 4. lllustration of the underlying Poisson point process (with spatial
threshold assumed by the PDAF and PDAF-AI. As such, w@nsity \) as it applies to the four tracking algorithms. Input to the PDAF

propose the following. consists only of locations of exceedances of a spatially invariant threshold;

put to the PDAF-AI is similar, but amplitudes also are reported. Locations of
Assumptlon 3:There exists an underlylng homOgeneou(g(ceedances of a spatially varying threshold are passed to the PDAF-BD, and

Poisson point process with spatial densityTo each event in the PDAF-BDAI has, additionally, the corresponding amplitudes.

this new process we attach an amplitude with a unit exponential

distribution, and each amplitude is independent. O
Let us suppose that amplitudes from the events from tr]

new Poisson point process (with spatial densijyare tested

against the threshold with only those which exceed being

kept and those whose amplitudes lie belodiscarded. Itis easy

T T to PDAF-BD

P
>

A

/J%X

I to PDAF-BDAT

P
>

to a volumeV integrates approximately to unity, provid&dis

ge. Now, assume that the underlying Poisson process has gen-
eratedn points in the voluméd’. The probability that there are
m threshold exceedances (false alarms) is binomial with mean
nP;.. Thatis, we have for the probability that there aidalse

to see that the result is also a Poisson point process, this ti Srms
with spatial densityA = Ae~". This thresholded Poisson point
process (with spatial density) is that which generates false oo n! B (Xv)n v
alarms for the PDAF and PDAF-AI; the unthresholded Poissan(m) = > _ m(ﬂe)m(l —Be) T e
point process (with spatial densify) models the input to the n=m " ' '
PDAF-BD and PDAF-BDAI, but it is important to realize that (;'\the)m v 0 XV) l
thesameaunderlying Poisson point process is assumed. The hier- = ¢ Z Il (1= Pie)
archy of clutter-generating Poisson point processes is sketched =0
in Fig. 4. 3 mo

Now, for a given event from the underlying Poisson point = % eV e (23)

process (with spatial densily, the probability that it is reported

to the PDAF or PDAF-AIl, meaning that it exceeds the threshoid which 7. is given in (22). Comparing(m) of (21) tou(m)

7,is P« = ¢~ 7. For the PDAF-BD or PDAF-BDAI, the corre- of (23), we see that for the PDAF-BD, the number of false

sponding probability is alarms in avolumé&” is again Poisson but with a different mean:
AV for the PDAF and

P, = / Pr(threshold exceedanieg f(») dv
v

AV Pr. = Ae™ ", |27

1 S‘ (24)

_ / —(p+1/2000 7S vy 1 d,, “
for the PDAF-BD. We note that the above expressions relate to
the special case of the nonuniform false alarm process generated

p + P A by the PDAF-BD threshold. There is a more general treatment
‘ of these in [10] and [11] from which an alternative derivation of
\/ p + p+1 (22)—(24) is possible.
e W2 /(e 1)S) e gy,

C. PDAF-BD
~ 1 ooy P S‘ (22) The impact of 'the .spatially varying detection thresho!d on
p+1 PDAF-BD operation is only through the posterior association

probabilities. In accordance with the standard PDAF nhomencla-
if the volumeV is sufficiently big. [The parametey is from ture, we refer to these as this, in which3(8) is the probability
(19).] The last step in (22) follows from the identification othat measurement; (#) is target generated (and all others are
the integrand as a Gaussian density function whose restrictatter), whereag(0) is the probability that all measurements
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are clutter. It is shown in Appendix B that we have 1 . ; ,

LN I
¢ 0 00 true trajectory
p of @9 om + PDAF-BDAI
- o PDAF-A|
eAe 2m p+1 Si o PDAF-BD
4k 0 PDAF i
p6) = RN ‘
. <p ) e/ _ 1| p=0
p -2 ]
c 1<6<n. £ ]
(25) &
in which ¢ is a constant such that ;= , () = 1. Thisisre- -t 1
markable and simple3(d) is a constantThe anomaly is pre-
sumably due to the fact that a spatially “surprising” measur -5; ]
ment must have had a larger amplitude to exceed its threshc
Here, the effects of large amplitude and large distance fromp - % 7
dicted position (prior information) cancel out each other ar
make a constant weighting. oo 4000 2000 0 2000 4000 5000 8000
x coordinate
D. PDAF-BDAI Fig. 5. Example of track withh = 12 dB, A = 105 m~2, ¢, = 0.07,

. . = 100. The PDAF loses track early; the PDAF-BDAI, PDAF-AI, and
Here, both locations and amplitudes of events that exceed ﬁ‘&\,:_BD hold track for the full 100 Scan);.

(spatially varying) threshold are reported. As for the PDAF-AI
and PDAF-BD, the only algorithmic impact is through the. N
Assuming the innovation of measureméiig 1, (¢) and that the I (1) and (3). Measurements are of position only, and the model

corresponding amplitude is,(6), it is derived in Appendix A is in all respects linear/Gaussian. True detections are generated
that we get along with an associated amplitude; thresholding of this ampli-

tude determines whether or not there is a miss. We then have
some notes and parameter values:

* We have chosem\t = 30 seconds, which is a fast but
not-unreasonable scan rate for active sonar.
<i1>":/2 /) 90 « We choose a track length = 100 scans of data.
p N » Tracks are initialized by two-point differencing. This
S common track-initiation technique means that tracks are
e P/ et )er @)=/ (078, () 1 < 9 <y, begun with two points for which there is no association
(26) uncertainty: Position is initialized for the second and
where, as beforec is a normalizing constant such that  velocity by the difference, with the associated initial
Dot B(0) = 1. uncertainties easy to derive and given (for example) in
[2] and [4].
IV. COMPARISON Targets begin their trajectories at sdaa- 0 with position coor-
In this section, we compare the PDAF, the PDAF-AI, th inates (0, 0) and velocity coordinates (5, 5) m/s, corresponding

PDAF-BD, and the PDAF-BDAI; there is little alternative but c')tlst.'?)rl:nsts'. 'g‘ntYE"C:?'_Bb”t somewhat self-serving—tracking
that the basis be simulation. For these simulations, we cho&%’l lon IS given In F1g. . .

the common two-dimensional (2-D) kinematic model with di- ost studies of tracking performance are parameterized by
rect discrete-time process noise [2]. Accordingly, we have Iy and by the clutter return densify. In this case, we cannot

use the former since for the new approagh,is not constant;

4

(14 p)Ay /|27 Sk

p+1
po)=

1 At 0 O hence, we use the SNRinstead. Each of the schemes takes as
0 1 0 0 1 0 0 0 a parameter the detection threshold, given simply bigr the
F= 0 0 1 At H= { 0 0 1 0} PDAF and PDAF-AI, but in a more implicit fashion hyin the
0 0 0 1 PDAF-BD and the PDAF-BDAI. We have no particular insight
CAR AR . a_t present as to hovyshou_ld be ch_osehhence, we adopt the
= == 9 0 simple and presumably fair expedient that the aggregate proba-
2 bilities of detection for all four schemes be the same. This means
A_t?’ A#2 0 0 that we have
Q= Uz% ? 4 3 R =0, { (1) (1) }
o o At ar n=—(1+p)log[Pa((p+1)/p)"""] (28)
4 2
0 0 A_tg At? SThis would be the subject of further research. There is corresponding insight
N 2 / for the PDAF, but results appear to date to be more theoretical than applied, and

(27) there are no results for the PDAF-AI.
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from (20), in which P, = ¢ 7/(+7) for the PDAF and '® PETEE LRSS
PDAF-AI, as given by the Swerling | assumptidithe explicit "‘\
appearance af here amplifies the fact that independent specif
cation of A may be incompatible with.,,, which is the standard

deviation of the measurement error for each dimension. The
is, in fact, throughv,,,, an implied resolution cell grid at which
threshold exceedances are interrogated, and, for exam
A = 1072 m~2 (a false alarm every0> m?, on average) and

om = 100 m (al.44 x 10 m?resolution cell) makes very little

sense indeed. Thus, we have adopted the convention that

g

In-track percentage
2

T = —log[1202 )] (29)

]

with the intuition that resolution cells be square and of sic 3}
V120,, with the “12” arising from the implied uniform distri-
bution of a target within a resolution cell registering a hit. Ed
For the theoretical development of the PDAF-BD an
PDAF-BDAI, it was convenient to posit an underlying *f
false-alarm Poisson point process having spatial densityd A .
associated amplitudes that have a unit-exponential distributic % PR s Iy 0 12 1818 20
see Assumption 3. Now, since= Ac” (A is the clutter spatial SNR (8}
f:iernzl.tyTLoerréh?sPn[z)A'r:rzéltt:eerrlli:t?(l;atl?Qb:;;]h%\t/ict:f? nthtzg qk;ﬂttet Fig. 6. |n-trfack riezzrcentage(outof 500 Monte Carloruns) as afunction of SNR,
g p ; hith X = 10-° m—2 (for the PDAF),0, = 0.01, 0, = 100. The behavior of
implementation can be very slow indeed. Thus, since the lowest two amplitude-dependent algorithms for high SNR appears to be a Monte
detection threshold value for the PDAF-BDrig< ), we adopt Carlo artifact.
the equivalent expedient that the underlying Poisson point
process has spatial density= \e”~". For each clutter pointso s . ; .

PDAF-BDAI -
PDAF-Al

generated, we also form an amplitude variate with distributiol ,
70F A
— e ,
R a /
fla) = { ’ (30) &} PDAF-BD o
0, a<n - - - PDAF /
!

o
=3
T
I

which is thresholded using for the PDAF and PDAF-AI and
using (19) for the PDAF-BD and the PDAF-BDAI.

First, we explore the relationship between the in-track pes | !
centage and SNR. A simulation is judged “in-track” if at theZ ol /
end of 100 scans, the true and estimated positions are less t K
\/5(10cfm) apart? It is clearly shown in Figs. 6 and 7 that | K
the PDAF-BD offers considerable improvement with respes ,
to the original PDAF, and its performance is close to those « ;| , )
PDAF-Al and PDAF-BDAI. Further, the PDAF-BDAI outper- / .
forms the PDAF-AI, at least at the operating point chosen. Tt s ; ‘ ‘

ordering is particularly apparent in Fig. 7, inwhich the situatio. ° °  *  °  ° R ¢ ® 0%

is of a more maneuvering@,,) but better observeds(,) target
Fig. 7. In-track percentage (out of 500 Monte Carlo runs) as a function of

than in Fig. 6. i SNR, withA = 106 m~2, 0, = 0.1, 0, = 10.
From Figs. 8 and 9, we find that the performance of the PDAF

degrades significantly whek or ¢, increases, with less of a

problem for the other algorithms. Presumably, this is due to thelatively high SNR£12 dB), meaning that all three other algo-

rithms can maintain track via their respective uses of amplitude
4Although there is guidance—for example, see the concept of the tracker Rformation
erating characteristic (TOC) in [3]—for the choice of detection threshaitia ’ . .
particular SNR in the PDAF, there are no generally accepted prescriptive rulesNOW, we compare the performance of four algorithms in

Consequently, for the PDAF, and indeed in the PDAF-Almay be thought different situations. The results are given in Tables | and I,

of as a design parameter. In the case of the PDAF-BD (and PDAF-BDAI), t : .y -
quantityn may be assigned the same role. The selection in (28) is just one p?)%—SpeCtlvely (Of then trackpercentage and traCkmg RMSE, the

sible choice: one that we hope is fair. former is generally accorded higher importance). From Table |,
5There are many possible criteria for judging a track “lost,” but since a traske observe that the PDAF-BD has tracking performance

loss amounts to a burgeoning instability in the algorithm, for the most part, thgjetween that of the PDAF and PDAF-Al. which is generally
decisions are the same. In this case, a track is considered lost if the estimatiora ifvinal | he | h ’ he f Th
error is greater than ten times the measurement standard deviation per dinfHiC gratifyingly closer to the latter than to the former. e

sion. PDAF-BDAI has the best performance.

ack percentage
B
(=]
1
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TABLE |
- N T 3 X T Y IN-TRACK PERCENTAGE FORVARIOUS SITUATIONS. THE LAST FOUR
2o B PR \ COLUMNS REFER TO THEPDAF, THE PDAF-BD, THE PDAF-AI, AND
o -- ~e TN / R TR S PDAF-BDAI, RESPECTIVELY
\ RO
Iy ’ om | op | p(@B) ] A | Pp | BD | a1 | BDAI
w : 10 | 01 6 10-55 o | o 0
* 10 | o1 6 0% [ o oo 0
E“l A ] 10 | 01 6 10765 [ o 0 (] 0
Y 10 | 01 6 107 | o | o | o 0
\ 10 | 01 12 10-55 | o 0 0 0
Em- el o 1 10 | 0.1 12 108 0 0 0 0
\‘-/'! \.\ 10 | 01 12 10-83 | o 0 0 0
~. 10 0.1 12 10-7 0 0 0 0
B [—  poar-sonl N e 10 | o.01 1055 0o | o | 1 2
- ;B:;:g}; i / '\‘ 10 | 0.01 10'6 65 o | o [o 1
o | --- PDAF \\ ; i 10 0.01 107" (1] (4] 0 1]
Vo 10 | o.01 107 0 o 0 0
o5 " s 2 25 3 10 | 0.01 12 10-55 | 66 89 | 93 98
Py x0* 10 | 0.01 12 10-% 80 | 93 | 96 98
10 | o.01 12 10765 | 95 | 98 | 98 100
Fig. 8. In-track percentage (out of 500 Monte Carlo runs) as a function of 10 { 0.01 12 10-7 97 94 98 94
with SNR = 12 dB, o, = 0.01, ando,,, = 10. 100 0.1 6 10-5-5 ) 0 5 15
100 | o1 6 10-¢ 0 0 10
B e N TR L TR S SR 100 | 0.1 1065 0 0 2 8
SN T | 100 | 0.1 107 [ o | o |1 3
of /7T T 1 100 | 01 12 (10335 o | o [s] e
/ S 100 | 0.1 12 106 (i 0 90 99
8o AN . 100 | 0.1 12 10-8-3 1 59 | 88 100
i . 100 | 0.1 12 10~7 19 | 83 | 81 97
.% - Ty i 100 | 0.01 10755 1 38 | 69 78
g Y 100 | 0.01 10-6 11 | 67 | 70 86
g ol v i 100 | 0.01 10785 1 22 | 70 | 70 80
< o 100 | 0.01 1077 3 | 82 | 71 88
sl — PDAF_BDAI \\\ A | 100 | 0.01 12 10755 1 6 | 61 | 97 | 100
---  PDAF-A . 100 | 0.01 12 10-8 42 | 96 | 97 100
o EBQE'BD T 100 | 0.01 12 10785 | 61 | 98 | 97 100
or N 100 | 0.01 12 1077 67 | 100 | 92 100
30‘I 0 2‘0 3‘0 4‘0 5‘0 E;O 7‘0 8‘0 9‘0 100
% rate. If thereis some information flow from tracker to detector,

particularly in terms of predicted measurement location and
association confidence (innovations covariance), tigayasian
detector is appropriate. The difference is not in the statistic

. . tested, but rather in the threshold. In fact, assuming that
The tracking error is the RMS@ver the whole tracfor those . the prior probability is Gaussian (which fits with the PDAF

simulations in whichall the algorithms keep in-track at their . :
o . . a§sumpt|ons, hence, our use of this model), the threshold
conclusion; naturally, inclusion of those tracks that become Ias . . . X X
. . IS" proportional to the normalized innovation and, hence, is
skews the results well beyond interpretability. From Table“’wl%west near where a detection is expected (at the predicted
can see that the PDAF-BD has lower RMSE than PDAF inmogt" 00 1 P P
situations. The PDAF-AI and PDAF-BDAI are comparable in . ' .
this reaard and have the best RMSE In this paper, the threshold shape has been derived, and appro-
9 ’ priate modification to the PDAF—we call it the “PDAF-BD,”

for BayesDetector—is made. Simulation has revealed that the
performance of PDAF-BD is considerably better than that of

The usual target tracking model is of separation betweéime PDAF and is often only slightly degraded relative to the
detection and tracking subsystems. In the absence of informatRIDAF-Al, which is that version of the PDAF appropriate to
from the latter, the former has little choice but to do the besansmission from detector to tracker of full amplitude infor-
job it can. It provides Neyman—Pearson optimal performanamation forall returns. One perhaps remarkable feature of the

the most powerful test subject to a constraint on false-alaf®DAF-BD is that the posterior association probabilities (that

Fig. 9. In-track percentage (out of 500 Monte Carlo runs) as a function,of
with A =10~ m=2, ¢, = 0.01,SNR = 12 dB.

V. SUMMARY
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TABLE I from the PDAF to PDAF-AI). Accordingly, the PDAF-BDAI

RMSEFOR VARIOUS SITUATIONS. RMSE Is CALCULATED OVER THE WHOLE outperforms the PDAF-AI in almost all situations studied.
TRACK BUT ONLY FOR THOSE SITUATIONS FOR WHICH THE TRACK IS

MAINTAINED UNTIL THE FINAL SCAN. A BLANK MEANS THAT NO RELIABLE We offer these further notes.
TRACKS WERE REPORTED THE LAST FOUR COLUMNS REFER TO THEPDAF, e This study has focused on extension of the PDAF to in-
THE PDAF-BD, THE PDAF-AI, AND THE PDAF-BDAI, RESPECTIVELY . . . . . .
corporate Bayesian detection. The Gaussian distributions
om | op | p(@B) | A [ PD | BD | Al | BDAI assumed by the PDAF mesh well with Bayes detection,
10 | o1 P 10-55 | — 1 — 1 — — as has been seen. However, there exist other tracking al-
10 | o1 6 10-6 P SR - gorithms, and there is no reason why the Bayes detection
10 | o1 P =68 | — 1 — 1 = — idea could not be applied to them.
10 | o1 8 07 — T — 1 = — « Since, in effect, only detections close to the predicted mea-
10 | o1 12 10-55 | — | — | — — surement are allowed, the PDAF-BD is less of a computa-
10 | o1 12 106 — T 1T — tional load than the others. This might be considered an in-
10 | 01 12 1068 1 — | — | — — telligent “gating” mechanism, and certainly relatively few
10 | o1 12 10-7 T — — threshold exceedances are registered. Thus, the Bayesian
10 | o.01 P 10-58 | — | — | — — detector idea may fit nicely with data fusion in which data
0 | o.01 6 w0t |l — 1 _-T1T= — transmission requirements (from detectors to tracker) may
10 0.01 6 10—6.5 — —_ — — be Strict.
10 | oo1 6 10-7 — T 1 _ — e As far as we are aware, there is at present no detection
10 | o.01 12 10-55 | 26 2 71 ") system that allows nonconstant thresholding, at least not
10 | 0.01 12 10-8 28 27 v %% on the scale proposed here. Thus, this work is several gen-
10 | 0.01 12 10-55 1 25 | a3 po = erations ahead of its platform.
10 | o001 12 To-7 32 | a2 | =1 oy « While there is guidance in this regard (see [3]), the choice
100 | 01 6 =55 | — 1 — | — — of the detection threshold for the PDAF is something
100 | 01 6 10-8 I — — of an art. In the PDAF-BD, there is no fixed detection
100 | 01 6 10-986 | — | — 1 — — threshold, but, perhaps unfortunately, there is a tunable
100 | 0.1 P 10-7 — — — — parameter; whose role is similar. Exploration of the effect
100 | 01 12 10-55 | — | — | — — of n on tracking performance, and indeed of its robustness
100 | 01 12 08 | — | — 1 — — with respect to;, has not been explored in this paper and
100 | 0.1 12 10-65 | 252 | 272 | 155 | 185 should be considered a suggestion for further research.
100 | 01 12 107 | 274 | 242 | 1901 206 Future work on the PDAF-BD and its underlying ideas
100 | 0.01 s 0-55 | — | — _ T should include the incorporation of target maneuver, its use for
100 | 0.01 6 10°% | 382 | 230 | 137 | 177 multiple targets, and its development for multiple sensors and
100 | o.01 e 10-%5 | 197 | 176 | 142 166 data fusion. An additional concern is that the feedback between
100 | 0.01 6 10-7 | 287 | 310 | 228 | 263 tracking and detection may render the decision process of track
100 | 0.01 12 10-55 | 102 | 168 | o5 o7 acceptance/rejection more difficult than for the PDAF and
100 | 0.01 12 1078 | 141 | 129 | 94 96 PDAF-BD since in those cases, the quantity and locations of
100 | o0.01 12 10-55 | 137 | 105 | 99 101 false alarms are arguably independent of the track estimation
100 | 0.01 12 10-7 | 125 | 108 | 104 106 process.
APPENDIX A
a given threshold exceedance is target-generated rather than a PDAF-BDAI

false-alarm) areniform and independent of location. This is  \qdification on the PDAF to any of the other algorithms
in distinction to the PDAF behavior in which closer (to the eX(PDAF-AI PDAF-BD, and PDAF-BDAI) discussed in this
pected target location) returns are accorded a higher postefigher requires only a reformulation of the posterior association
association probability, and it presumably arises from the SR%obabilities—these are thés of (8). No other filtering steps
tially varying detection threshold, whose implication is that geeq to be modified. In this appendix, we derive the for

more-distant measurement must have hadahigheramplitudm@ PDAF-BDAI. Results for the PDAF-BD are found by

order that an exceedance occurred. stripping away the amplitude information and are presented in
Through its use of a spatially varying threshold, théhe succeeding Appendix.

PDAF-BD can be thought of as exploiting amplitude informa- Assuming that at the present scan we hayes {0, 1, ---}

tion, as does the PDAF-AI, with this confidence informatiothreshold exceedances, then according to [2], we define the

implicit and never requiring transmission. The PDAF-Akventsé € {0, 1, ---, n;} such that¥ = [ means that the
outperforms the new PDAF-BD, but it appeared appropriatth measurement is target generated and that the others are
to develop the PDAF-BDAI, which is the extension of thdalse alarms, and = 0 means that all measurements are

PDAF-BD in which amplitude information (that is, the amounfalse. We denote by}(#) the probability, conditioned on all
by which the detection threshold was exceeded) is explicithgeasurements in the current scan (and naturally, implicitly, on
transmitted from detector to tracker (an extension parallel to that), thaté is true.
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We first require the conditional observation probability den- i
sities | b v X €xXp <_ Z(ak(l) —((p+ 1)/2p)1/?S,:11/1 — n))
=1
fDl6 =1, ng = m) = ——— ~WDOTST @ m
\/ |27rSk|
(31) . n
and forp # I, we have (32), shown at the bottom of the page, = | ——= exp <— > (aw(l) - 77)) (34)
where (22) is used aBr(threshold exceedance®i(l)). This or P Sk‘ =1
is particularly interesting; under the new detection model, any pt1

randomly chosen false alarm has a spatial Gaussian distribution. o _ _
For the standard PDAF model, this probability is, naturally, unftom (32) and the fact that i is unit exponential, then
form.

Let us denote, = {14(1), 14(2), - -+, 1i(nx)} anddy, = Fa) -u(a— 1)
{ax(1), ax(2), ---, ar(nx)} as the full respective innovation flala>7) = TPras 1)
and amplitude information available at théh scan. Let us also
definer; andaj to be, respectively, the innovation and return _e"ufa—T)
amplitude for thetrue target; note that it is not known to the N e~7
tracker which return is true, and in fact, the true return may be :6—((1—7)“(@ — 7).
missed (below threshold). For the c#se 0, we have the joint
probability Two other ingredients are the straightforward binary expres-
sions
9—0 l/k,ak,nk— )
- JJ sl =0 =i i Pr(6 = Ol = m, v}, a)
x Pr(6 = 0lny, = m, vf, af,) Pr(ng = m|vy, af) -1 <az < %1( Sy _|_77> (35)
x f(ur, al) du dag, (33) P
and

which is a joint probability (density) of mixed type, involving
both real and discrete random variables. One ingredient to (33)Pr(nx = m|vf, a})

is « _p+1
— )T (a < 2 D)8 i+ )

1
+ p(m = DI <az > p2—; W), i + 77) (36)

f(ljka Eik|9 =0, np =m, Vltv ai)

= f(P, @l = 0, ny, = m)

m

in which I(+) is the indicator function, unity if its argument is
1 true, and zero otherwise. The last ingredient is the product for
= — the explicit pdf of the innovation and return amplitude from the
5 true target:
7 Sk

p
p+1
L cmamepTsiv L @i/t

><exp< p+1 /2p Z”k TSk Vi )) f(l/ltv aZ) = W . m

(37)

Pr(threshold exceedancesi(!)|event atz, (1)) f(zx (1))
Pr(threshold exceedancesi(l))

e~/ 200 (7S, = . L

v

f(z1(D]f =p, np =m) =

2

1
V [ Sk

p+1
b —/2n0 6/ )8 T 32)

27

p+1
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Substituting (34)—(37) into (33), we get

p(0 =0, D, Gy, ni =m)

m

=| ——| e <— > (ar(l) - 77))
P =1
Il

S,
+1 "‘

1
X //u(m)I <az < %(l/k)TSk Vi + 77)

L —aepTsy

[y

—— =@/ ot dut

X
V|27 S| I+p
1 m
= > exp [ = (ax(D) =) | n(m)
|27 S| 1=1
p+1
/ o= (1/2))7S
|27rS
( o~ W/ W) (p+1)/20) (07) TS~ uz+n1) vy

m

o 1_6—?7/(1-1—/7)/;6
V|27 S|

m

~(H)/20) ()T S0} d,,;;]

2

p+1

n./2
N 1_<L) /) |
p+1

Consider now the case thét# 0. Let us definer,, anday
such that(Zy, v}) = ok, and(ax, a}) = di; that is,7, anday
are from the false alarms. We again seek

(38)

(6, Py, dy, np =m)
= p(0, vr, i (0), a, ar(6), ni = m)
= f(Dn, ax|0, np, = m, 15(0), ax(8))
x Pr(6]6 # 0, ny, = m, v(9), ar(6))
x Pr(6 # 0[(6), ar(6), nx = m)

x Pr(ng = m|vi(9), ar(0)f(1(9), ar(8)).  (39)

27

As before, we have the ingredients

f(’>k7 CNLk|97 g = m, ’/k(e)v ak(e))

m—1

1
= e Y [ —nl (40)
o 14 S, 1=1,1#£6
p+1
and
Pr(610 # 0, mx = m, (0), ax(6) =~ (41)
m
and

Pr(0 # 0| (6), ax(0), ni, =m)
=1I <ak(9) > prl L/k(e)Tszll/k(e) + 77) . (42)

Repeated from (36) and (37), we d&at(n;, = m|vi(6),
and f (11.(6),

ax(6))

ax(0)). There is no need to integrate, so we have

p(97’7k7 C_ikvnk = m)

m—1
_ 1
2 Sk
7Tp + 1 k
m 1
xexp | = > [a(D) —n] | —p(m—1)
I=1,1£6 m

1 a/2unes?

>< —
\/|27rSk|

L —(an(®)/to).
14

(43)

Putting (38) and (43) together, and using formula (23) for the
false-alarm pmfu(-), we have the expression shown at the
bottom of the next page.
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Thus, we get (26); that is Now, for 6 # 0, we get
p(0, Uk, i = m)

= /f(9, g, v(0), ar(8), ng, = m) day(6)

e\ ) - /f(;)k|9, n = m, v(6), ax(6))
< ; ) o ] =0 X Pr(8]6 # 0, ni. = m, v(6), ax(6))
x Pr(6 # 0|vi(6), ap(6), ni, = m)
x Pr(ng = m|(60), an(6)) f (1. (0), ar(8)) dar(6).
(46)

The above terms are similar to those in the previous Appendix.
Thus, we have

4

27

c(1+ p)A Sk

P
p+1

B(6) =

[ ¢ e/ (Pt D)ax @)=/ 2m O TS (0) | < 9 <

in which ¢ is a constant such that ;% , 3(6) = 1.

APPENDIX B -
PDAF-BD p(6, 7, my, = m)
m—1
In the previous Appendix, we derived the posterior associa-
tion probabilities (the3s) for the PDAF-BDAI. It is a simple  _ / 1
matter, in this Appendix, to remove the amplitude information o
(Al). We have 27 ) Sy
p(60 =0, P, il B
o 1) X exp (—«p +1)/20) S m)'S; wa))
//f |0 =0, np =m, vj, a},) =1, 156
1 p+1 Tg-1
x Pr(6 = Olny, = m, 1}, a})) x —p(m = 1T <ak(9) > =5, 07 Sy wl0) + n)
x Pr(ng = m|vf, o) f(v], ay) dvf daj,.  (44) 1

« o (/2 ()78 () 1
\/ |27rSk| 1+ P

There is little difference here from the previous Appendix, ex-
x ¢~ (@ @/ A+P) go, (0)

cept the lack of the amplitudeg.” Hence

m—1

p(0 =0, i, ni = m)

m 1
=—p(m—1)
0
2 Sk
_ 1 0 p+1 k
27 1 Sk m
p p—
xexp | =((p+1)/20) Y m(D)"Sg m()
p ne/2 =1, 16
x p(m) |1 — <—> =1/ (1+p)
i 1 —2m@ S )

=1

m X \/|27rSk|
) (45)

_ Tg-1
X exp < ((p+1)/2p) Z vi(D)* 8, (D) . o— (/D20 (TS w(@)+] (a7)

p+1

n./2
6_[ak(9)_"71mu(m) [1 — <L> 6_77/(1+/7)‘|

p(0 =0, P, dx, nx = m)

(6, Dy, Ay, np = m)

0 1 _ Ta—1 1
o Sel jfm — 1)t o~ ®TS (@) o= (@ ()/(147)
P L Py 1+p

p+1

oo/ (pH1))ar (@)= (1/2)vi (0)TS  vi (6).

n./2
(1 + p)A/|27Sk| [1 - <L> 677/(1+/7)]
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Putting (45), (47), and (26) together, we have

4(0)

and forf # 0

asin
unity.

(1]
[2
(3]
[4]
(3]
(6]
(71
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(9]
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n./2
— e <i1> e/ (+e) _q

p

(25), in whiche normalizes the sum of the probabilities to
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