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Abstract—In this paper, we consider a binary decentralized de-
tection problem where the local sensor observations are quantized
before their transmission to the fusion center. Sensor observations,
and hence their quantized versions, may be heterogeneous as well
as statistically dependent. A composite binary hypothesis testing
problem is formulated, and a copula-based generalized likelihood
ratio test (GLRT) based fusion rule is derived given that the local
sensors are uniform multilevel quantizers. An alternative compu-
tationally efficient fusion rule is also designed which involves in-
jecting a deliberate random disturbance to the local sensor deci-
sions before fusion. Although the introduction of external noise
causes a reduction in the received signal-to-noise ratio (SNR), it is
shown that the proposed approach can result in a detection perfor-
mance comparable to the GLRT detector without external noise,
especially when the number of quantization levels is large.

Index Terms—Copula theory, hypothesis testing, multimodal
signals, multisensor fusion, quantization, statistical dependence,
stochastic resonance.

I. INTRODUCTION

D ECENTRALIZED detection has long been an active and
important research area [1]. One of the earliest applica-

tions to have motivated research in decentralized detection was
distributed radar where it was essential to compress data at each
(local) radar before relaying it to a fusion center (see [2] and
references therein). More recently, decentralized detection has
found applications in sensor networks. Recent technological ad-
vances have enabled the deployment of multiple low cost sen-
sors to monitor a region of interest (ROI) for reliable detection,
estimation and/or tracking of events. Each sensor is usually pro-
grammed to send only quantized versions of its measurements
to a remotely located fusion center due to communication band-
width and power constraints. The fusion center then consoli-
dates receptions from all the sensors to make a global inference.
The design of a distributed detection system involves de-

signing the local and fusion center decision rules under different
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criteria and constraints [1], [3], [4]. Under the assumption that
local observations are conditionally independent given the
hypothesis, and the fusion center receives the local sensor
outputs without any loss, the optimality of the LRT for local
sensor decision rules under the Bayesian criterion and the
Neyman–Pearson criterion have been proved in [5] and [6].
However, the problem becomes highly complex when condi-
tional independence assumption does not hold. The LR-based
decision rules at the local sensors may no longer result in
an optimal system design [7], [8]. It has also been shown
that distributed detection with dependent observations is an
NP-complete problem; it cannot be solved using a polynomial
time algorithm [9], [10]. The problem is usually simplified
by constraining the local sensors to be binary quantizers. In
[11], Drakopoulos and Lee have derived a rule for fusing
correlated decisions under the assumption that the correlation
coefficients between the sensor decisions are known and local
sensor thresholds generating the correlated decisions are given.
Kam et al. [12], employed another approach, namely, the
Bahadur–Lazarsfeld series expansion of probability density
functions (pdfs) to derive the optimum fusion rule for corre-
lated local decisions. It was, however, assumed that the joint
distribution of sensor observations was completely known. In
this paper, we consider the scenario in which the dependence
structure and hence the joint distribution between the sensor
observations may be unknown. Such problems are typical of
sensor networks that consist of heterogeneous sensors, i.e.,
sensors with disparate sensing modalities. For example, it is
not immediately clear how one could model the complex rela-
tionship between observations of an audio and a video sensor
monitoring a common ROI.
The problem of binary hypothesis testing with heterogeneous

sensors has been considered in our earlier work [13], where we
developed a parametric framework using the statistical theory of
copulas. While designing the copula based fusion rule in [13], it
was, however, assumed that the fusion center has access to the
exact real-valued (analog) version of the locally processed data.
In many cases such as in WSNs discussed above, there could be
limitations on both the transmission power and the bandwidth
available for sensor-to-fusion center communication. It may,
thus, be necessary to quantize the information at each sensor be-
fore its transmission to the fusion center. Our goal, in this paper,
is to design a decision fusion rule based on copula theory, for
combining quantized heterogeneous information, thereby sig-
nificantly extending the formulation and results in [13]. We note
here that the application of copula theory for fusing correlated
decisions has been recently considered in [14]. The local sensors
were binary quantizers, and it was assumed that the true copula
function generating the data under each hypothesis is known a
priori, except for some parameters. In this work, we relax this
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assumption and consider the case when the copula function used
to model the dependence structure between the variables may
be “misspecified,” i.e., the chosen copula density may not accu-
rately characterize intersensor dependence. The formulation is
also extended to include multibit quantizers at the local sensors.
As will be evident later, one of the main limitations of

the copula-based generalized likelihood ratio test (GLRT)
for fusing discrete decisions is the considerable increase in
computational complexity as the number of sensors and/or
quantization levels increases. For example, a system with
sensors each with an -level quantizer requires the compu-
tation of -dimensional integrals, and optimization over an

-dimensional space for maximum likelihood (ML)
estimation of parameters associated with elliptical copulas
such as the Gaussian and -copula functions [15]. This issue
of computational complexity is also addressed in this paper,
and an alternative computationally efficient fusion rule is
proposed that involves deliberately adding external noise to
the quantized observations before fusion. We call this noise,
the low-pass filter (LPF) noise for reasons that will become
clear later. The approach completely eliminates the necessity to
compute the multidimensional integrals and greatly simplifies
the fusion rule. However, the reduced complexity comes at the
cost of the decreased signal-to-noise ratio (SNR) at the fusion
center. Thus, the key to the success of this approach is a “good”
design of the LPF noise, i.e., we need to derive the form of
the LPF-noise pdf that would introduce minimal distortion. We
present an approach based on Widrow’s additive quantization
noise model. Our approach is similar to Gustafsson and Karl-
sonn [16] who have considered the problem of estimating a
deterministic parameter in noise using quantized observations.
However, unlike [16], where the authors propose to inject the
artificial dither noise before quantization, we add the deliberate
disturbance post quantization, and at the fusion center. As we
show later, the addition of noise after quantization is equivalent
to low pass filtering in the characteristic function (CF) domain,
unlike dithering which amounts to anti-alias filtering [16], [17].
The paper is organized as follows. The problem is formulated

in Section II, and a copula-based rule for fusing dependent local
sensor decisions is derived in Sections III and IV. Section V ad-
dresses the issue of computational complexity associated with
the fusion rule derived in the previous sections. An alternative
computationally efficient fusion rule based on Widrow’s statis-
tical theory of quantization is proposed here. An illustrative ex-
ample is presented in Section VI to elucidate the theory pre-
sented in the previous sections. In Section VII, we identify a
class of problems for which the detector threshold can be deter-
mined to achieve a desired false alarm rate. We summarize our
paper and provide some concluding remarks in Section VIII.

II. PROBLEM FORMULATION

The problem of signal detection is formulated as a binary hy-
pothesis test where the hypothesis indicates the presence of
a signal, while indicates its absence. A total of sensors
are used to collect observations, , for . Ob-
servations at each sensor are independent and identically dis-
tributed (i.i.d.) over time with pdfs and
under and respectively, where and are distri-
butional parameters. We assume that these marginal pdfs are
well-specified under both hypotheses (see Definition 1 below).

Fig. 1. Distributed heterogeneous sensor network: A parallel architecture.

Definition 1—Well-Specified Model (White 1994): A para-
metric model is well-specified for a random variable
if there exists a unique such that

corresponds to the true density of . Otherwise, is
said to be misspecified for .
However, no knowledge is assumed regarding the depen-

dence structure between the heterogeneous data streams. We
approximate this dependence using copula functions (see
Section II-A below). Sensor observations are further passed
through uniform multilevel quantizers (see Fig. 1) before
their transmission to a remotely located fusion center. The
input-output transfer function of the quantizer at each sensor
is shown in Fig. 2. Thus, the quantizer output, during any time
interval , can be given as

(1)

where and correspond to the quantizer step size
and the number of quantization levels, respectively, at sensor .
Further, stands for the floor operation that denotes an integer
smaller than or equal to . The quantized value at sensor can
be represented with an integer
. In this paper, we do not consider quantizer saturation errors.
That is, we assume that the dynamic range of the (analog) signal
input to the quantizer is well within the lower and upper limits
of the quantizer.
Observations thus received at the fusion center are used to es-

timate the unknown model parameters, and a GLRT-based fu-
sion rule is employed for global decision making. In addition to
estimating the model parameters, the selection of copula densi-
ties is also embedded in the GLRT formulation and is thus per-
formed in real time. Sensor observations and hence their quan-
tized versions are assumed to be i.i.d. in time, and, our focus,
in this paper, is on designing a fusion rule that could exploit the
spatial dependence between sensor decisions for improved de-
tection performance.
Next, we briefly discuss the use of copula theory to approxi-

mate joint density functions.
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Fig. 2. Input–output transfer function of a uniform scalar quantizer.

A. Joint pdf Approximation Using Copula Theory

We begin with the definition of a copula function.
Definition 2: A function is an N-di-

mensional copula if is a joint cumulative distribution func-
tion (cdf) of an N-dimensional random vector on the unit cube

with uniform marginals [15], [19], [20].
The following theorem by Sklar is central to the statistical

theory of copulas.
Theorem 1 (Sklar’s Theorem): Let be an -dimensional

cdf with continuous marginal cdf’s . Then there
exists a unique copula such that for all in

,

(2)

Note that the copula function is itself a
cdf with uniform marginals as (by
probability integral transform). The joint density can now be
obtained by taking the order derivative of (2),

(3)

Thus, in (3), the copula density, , weights the product den-
sity, , appropriately to incorporate dependence between
the random variables .
Theorem 1 also admits the following converse, especially

useful in practice when the true distribution (and hence the
true copula ) is unknown. It allows one to construct a statis-
tical model by considering the univariate behavior of the under-
lying marginals and subsequently fitting the desired dependence
structure specified by some copula, say, .
Theorem 2: If are univariate marginal cdfs

and if is an dimensional copula, then the function

(4)

is a valid -variate cdf with marginals . A
copula based parametric model can be derived by taking the

order derivative of (4) to obtain

(5)

Some of the commonly used copula functions include the
Gaussian, Student’s t and those belonging to the Archimedean
family [13].
It is evident that model mismatch errors are introduced when

; i.e., the selected copula does not represent the true
dependence structure. This leads to suboptimal performance.
An important question then is, how does one choose from a
finite set (say ) of copula densities? As discussed earlier, the
selection of copula densities is embedded in the GLRT formula-
tion in this paper (see (14)). It may also be required to estimate
the parameters, , of the chosen copula function from the ac-
quired data. These parameters control the shape of the copula
function and can be estimated by exploiting their relations to
other nonparametric measures of association such as Kendall’s
or Spearman’s [15]. In this paper, we use a maximum-like-

lihood (ML) based approach known as the method of inference
functions for margins (IFM) [21] to estimate the copula depen-
dence parameters.

III. (MISSPECIFIED) GLRT-BASED FUSION OF SOFT
DECISIONS

In the following, we consider a two-sensor network for sim-
plicity.
Under hypothesis , the probability that the data

received at the fusion center at the time instant takes
a specific value is

(6)

where is the true but unknown joint pdf of un-
quantized sensor observations under . Now, approxi-
mating the dependence structure using a copula density

contained in some set of
valid copula densities, we have

(7)

where is the -dimensional un-
known parameter vector that will be estimated from the received
data, is the copula cdf and is the cdf of under
hypothesis . The dependence of on is not
made explicit for notational convenience.
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The likelihood function of the data under hypothesis
can now be written as

(8)

where is the two-dimensional Kronecker-delta function de-
fined as

otherwise.
(9)

The log-likelihood function of is, therefore

(10)

Similarly, the likelihood function of under , when a
copula density is used to
approximate the joint distribution under , can be derived as,

(11)

where

(12)

, is the -dimensional unknown
parameter vector, is the copula cdf and is the cdf
of under hypothesis . With (10) and (11), it is straightfor-
ward to derive the test to be employed at the fusion center

(13)

which results in

(14)

where and correspond to the copula func-
tions and , respectively, which maximize the terms
on the left hand side of (13), and is the time index. Thus, the
maximization in (13) is over the copula densities belonging to
a set of valid copula densities as well as the unknown mar-
ginal and copula dependence parameters. Unlike the classical
composite hypothesis testing formulation which would have re-
quired the knowledge of the true copula densities with possibly
unknown parameters, we allow for the case when the set
may not be inclusive of the true models and/or . Thus,

the copula functions, and , chosen after maximiza-
tion may still be misspecified. We, therefore, call the test a mis-
specified GLRT (mGLRT).

IV. EXTENSION TO SENSORS

The copula based fusion rule designed for a two sensor net-
work in the previous section can be easily extended to larger
sensor networks. Similar to (14), the fusion rule for sensors
can be derived as

(15)

where,

(16)

(17)

and,

(18)

(19)

Thus, the fusion rule involves evaluating -dimensional inte-
grals in real-time where is the number of sensors, i.e., the
computational complexity is exponential in the number of sen-
sors. This is in addition to the optimization over multiple di-
mensions to obtain ML estimates of the unknown parameters.
Application of mGLRT is, therefore, highly prohibitive as the
number of sensors increases due to the increased computational
complexity. We derive an alternative computationally efficient
test in the next section.

V. A COMPUTATIONALLY EFFICIENT FUSION RULE

In this section, we propose a computationally efficient ap-
proach that involves deliberately injecting noise to the quan-
tized observations before fusion (see Fig. 3). While noise is
generally perceived as an unwanted signal, interestingly, several
studies have shown that the addition of controlled noise could
in fact be beneficial in some cases. For example, dithering, the
process of adding noise to the signal before quantization has
been shown to improve signal quality and mitigate the artifacts
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Fig. 3. A controlled noise is added at the output of each sensor . The
approach greatly simplifies the fusion rule by avoiding the need to compute
multidimensional integrals.

introduced due to quantization [22]–[24]. Also, it has been ob-
served by many researchers that some types of signals get am-
plified by a nonlinear system when noise is added to the input
signal (see [25], and references therein). This phenomenon is
popularly known as stochastic resonance (SR). Here, we use this
approach of adding external noise to reduce computational com-
plexity rather than to enhance the signal-to-noise ratio (SNR).
Our approach is based on Widrow’s quantization theory which
we review next.

A. Widrow’s Statistical Theory of Quantization: A Review

The statistical theory of quantization was developed by
Widrow and co-workers [17], [26], [27]. They interpreted
quantization of a random variable as sampling of its pdf, and
showed that the pdf of the quantized signal is the convolution of
the input signal pdf with a rectangular pulse function followed
by conventional sampling. Thus, the pdf of the quantizer output,
, at sensor and at any time instant, , can be given as

(20)

where is the pdf of the random variable at the input ,
denotes the rectangular pulse function,

elsewhere
(21)

whose width depends on the quantizer step-size defined in
Section II, and denotes the impulse train

(22)

The “ ” in (20) denotes the convolution operation, and in
(22) is the Dirac-delta function. This process of convolution fol-
lowed by conventional sampling is popularly known as “area
sampling” [27]. Also, note that is also the pdf of a uni-
form random variable . Thus, quantization
introduces two “types” of distortions or errors: a) the additive
uniform noise (AUN) error, and b) the aliasing error due to
sampling.

Fig. 4. Illustration of the quantization process in the CF domain (a) CF of
(b) CF of , the sinc function (c) CF of (d) Repetition of CF of

; the CF of the quantized variable is given by the summation of these
repetitions after weighting each appropriately (see (24)).

The two errors introduced due to quantization can be better
visualized in the characteristic function (CF) domain. The CF of
a random variable is obtained by taking the Fourier transform
of its pdf

(23)

Taking the Fourier transform of (20), one obtains the CF of
output variable

(24)

where is the CF of the input and .
Note that (24) is different from the one in [17, p. 65, eq. (4.11)]
as we have considered amid-rise quantizer here instead of amid-
tread quantizer used in [17]. Fig. 4 shows the operations in the
“frequency” domain. Note that the central lobe ( in (24)

(25)

corresponds to the CF one would obtain by adding an indepen-
dent and uniformly distributed random variable to the input
. It is clear from Fig. 4 that, in addition to the error introduced

due to the addition of uniform noise, quantization also causes
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an aliasing error due to overlapping (and phase shifted) lobes of
. However, if the input pdf is band-limited so that
for , then the “frequency”-shifted ver-

sions of do not overlap and, in principle, the orig-
inal pdf can be reconstructed from the knowledge of .
This is Widrow’s first quantization theorem:
Theorem 3. (Widrow’s Quantization Theorem I): If the CF of

the input variable is bandlimited so that

(26)

then the different lobes in do not overlap, and in prin-
ciple, the original pdf (before quantization) can be re-
covered from the pdf of .
When for so that the derivatives of

computed at are not affected due to the overlap
of CF lobes, then the moments of can be recovered from
those of . This is Widrow’s second theorem.
Theorem 4. (Widrow’s Quantization Theorem II): If the CF

of is bandlimited so that

(27)

then themoments of can be derived from themoments of .
In the following, we assume that Theorem 3 (and hence The-

orem 4) holds, and derive a rule to fuse multilevel decisions
at the fusion center. We also note here that Widrow’s additive
model for quantization noise, and, hence the fusion rule derived
in the next section, is better suited for high resolution quantiza-
tion (See [28] and references therein).

B. Derivation of a Computationally Efficient Fusion Rule

As discussed previously, the high complexity in computing
the mGLRT statistic for quantized observations stems from the
need for computing multidimensional integrals. We propose to
simplify the fusion process by adding controlled noise to the ob-
servations received at the fusion center. The system is shown in
Fig. 3. An externally generated noise, , with pdf is
added to the quantized observations from each sensor before
fusing them for making a global decision. Denote the new ob-
servations by whose CF is given by

(28)

One can choose the noise source with a bandlimited CF to filter
out the repeated and phase-shifted CF lobes in . This is
analogous to low-pass filtering in signal processing. We, there-
fore, call the noise , the LPF-noise. As shown in Fig. 4(d),
an ideal noise source would be one with a rectangular CF in the
passband, , (also see Fig. 5). However, a rect-
angular function in the CF domain corresponds to a pdf whose
shape corresponds to a sinc function, an invalid pdf. Note that
this is similar to the nonrealizability of an ideal low-pass filter in
signal processing. One, therefore, needs to carefully design
so that it causes minimal distortion while transforming the dis-
crete-valued random variable, , into a continuous variable,
. As long as the input variable satisfies Widrow’s first

quantization theorem (Theorem 3) under both and , we
have,

(29)

Fig. 5. “Filtering” the quantized signal with LPF-noise. The quantization step
size, , is set to . (a) CF of ; (b) CF of ; (c) CF of ; (d)
CF of the external LPF-noise, ; (e) CF of .

Thus, under hypothesis , the pdf of data, , at time instant
is

(31)

Using a copula density (say) to estimate the
dependence structure between sensor observations, the joint pdf
of the data can now be approximated
as

(32)

where

(33)

denotes the cdf of under .
Similarly, the joint pdf of the data under can be approxi-

mated as

(34)

where

(35)



4894 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 9, SEPTEMBER 2012

is the copula density used to estimate the depen-
dence structure of sensor observations under , and

(36)

denotes the cdf of when the underlying hypothesis is .
With (32) and (34), it is now straightforward to derive the (mis-
specified) GLRT

(37)

The test derived above involves continuous-valued variables
and thus does not involve computation of multidimensional in-
tegrals. This greatly simplifies the test. The reduced complexity
is, however, at the expense of decreased SNR due to the injec-
tion of noise at the fusion center. The addition of external
noise facilitates filtering of the baseband CF, , from
the received quantized observations . This noise should
be designed so that it destroys as little information as possible
while filtering the required signal.
Next, we present a numerical illustration.

VI. AN ILLUSTRATIVE EXAMPLE

In this section, we consider the problem of detecting a random
phenomenon using a network of two sensors. It is known that
the observations received at the local quantizers each follow a
Gaussian distribution. That is

(38)

where

is the usual univariate Gaussian density function. The means,
and , under the hypothesis, , are unknown, although a

priori we know that they are greater than zero. Further, the ob-
servations may be statistically dependent; however, no knowl-
edge about the dependence structure (and hence, the joint dis-
tribution) is provided.
The observations, , at the two local sensors are

passed through uniform scalar quantizers before their transmis-
sion to the fusion center. Thus, the fusion center has access only
to the quantized measurements, , to make a
global decision in favor of one of the two hypotheses. Then, the
GLRT based fusion rule for this problem is the same as the one
derived in (14), with the joint probabilities

(39)

and

(40)

where denotes the Gaussian cdf with mean, , and
standard deviation, . The unknown marginal parameters,
and , and the copula function in (39) are obtained
by maximizing the generalized likelihood ratio as shown in
(14). An alternative computationally efficient test was derived
in Section V-C which involves injection of LPF-noise before
fusion. We evaluate its performance using the example pre-
sented here.
Although Gaussian CFs are not perfectly bandlimited, a prop-

erty necessary for using the LPF-noise based fusion rule, they
are very close to being bandlimited for all practical purposes.
Fig. 5 shows quantization and the effect of LPF-noise in the
CF domain. The quantization step size, is set to 0.3 of the
input standard deviation . The CF of the input
variable is shown in Fig. 5(a). Addition of the quantization
noise, , is equivalent to multiplication of (shown in
Fig. 5(a)) with a sinc function, . The resultant CF,

, is shown in Fig. 5(b). This CF is repeated and
summed in Fig. 5(c) which represents the CF of the quantized
signal, (see (24)). The CF of the LPF-noise, , a stan-
dard Gaussian distributed variable in this example, is shown in
Fig. 5(d).1 It is clear that multiplication of with
which is equivalent to addition of to in the random
variable domain, “filters” the signal so that only the main lobe

of is retained (Fig. 5(e)). Since the LPF-noise is
different from the ideal one with rectangular CF, the signal,
, undergoes some distortion while being “filtered.” However,

this distortion is almost imperceptible as evident from Fig. 5(e).
The pdf of the transformed variable, ,

under the hypothesis is given by

(41)

Similarly, under , we have

(42)

Having derived the marginal pdfs ((41) and (42)), the LPF-
noise-based fusion rule (37) is now applied for testing between
the two hypotheses. We include the Frank and the Gaussian
copula functions in the set, , of potential copula models for
characterizing dependence between observations under .
In order to inject dependence between observations under
, we first generate dependent uniformly distributed bivariate

1It is important to note that a standard Gaussian noise may not be the “best”
LPF-noise. It is used here to provide a simple illustrative example.
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Fig. 6. Monte Carlo-based receiver operating characteristics. Performance of
the fusion rule based on LPF noise is very close to the upper bound given by
the analog transmission case. Also, the LPF-noise-based GLRT outperforms the
one designed assuming statistical independence between the observations.

samples, , using Clayton copula with
Kendall’s set to 0.31. The inverse cdf corresponding to each
sensor’s observation (specified in (38)) is then used to transform
the bivariate samples, , to give a bivariate vector of dependent
sensor observations with the required marginals:

(43)

The marginal parameters, and , are set to 0.5. Detection
performance of the LPF-noise based GLRT is evaluated using
this synthetic dataset. As discussed earlier, the set, , of poten-
tial copula functions consists of the Frank and Gaussian copula
functions. Note that we have deliberately excluded the Clayton
copula from this set so that we can evaluate the detection perfor-
mance when the true underlying copula is unavailable. Hence,
we also call the test the misspecified GLRT.
In Fig. 6, we plot the ROC curves using 50 000 Monte Carlo

trials. The decision window, , is set to 50 samples. That is,
we assume that the sensors observe the phenomenon over
time intervals before making a decision in favor of either

hypothesis. It is evident from the figure that the performance
of the LPF-noise based fusion rule is very close to the upper
bound given by the analog/unquantized transmission case albeit
with reduced computational complexity. This is true for both the
quantizers, and , considered here. The
quantization step sizes of and correspond to 22
and 12 quantization levels, respectively, in the region
of a Gaussian density function.
Another approach that is often adopted to address the issue

of computational complexity is to deliberately neglect statis-
tical dependence between sensor observations while designing
the test. The test, so designed, would require computation of
one-dimensional integration operations as opposed to -dimen-
sional integrations where is the number of sensors. However,
such an approach severely degrades the detection performance
as evident from Fig. 6. The LPF noise based GLRT significantly
outperforms the one designed with the statistical independence
assumption.

VII. DETERMINATION OF THE DETECTOR THRESHOLD

Following theNeyman-Pearson formulation, we now look for
a method to set the detector threshold in (14) so that the false

alarm probability, , is constrained to . This, how-
ever, requires the knowledge of , the pdf of the test
statistic under the null hypothesis. Since the postulated statis-
tical models, and , under
and , respectively, are only approximations of the true under-
lying distributions, it is difficult to derive the exact distribution
of the test statistic under either hypothesis. However, some ad-
vancement is possible for a certain class of problems especially
when is large. The following theorem, due toWilks [29], iden-
tifies this class of problems.
Theorem 5: Suppose the following conditions hold, in addi-

tion to the usual regularity conditions [30] that ensure the va-
lidity of asymptotic ML theory:

C 1. and are well-speci-
fied under ,
C 2. is nested in , i.e.,

.
Then the modified test statistic, , converges in distribu-

tion to a chi-squared distribution with degrees
of freedom under the null hypothesis.

(44)

From (44), the probability of false alarm, , is

(45)

where denotes the right-tail probability of a chi-squared
random variable with degrees of freedom. One can thus obtain
the threshold so that is constrained to a desired level

as follows:

(46)

The assumption of a well-specified is reasonable for
many applications. For example, it is always possible to col-
lect enough training data under (when there is no signal
present), so that can be consistently estimated.
Note that the illustrative example in Section VI satisfies the

conditions of Theorem 5, and thus belongs to the class of prob-
lems for which the detector threshold can be determined. Here,
the true distribution under , given by the product of two uni-
variate Gaussian pdfs, was assumed to be completely known
(and hence well-specified). Now, given that the data belongs to
the null hypothesis

(47)

since both the Frank and the Gaussian copulas converge to the
independence copula. Thus, condition of Theorem 5 holds.
Also, it is easy to see that is nested in the family defined
by since the marginal pdfs under both hypotheses are
univariate Gaussian pdfs. Thus, the condition is satisfied,
and we have the asymptotic convergence of the test statistic to
a chi-squared distribution with degrees of freedom,
where the number of unknown parameters under , denoted
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Fig. 7. System probability of false alarm versus Detector threshold. A good
match between the theoretical and simulated values is evident from the
figure.

by “a” is three ( , and ), and that under , denoted by
“ ,” is zero. Thus, . Fig. 7 shows a plot of this
theoretical along with simulated false alarm values obtained
using 50 000 Monte Carlo trials with the decision window, ,
set to 50 samples.
A good match between the theoretical and simulated

values across the two different quantization step sizes is evident
from the figure. Note that the distribution of under
the null hypothesis depends only on the model complexities
of and , i.e., the number of uncertain pa-
rameters and . If the set consists of copula densities
with parameters of different dimensions, the threshold must
be adjusted accordingly (see (46)) to maintain a desired false
alarm probability. Alternatively, one could restrict the set
to include copula models with equal complexity to avoid the
extra step of varying in real time.

VIII. CONCLUSION

In this paper, the problem of fusing statistically dependent
sensor decisions for the detection of a random event was con-
sidered. Sensor observations (or features extracted thereof) are
first quantized using uniform multilevel quantizers before their
transmission to the fusion center. Intermodal dependence was
assumed to be unknown and was approximated using copula
functions. A GLRT-based decision fusion algorithm that can
fuse both hard and soft local decisions was derived. The im-
portant problem of selecting the best copula was embedded in
the GLRT formulation. It was noted that the derived copula-
based fusion algorithm becomes computationally expensive as
the number of sensors and/or number of quantization levels in-
crease. A novel approach based on Widrow’s additive quanti-
zation noise model was developed which requires deliberate in-
jection of an external noise at the receiver before fusion. The
addition of external noise at the fusion center effectively “fil-
ters” the baseband CFs by rejecting the repetitive CF lobes that
arise due to quantization. Since this process is analogous to
low-pass filtering (LPF) in signal processing, we term this noise,
the LPF-noise.
An illustrative example, using different copula functions such

as the Clayton, Frank, and Gaussian copulas was presented.
Gaussian noise sources were used to generate LPF-noise at the
fusion center, and results for two different quantization step

sizes were obtained. Our results show that the approach based on
LPF-noise can be considerably accurate provided the CF of the
input signals are bandlimited and Widrow’s first quantization
theorem is satisfied. The key to the success of this computation-
ally efficient approach is the choice of the external noise source
used for filtering the baseband CF. Design of a noise source that
introduces minimal distortion while filtering is a topic of future
research.
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