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Abstract—In this paper, we study the target tracking problem
in wireless sensor networks (WSNs) using quantized sensor mea-
surements where the total number of bits that can be transmitted
from sensors to the fusion center is limited. At each time step of
tracking, a total of available bits need to be distributed among
the sensors in the WSN for the next time step. The optimal
solution for the bit allocation problem can be obtained by using
a combinatorial search which may become computationally pro-
hibitive for large and . Therefore, we develop two new sub-
optimal bit allocation algorithms which are based on convex op-
timization and approximate dynamic programming (A-DP). We
compare the mean squared error (MSE) and computational com-
plexity performances of convex optimization and A-DP with other
existing suboptimal bit allocation schemes based on generalized
Breiman, Friedman, Olshen, and Stone (GBFOS) algorithm and
greedy search. Simulation results show that, A-DP, convex opti-
mization and GBFOS yield similar MSE performance, which is
very close to that based on the optimal exhaustive search approach
and they outperform greedy search and nearest neighbor based
bit allocation approaches significantly. Computationally, A-DP is
more efficient than the bit allocation schemes based on convex op-
timization and GBFOS, especially for a large sensor network.

Index Terms—Convex optimization, dynamic bit allocation, dy-
namic programming, posterior Cramér–Rao lower bound, target
tracking, wireless sensor networks.

I. INTRODUCTION

A wireless sensor network (WSN) consists of a large
number of spatially distributed sensors which are tiny,

battery-powered devices, and have limited on-board energies.
When properly programmed and networked, WSNs perform
different tasks that are useful in a wide range of applica-
tions such as battlefield surveillance, environment and health
monitoring, and disaster relief operations. In a WSN, dense
sensor deployment may introduce redundancy in coverage,
so selecting a subset of sensors may still provide information
with the desired quality. Adaptive sensor management policies
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select a subset of active sensors to meet the application require-
ments in terms of quality of service while minimizing the use
of resources.
In the literature, there exist many sensor selection algorithms

(see [1] and references therein). In [1], the sensor selection
problem, an integer programming problem, has been relaxed
and solved through convex optimization. One popular strategy
for sensor selection is to use information driven methods
[2]–[5] where the main idea is to select the sensors that provide
the most useful information, which is quantified by entropy or
mutual information. The posterior Cramér-Rao lower bound
(PCRLB) is also a very important tool because it provides a
theoretical performance limit for a Bayesian estimator [6] and
has been recently considered as a metric for adaptive sensor
management [7]–[10]. As we have shown in our previous paper
[8], for sensor selection, the complexity to compute the mutual
information increases exponentially with the number of sensors
to be selected, whereas the computational complexity of Fisher
information, which is the inverse of the PCRLB, increases
linearly with the number of sensors to be selected. For target
tracking in a bearing-only sensor network, a sensor selection
approach which minimizes the PCRLB on the estimation error
has been proposed in [9] and [10], where the selected sensors
transmit either analog or quantized data to the fusion center.
In this paper, the task of the WSN is to track a moving ob-

ject emitting energy in a given region of interest (ROI). In the
bit allocation problem, we assume that the total number of bits
for the channels between sensors and the fusion center is limited
per iteration. Note that, in the sensor selection problem, a sensor
is either activated or not to transmit its measurement under the
constraint on the total number of selected sensors, while in the
bit allocation problem, the fusion center not only needs to make
a decision about activation but also needs to distribute the avail-
able bits optimally and dynamically among the activated sen-
sors. Therefore, the sensor selection problem is a special case
of the bit allocation problem. For a given total number of bits
per time step that can be transmitted from sensors to the fusion
center, dynamic bit allocation provides better estimation per-
formance as compared to the sensor selection schemes since it
distributes the resources more efficiently. We consider a myopic
(one-step ahead) scenario, where at a given time step, the fusion
center only decides on the bit allocations of the next time step.
In the literature, the bit allocation problem forWSNs has been

studied in the context of data gathering [11], [12], distributed
sequential detection [13] and target tracking [14]. In [11], the
bit allocation problem has been studied in the context of maxi-
mizing the amount of information collected by all the nodes in
the network over the course of network lifetime. In [12], the au-
thors proposed an energy efficient data gathering scheme where
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the sensor data are gathered sequentially. First, the data rate of
the most energy efficient sensor, the sensor which is closest to
the sink, is determined by its entropy. Having received the data
of the sensors, using Slepian-Wolf coding, the data rates of the
remaining sensors are determined sequentially. For distributed
sequential detection, the authors in [13] studied the optimal al-
location of bits to different sensors if a fixed number of bits are
available for the channels between sensors and the fusion center.
In our paper, since the task is to localize and track a moving
object emitting energy, only a subset of sensors receives sig-
nals with significant amplitudes from the object and the subset
of informative sensors keeps changing over time. In this sce-
nario, a fixed number of bits for the channels between sensors
and the fusion center need to be distributed optimally and dy-
namically among the sensors in the network. This is an impor-
tant problem since given a constraint on the total number of bits
at each reporting instant, dynamic bit allocation uses the avail-
able resources more efficiently while providing better estima-
tion performance as compared to only sensor selection which is
a special case of the bit allocation problem. This is in contrast
to the data gathering problems solved in [11], [12] which put no
constraint on the total number of transmitted bits from sensors
to the fusion center.
Given the constraint on total number of bits, , at each time

step during tracking, the fusion center should determine the op-
timal bit allocations for the channels between sensors and
the fusion center by optimizing the target tracking performance
in the WSN. This one-step ahead bit allocation problem can be
solved by using an exhaustive search which enumerates all pos-
sible bit allocations and decides on the solution that maximizes
the determinant of the Fisher information matrix (FIM) which
is the inverse of the PCRLB. Under Gaussian assumption, max-
imizing the determinant of the FIM is equivalent to minimizing
the volume of the uncertainty ellipsoid [15]. Since the FIM can
be written as the summation of individual sensor FIMs and the
Fisher information of the prior, by using a FIM based bit allo-
cation metric, we are able to generalize [1] for the bit allocation
problem. However, for metrics other than FIM, such as mutual
information, the solution to the sensor selection problem can
not be easily generalized for the bit allocation problem [8]. The
bit allocation problem is a combinatorial problem where the ex-
plicit enumeration of all bit allocation solutions is computation-
ally prohibitive for large values of and . Therefore, compu-
tationally efficient suboptimal methods are required. The gen-
eralized Breiman, Friedman, Olshen, and Stone (GBFOS) al-
gorithm, first proposed in [16] for vector quantization, has been
employed for dynamic bit allocation for source localization [17]
and target tracking [14]. Results in [14] show that dynamic bit
allocation significantly outperforms a static equal bit allocation
scheme in terms of tracking performance. But still, as we show
later in the paper, the GBFOS algorithm may become computa-
tionally costly with increasing values of .
By generalizing the sensor selection method proposed in

[1], we first propose the convex optimization based bit allo-
cation as a benchmark method against which performance of
other methods can be compared. We formulate the bit allo-
cation problem as a constrained optimization problem with
binary-valued decision variables and equality constraints. Then,

we relax it by replacing the Boolean variables with their con-
tinuous counterparts and solve this relaxed problem optimally
using an interior point method [18], which may still become
computationally costly with increasing values of and .
In our preliminary work [19], we proposed a computationally
efficient dynamic programming (DP) based bit allocation
scheme. Due to the fact that the total Fisher information is the
summation of each sensor’s individual Fisher information, for
a scalar-valued parameter estimation problem, a DP recursion
can be easily formulated to find the optimal bit allocation at
each time step by maximizing the Fisher information [20].
For target tracking, even though the Fisher information is in
a matrix form and the objective is to maximize the determi-
nant of the FIM, we can still formulate a DP recursion which
would yield a suboptimal solution. We refer to this scheme as
approximate DP (A-DP).
In this paper, we compare the bit allocation schemes based

on convex optimization, A-DP, GBFOS and greedy search in
terms of their mean squared error and computational load under
different process noise parameters. Simulation results show that
convex optimization, A-DP and GBFOS yield similar tracking
performance and among these three suboptimal schemes, A-DP
has the least computational load, when the sensor network is
large. The convex optimization, A-DP and GBFOS algorithms
yield similar tracking performance, which is also similar to that
provided by the optimal exhaustive search approach, and they
outperform the greedy search and nearest neighbor approach
significantly.
The rest of the paper is organized as follows. In Section II,

we introduce the target tracking problem, and describe the op-
timization of the quantization thresholds and particle filtering
in target tracking. In Section III, we describe the bit alloca-
tion schemes based on convex optimization, A-DP, GBFOS and
greedy search. In Section IV, we present numerical examples
and compare the performances of the considered bit allocation
schemes in terms of their computational load andMSEs. Finally,
we conclude our work in Section V and discuss some future re-
search directions.

II. TARGET TRACKING IN WIRELESS SENSOR NETWORKS

The problemwe seek to solve is to track amoving target using
a WSN where sensors are grid deployed in a square surveil-
lance area of size . The assumption of grid layout is not nec-
essary but has been made here for convenience. Target tracking
based on sensor readings can be performed for an arbitrary net-
work layout if sensor placements are known in advance. All the
sensors that are assigned bits report to a central fusion center,
which estimates the target state, i.e., the position and the ve-
locity of the target based on quantized sensor measurements.
We assume that the target (e.g., an acoustic or an electromag-
netic source) emits a signal from the location at time
. We assume that the target is based on flat ground and all the
sensors and target have the same height so that a 2-D model is
sufficient to formulate the problem.
At time , the target dynamics are defined by a 4-dimensional

state vector where and are the
target velocities in the horizontal and the vertical directions,
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respectively. Target motion is defined by the following white
noise acceleration model:

(1)

where models the state dynamics and is the process noise
which is assumed to be white, zero-mean and Gaussian with the
following covariance matrix :

(2)
In (2), and denote the time interval between adjacent sensor
measurements and the process noise parameter, respectively. It
is assumed that the fusion center has perfect information about
the target state-space model (1) as well as the process noise sta-
tistics (2).
The target is assumed to be an acoustic or an electromagnetic

source that follows the power attenuationmodel provided below
[21]. At any given time , the signal power received at the sensor
is given as

(3)

By adopting this model, we prevent the receiver amplifier from
saturation and the regularity conditions for PCRLB hold when
the target is very close to a sensor. In (3), denotes the signal
power of the target, is the signal decay exponent and is a
scaling parameter. is the distance between the target and the
sensor, , where are

the coordinates of the sensor. Without loss of generality,
and are assumed to be unity and 2, respectively. At time , the
received signal at sensor is given by

(4)

where is the noise term modeled as additive white Gaussian
noise (AWGN), i.e., , which represents the cu-
mulative effects of sensor background noise and the modeling
error of signal parameters.
Rather than transmitting analog sensor observations to the fu-

sion center, transmitting a quantized version of sensor measure-
ments decreases the amount of communication and therefore
reduces the energy consumption. A sensor measurement at
sensor is locally quantized before its transmission to the fusion
center using bits. Let be the vector
of quantization rates used by the sensors in the network. For
the bit allocation problem, at each time step of tracking,
can take values where is themaximum
number of bits to be transmitted to the fusion center collectively
by all the sensors. Let be the number of decision
intervals for transmitting bits to the fusion center and be
the -bit observation of sensor quantized with rate
at time step , then

...
(5)

where with and .
The quantization thresholds are assumed to be identical at each
sensor for simplicity. We explain the selection of the quantiza-
tion thresholds for each data rate later in this section.
Given and , it is easy to show that the probability of a par-
ticular quantization output is

(6)

where is the complementary distribution function of the
standard Gaussian distribution with zero mean and unit variance

(7)

At time , let the fusion center receive the data vector
from the sensors with the corresponding

quantization rate vector , then

(8)

where we assume .

A. PCRLB With Quantized Data

PCRLB provides the theoretical performance limit for a
Bayesian estimator. Let be the joint probability
density of received data, and the unknown state , and
be an estimate of at time step . Based on , quantized with
rate vector , and the prior probability distribution function
of , , the PCRLB on the mean squared estimation error
has the form

(9)

where is the 4 4 Fisher information matrix (FIM) with
the elements

(10)

where denotes the row, column element of
the matrix and denotes the element of vector
and denotes the expectation with respect to

. Let denote the second order par-
tial derivative operator with respect to . Using this notation,
(10) can be rewritten in a more compact fashion as

(11)

Since , can be de-
composed into two parts as,

(12)

where
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Note that represents the Fisher information obtained
from the data averaged over the prior distribution and
represents the a priori Fisher information. and

denote expectations with respect to and
, respectively.

Given the vector of quantization rates
and using (8) in (12), the data part of the Fisher information can
be written as shown in (13) at the bottom of the page. For a
given , let us define , as the Fisher information
of sensor

(14)

Then combining (13) and (14), sensor ’s contribution to the
Fisher information can be stated as

(15)

Given , the Fisher information at time can be written as

(16)

From (14), after straightforward calculations, the (1,1) term of
can be derived as

(17)

The rest of the terms can be derived similarly. Using the proce-
dures similar to [22], can be obtained as follows:

(18)

where

(19)

Detailed derivation of (18) can be found in Appendix A. Note
that in (18) and (19), and are functions of the sensor
location and target location . Note that the
Fisher information depends on the quantization thresholds. In
this paper we assume that quantization thresholds of all the
sensors are identical and designed in advance. Next subsection
introduces the optimization of quantization thresholds.

B. Optimization of Quantization Thresholds

Since the Fisher information and hence the PCRLB are func-
tions of the quantization thresholds corresponding to each data
rate , the quantization thresholds need to be designed
optimally to achieve better estimation accuracy. An algorithm
to obtain the optimal quantization thresholds that minimizes the
variance of the estimation errors has been proposed in [22]. If
we assume that and are uniformly distributed in
a region, we can minimize the sum of two diagonal elements of
the CRLB matrix, after averaging the CRLB matrix over all the
random parameters which may result in a large computational
load since it requires a multiple fold integration. To alleviate
this problem, some alternative methods to design the quantiza-
tion thresholds were developed in [22].
Note that all the information about is contained in

sensors’ signal amplitudes ’s. If all the signal amplitudes
can be recovered from their quantized data accurately, an
accurate estimate of can be obtained. In this paper, we
use the Fisher information based heuristic quantization method
[22] which maximizes the Fisher information about the signal
amplitude contained in the quantized data . We define

as the Fisher information of the
signal amplitude contained in quantized -bit data, , using
a threshold . Note that is a function of for fixed ,
and as defined in (3). Then given , sensor location

and source location , it has been derived in [22]
that .

(13)
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The Fisher information based heuristic quantization method
[22] finds the decision thresholds that maximize

(20)

where and the Fisher information about the signal am-
plitude is averaged over the probability density function of ,

, under the assumption that and are inde-
pendent and identically distributed and follow a uniform dis-
tribution . Derivation of and other details of this
quantizer design approach can be found in [22].

C. Particle Filtering With Quantized Data

The target tracking problem requires estimation of the state
of a system that changes over time using a sequence of measure-
ments. It is known that Kalman Filter provides the optimal solu-
tion to the Bayesian sequential estimation problem for linear and
Gaussian systems. In nonlinear systems, the extended Kalman
filter (EKF) can be used to provide a suboptimal solution by lin-
earizing the nonlinear state dynamics and/or nonlinear measure-
ment equations locally. However, it has been shown [23] that,
even for linear and Gaussian systems, when the sensor mea-
surements are quantized, the EKF fails to provide an acceptable
performance especially when the number of quantization levels
is small. Therefore, we propose to employ a particle filter to
solve the Bayesian sequential estimation problem. Particle fil-
ters are sequentialMonte Carlo methods based on particle repre-
sentations of probability densities, which can be applied to any
state-space model and generalize the Kalman filtering methods
[24].
Let be the received sensor data up to

time which are obtained according to the data rates
. In particle filtering, the main idea is to find a dis-

crete representation of the posterior distribution by
using a set of particles with associated
weights . The posterior density at can be
approximated as,

(21)

where denotes the total number of particles. In this paper,
we employ sequential importance resampling (SIR) particle fil-
tering algorithm [24] to solve the nonlinear Bayesian filtering
problem. In Algorithm 1, we provide a summary of the SIR
based particle filtering rather than discussing the details. Note
that in Algorithm 1 denotes the number of time steps over
which the target is tracked. A more detailed treatment of particle
filtering can be found in a wide variety of publications such as
[24].

Algorithm 1: SIR based Particle Filtering for Target Tracking

Set . Generate initial particles with
.

while do

(A1.1) (Propagating particles)

(A1.2)

(A1.3) Bit Allocation: Decide and obtain sensor data

(A1.4) (Updating weights)

(Normalizing weights)

(A1.5)

(A1.6)

end while

In Algorithm 1, is obtained according
to (6) and (8). Resampling step avoids the situation that all but
one of the importance weights are close to zero [24].
By using (10) to (16), at time , one can compute the PCRLB

on the estimation error and the corresponding FIM, for a given
bit allocation scheme and prior distribution . For the
bit allocation problem, at time , from (A1.2), we first get the
prior for state based on data received up to
time .
Under the Gaussian assumption, maximizing the determinant

of the FIM is equivalent to minimizing the volume of the un-
certainty ellipsoid [15]. Therefore, we determine bit allocation
scheme for time , , by maximizing the determinant of
the Fisher information about as

(22)

The fusion center then informs the sensors about and sen-
sors transmit their quantized measurements accordingly.
The Fisher information, is written as

Following the derivations from (10) to (16), the Fisher informa-
tion, , is obtained as,

(23)

Using the particle approximation

(24)
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is found from

(25)

As in (12),
has been defined as the prior Fisher information of . Ac-
cording to (24), has a non-parametric represen-
tation by a set of random particles with associated weights,
so it is very difficult to calculate the exact [25]. Instead,
we use a Gaussian approximation such that

, where

and

Given the Gaussian approximation, it is easy to show that
.

Having introduced the system model, next section presents
the dynamic bit allocation methods.

III. DYNAMIC BIT ALLOCATION FOR TARGET TRACKING

In order to maximize (22), an exhaustive search can be em-
ployed to find the optimal bit allocations. For a network of
sensors and the total bits constraint , there are a total of

possible bit allocation solutions. For
large and , such an exhaustive search may not be feasible
in real time. Therefore suboptimal but computationally more ef-
ficient algorithms are required which we explore in this section.

A. Convex Optimization Based Dynamic bit Allocation

In this section, we generalize the sensor selection method
proposed in [1] and consider the convex optimization based
bit allocation method as a benchmark before developing other
suboptimal methods. We maximize the determinant of the FIM
by maximizing its log determinant. Using Boolean variables

where and ,

the bit allocation problem can be explicitly formulated as fol-
lows: [see (26) at the bottom of the page]. In the above formu-
lation,
denotes the bit allocation scheme for time where

when sensor transmits its measurement in bits
and is the corresponding FIM of sensor . Note
that we drop the time index from the elements of vector

to simplify the notation. All constraints are equality
constraints where the first constraints guarantee that each
sensor can transmit using only one of the quantization rates. If

is selected, the quantized measurement of the sensor
is not transmitted to the fusion center. The equality
constraint satisfies the total number of bits constraint and the
last constraints restrict to be Boolean.
Similar to the convex optimization approach presented in [1],

the last constraints can be relaxed by replacing the
Boolean variables with their continuous coun-
terparts, . Then the problem becomes [see (27) at
the bottom of the next page], where the last in-
equality constraints ensure . The Lagrangian
function for the relaxed problem can be written and optimal so-
lution can be found from the Karush-Kuhn-Tucker (KKT) con-
ditions of the relaxed problem. However, finding the optimal
values of each from the KKT conditions is neither efficient
since it requires the solutions of tedious equations, nor neces-
sary. Since the relaxed problem is convex with linear equality
and inequality constraints, interior-point methods reach the op-
timal solution of (27) by traversing the interior of the feasible
region [18].
We solve the problem in (27) using a particular interior point

method, the barrier method, which approximately formulates
the inequality constrained problem (27) as an equality con-
strained problem where the inequality constraints are included
implicitly to the objective specified by the parameter . The
resulting optimization problem with equality constraints can be
solved with Newton’s method [18].

(28)

(26)
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Note that the equality constraints in (27) can be written in a
matrix equality form where (see the equation at the bottom of
the page). Let us define

where the gradient vector , and theHessianma-
trix of are provided in Appendix B.
Note that in [1], the relaxed problem similar to (27) has been

solved approximately for a particular value of . In general, the
barrier method solves (27) for a sequence of iterations corre-
sponding to increasing values of until a stopping criteria is
met [18]. The barrier method is simplified in Algorithm 2 [18],

Algorithm 2: Barrier Method—Outer Iterations

Find a feasible starting point and set ,
and precision .

Repeat

(A2.1) Obtain from the Newton iterations as in Alg. 3
designed for the KKT system of (Inner iterations)

(A2.2) Update

(A2.3) Quit if .

(A2.4) Increase .

In order to initialize the barrier method, an initial feasible
point for (28) needs to be found. The underdetermined system

has infinite number of solutions but there is only a
subset of solutions which are feasible satisfying
where and are the all zero and all one vectors, respectively.
We formulate the following linear optimization sub-problem to
find an initial feasible solution:

(29)

For step (A2.1) of Algorithm 2, for a particular value of , (28)
needs to be solved from its KKT system

(30)

where is the Newton Step, is the optimal dual variable,
i.e., the Lagrange multiplier of the equality constraint. The op-
timal solution to (A2.1) can be found from Newton’s method
as described in Algorithm 3. We refer to this algorithm as inner
iterations, since it has to be carried out to find the optimal solu-
tion at a particular .

(27)

and
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Algorithm 3: Newton’s Method—Inner Iterations

Get the feasible starting point from the outer iteration
and set precision

Repeat

(A3.1) Compute the Newton Step from Alg. 4 and Newton

decrement

(A3.2) Choose Step size by backtracking line search [18].

(A3.3) Update

(A3.4) Quit if , then , else go to Step
(A3.1).

At step (A3.1), the Newton step is obtained from the
KKT system (30) by block elimination as given in Algorithm 4,

Algorithm 4: Solving KKT System by Block Elimination

(A4.1) Form and .

(A4.2) Form

(A4.3) Determine by solving .

(A4.4) Determine by solving
.

In order to compute the complexity of the convex optimiza-
tion based bit allocation method, we ignore the complexity for
computing and . The cost of block elim-
ination to solve (28) is dominated by the Cholesky decomposi-
tion of which is used to find . Let us define

. Then, in order to compute the Cholesky decom-
position of the matrix , we require a total of
summations and multiplications and divisions
[26]. Thus, the complexity of bit allocation based on convex
optimization increases with at each iteration.
1) The Probabilistic Transmission Scheme: From the op-

timal solution of the relaxed problem , the bit allocation
for the next time step needs to be determined. For the sensor se-
lection problem, the authors in [1] employed a simple scheme
in which sensors are selected out of sensors by first sorting

in descending order and then setting largest elements of
to one. For the bit allocation problem, a similar solution

is to sort the probabilities in descending order and then to
assign 1 starting from the largest probability until the total bit
constraint is satisfied. However, in this paper, we consider a ran-
domized scheme similar to the ones used in [1] and [27]. Since
the elements of are within the range , we can consider
each as the transmission probability of sensor , transmit-
ting information in bits. Instead of putting a strict total bit
constraint, i.e., , the probabilistic transmis-
sion puts a weak constraint on the total bit constraint and en-
sures that the sensors on the average transmit bits to the fu-
sion center.We present a numerical example on the probabilistic
transmission scheme in Section IV.

Fig. 1. Trellis of the DP for tracking time step . .

B. Approximate Dynamic Programming Based Bit Allocation

In this section, we present the bit allocation algorithm based
on A-DP which will be shown to provide near optimal solu-
tion but requires much less computation time than the convex
optimization approach. Note that the Fisher information matrix
can be expressed as the summation of each sensor’s individual
Fisher information matrices as defined in (23). In this section,
we formulate an approximate DP recursion in tracking applica-
tions where we maximize the determinant of the Fisher infor-
mation matrix subject to the total bit constraint.
Typically DP involves progression along time. But in our

problem formulation, the DP progresses across sensors and is
executed at each time step of tracking to determine the bit allo-
cations of the next time step. Since A-DP is performed at each
time step, for simplicity, the time index for Fisher infor-
mation matrix is dropped. Instead an index for the stages in DP
is adopted. Let and be the
reward in terms of Fisher information when sensor quantizes
its measurement in bits . While con-
structing the DP trellis, the bit allocation problem is first divided
into stages which correspond to sensors and a termi-
nation stage. We define the state of a stage as the remaining bits
for the usage of sensor . So each stage has states as-
sociated with it. The bit allocation chosen at any sensor (stage)
determines the feasible states at the next sensor. An example DP
trellis is shown in Fig. 1 with and which implies
a total of 7 stages and 4 states in the DP trellis. As an example,
sensor 1 is at state means 2 bits have already been used
by the other sensors and 1 bit is available for sensor 1.
Then, sensor 1 can only take the action and the DP goes
to the termination stage (stage 0) which has only the 0 bit avail-
able state.
For such a DP trellis, we have

...

(31)
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where and . According to the matrix
determinant lemma [28],

With , , and being the identity matrix,
we have

...

We can maximize , by maximizing .
The DP recursion at each stage is formulated as follows: the
trellis starts from and for the first stage and

(32)

Then for all the intermediate stages and

(33)

Finally for the last stage

(34)

In (32), (33), and (34), the reward of sensor ’s transmission
in bits depends not only on but also on the FIM of the
previous stage . So at each stage , the FIM, , which
has the maximum determinant should be stored in a memory for
its use at the next recursion. Note that the proposed A-DP may
not yield the maximum matrix determinant at the final stage.
The suboptimality of the A-DP recursions is discussed later in
this section.
We analyze the computational complexity of A-DP in terms

of the number of matrix summations. Note that the number of
element-wise summations is a scaled version of number of ma-
trix summations. The first stage needs matrix summations to
compute the FIM at all states. For all the intermediate stages, at
each state , , different matrix summations
are required to find the FIM with the maximum determinant.
Finally, at stage , A-DP again needs matrix summations in

Fig. 2. Computation time in seconds for convex optimization, A-DP, GBFOS,
and greedy search .

order to maximize the determinant of . So, the A-DP to-
tally requires

matrix summations which is linear in and quadratic in .
1) Suboptimality of the A-DP Recursions: For a given state

of a stage, we choose the path with the maximum determinant
of the FIM and dismiss all the other paths arriving at this state.
The proposed DP recursions would yield the optimal solution to
maximize the determinant of the FIM, if the following property
were satisfied

(35)

for some positive semidefinite matrices , and . Unfortu-
nately, the above property is not necessarily true. Consider the

simple example, and

where . Let . Then

.
At each stage of DP, we only store the FIM with the max-

imum determinant. Therefore, the final solution obtained by the
DP recursions becomes suboptimal since not all the feasible so-
lutions are enumerated.

C. Existing Suboptimal Bit Allocation Methods

In this section, we review some existing suboptimal methods
that are suitable for solving the bit allocation problem in target
tracking applications.
1) GBFOS Algorithm: This algorithm has been first pro-

posed in [14] for dynamic bit allocation in target tracking. The
GBFOS algorithm starts by assigning the maximum number
of bits, to each sensor in the network and then reduces the
number of bits one bit at a time until the sum rate constraint is
satisfied. The GBFOS algorithm can be stated as in Algorithm
5. Note that in order to simplify the notation, we drop the time
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Fig. 3. A WSN with sensors tracking sample targets. (a) . (b) .

index in the algorithm. As shown in Step (A5.1), at each
iteration, the GBFOS algorithm searches the sensors and re-
duces the bits of the sensor by one which ensures the minimum
reduction of the determinant of the FIM. An efficient implemen-
tation of the GBFOS algorithm and its complexity analysis are
given as follows:

Algorithm 5: GBFOS—Bit Allocation Algorithm

Set and
.

FOR

(A5.1) FOR

IF

Reduce one bit from sensor and compute where

.

ENDIF

ENDFOR

(A5.2) with , find the sensor for which
is the maximum:

.

(A5.3) Decrement , update
and set .

ENDFOR

Let us define as the FIM after the iteration, and
as sensor ’s contribution to the

FIM using bits. In the beginning, we need to calculate
. As a result, a

total of matrix summations are needed. At the -th iteration,
where , there are at most different
ways to reduce 1 bit. Assuming one particular solution is to
reduce one bit at the -th sensor, , and

, which requires two

matrix summations. Hence at each iteration, at most matrix
summations are required. At the end of the iteration, we
store with the maximum determinant. In summary, we
need at most matrix summations, which is
quadratic in and linear in . Note that this is an upper bound
on complexity.
2) Greedy Algorithm: Basically, greedy search is the reverse

of the GBFOS method which makes the algorithm much faster.
The greedy algorithm can be stated as in Algorithm 6. The
greedy algorithm starts by assigning 0 bits to each sensor in the
network and then increases the number of bits one bit at a time
until the sum rate constraint is satisfied in iterations. At each
iteration, greedy algorithm searches the sensors and a single
bit is added to the sensor which maximizes the determinant of
the resulting FIM.

Algorithm 6: Greedy Bit Allocation Algorithm

Set and .

FOR

(A6.1) FOR

Add one bit to sensor and compute where

.

ENDFOR

(A6.2) Find the sensor for which is the
maximum:

.

(A6.3) Increment , update
and set .

ENDFOR

The implementation of greedy search and its complexity can
be stated as follows: At the first iteration, there are different
ways to add 1 bit. For the -th way of adding 1 bit,

. Then we set . Hence,
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TABLE I
TRANSMISSION PROBABILITIES OF EACH QUANTIZATION RATE FOR

AND AT FOR THE EXAMPLE ILLUSTRATED IN FIG. 3(A)

a total of matrix summations are required at the first itera-
tion. At the -th iteration, for , there are still
different ways to add 1 bit. For the -th way of adding 1 bit,

. Note that could
be a zero matrix since could be zero. Therefore, for each it-
eration, at most a total of matrix summations are required.
In summary, we need at most
matrix summations which is an upper bound for the complexity
of greedy search.

IV. SIMULATION RESULTS

In this section, we illustrate the performance of different
dynamic bit allocation methods with numerical examples. We
evaluate the computation time of each bit allocation approach
by using the “etime” function of MATLAB averaged over 100
trials. For the convex optimization based bit allocation scheme,
the parameters of the barrier method are selected as ,

, , and . The linear programming
problem in (29) is solved by using the “linprog” routine in
MATLAB . In Fig. 2, the mean computation times of the
considered suboptimal bit allocation schemes are compared.
Since the number of summations for A-DP increases linearly
with , for large number of sensors, the computation time of
A-DP is less than those of GBFOS and convex optimization
where the numbers of summations increase quadratically and
cubically, respectively.
We next compare the MSE performances of the bit allocation

schemes based on the optimal exhaustive search, A-DP, convex
optimization, GBFOS and greedy search. In addition, we ana-
lyze the MSE performance of nearest neighbor bit allocation,
where all the bits are assigned to the sensor which is nearest to
the predicted target location. In our simulations, we assume that
sensors are grid deployed in a surveil-

lance area as shown in Fig. 3(a) and (b). We select
and sensor observation noise . The probability den-
sity function of the target’s initial state, , is assumed to
be Gaussian with mean and covariance

where we select
so the initial point of the target remains in the ROI with very
high probability. The target motion follows a white noise ac-
celeration model and we consider two process noise parameters

and . Measurements are assumed to be

TABLE II
MEAN AND STANDARD DEVIATION OF THE TOTAL NUMBER OF TRANSMITTED
BITS USING CONVEX OPTIMIZATION BASED BIT ALLOCATION METHOD,

taken at regular intervals of seconds and the observa-
tion length is 10 seconds. Namely, we perform target tracking
over time steps for eachMonte Carlo trial. The number
of particles used in the particle filter is . We assume

bits are available at each time step for data transmission.
TheMSE at each time step is averaged over trials
as

(36)

where in the trial and are the actual and estimated
target states at time , respectively.
In Fig. 3(a) and (b), aWSN is illustratedwhere sensors

track a target under the process noise parameters
and respectively. For , the process
noise is relatively small and the target trajectory is almost de-
terministic. For , the target trajectory has relatively large
uncertainty. For the first time step of tracking, Table I presents
each sensor’s transmission probability for each quantization rate
for the convex optimization based bit allocation scheme with

. Note that at , the target is relatively close to
sensor 1 located at . Then it is very likely
that sensor 1 transmits its measurement using bits be-
cause of the probability, . Rest of the sensors tend
to remain silent since their transmission probabilities are small.
As seen in Table II, the probabilistic transmission introduces a
weak constraint on the total number of bits and on the average
sensors transmit bits to the fusion center.
For sensors, Fig. 4(a) and (c) show the average

number of sensors activated and Fig. 4(b) and (d) show the
MSE at each time step of tracking averaged over 500 Monte
Carlo trials. Simulation results show that when ,
convex optimization, A-DP and GBFOS yield similar tracking
performance to that of exhaustive search in terms of MSE. For

, between the time steps 8 and 10, the target
is relatively close to sensor 5 located at . Hence, using
exhaustive search, A-DP, convex optimization, and GBFOS
based bit allocation schemes, almost all the bits are allocated
to sensor 5. When the target is not relatively close to any of
the sensors, as in time steps 2–6 and 12–17, the fusion center
has relatively large uncertainty about the target location, so
multiple sensors are activated with relatively coarse informa-
tion which increases the estimation error as shown in Fig. 4(b).
After time step 17, the target approaches sensor 9 and by using
exhaustive search, convex optimization, A-DP and GBFOS, all
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Fig. 4. , , (a) Average number of active sensors, (b) MSE at each time step, (c) Average number
of active sensors, (d) MSE at each time step, .

the bits are assigned to sensor 9 and then estimation error re-
duces again. The greedy bit allocation scheme tends to activate
more sensors all the time with relatively coarse information
as compared to the other bit allocation algorithms. With small
process noise parameter , nearest neighbor
based bit allocation becomes more accurate than greedy search
since the target trajectory is highly deterministic and there is a
small uncertainty on the predicted target location. However, the
tracking performance of the nearest neighbor approach is still
not as good as those for exhaustive search, convex optimiza-
tion, GBFOS, and A-DP. For , the uncertainty on target
trajectory is relatively large and we observe a worse tracking
performance as compared to the case. On
the other hand, still A-DP, convex optimization, and GBFOS
perform equally well as exhaustive search in terms of MSE and
outperform greedy search. For , nearest neighbor based
bit allocation introduces much larger estimation errors which
are sometimes even greater than those obtained by the greedy
search based dynamic bit allocation scheme.
In Fig. 5, we compare the estimation performance of the

sensor selection scheme based on the method described in
[1] and the bit allocation scheme using convex optimization
described in this paper. We assume that the total number of bits

Fig. 5. MSE comparison of sensor selection and dynamic bit allocation
schemes .

that can be sent from sensors to the fusion center is . For
the sensor selection problem, sensors are selected among

sensors in the network. In the sensor selection examples,
depending on the value of , each selected sensor quantizes its
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Fig. 6. (a) Average number of active sensors with and with A-DP based bit allocation, . (b) MSE at each time step with and
with A-DP based bit allocation . (c) Average number of active sensors with and (d) MSE at each time step with and .

data into bits. Simulation results show that dynamic
bit allocation uses the total number of available bits more
efficiently than the sensor selection approaches with various
- combinations.
Because of (18) and (19), for large values of , the com-

putation of the Fisher information matrix takes a lot of time.
With , we compare the cases where and
and the simulation results are shown in Fig. 6. As the intuition
suggests, by increasing the available bits ( ), more sen-
sors are activated as compared to the case [Fig. 6(a)]
and because of the more information bits, the estimation per-
formance improves [Fig. 6(b)]. Similar to the previous results,
for case, convex optimization, A-DP and GBFOS yield
similar estimation performance and outperform the estimation
performance of greedy search.
For sensors, Fig. 7(a) and (c) show the average

number of sensors activated and Fig. 7(b) and (d) show theMSE
at each time step of tracking. Since the sensor density is in-
creased, the bit allocation schemes tend to assign all the avail-
able bits to a single sensor which has more precise information
about the target. This improves the tracking performance at each
time step. For and cases, convex op-
timization, A-DP and GBFOS yield similar estimation perfor-
mances and they significantly outperform the greedy search and

nearest neighbor based bit allocation approaches in terms of the
MSE.

V. CONCLUSION

In this paper, we studied the dynamic bit allocation problem
for target tracking in a WSN with quantized measurements.
We proposed two bit allocation schemes which are based on
convex optimization and approximate DP respectively to max-
imize the determinant of the FIM. Simulation results show that
convex optimization, A-DP and GBFOS algorithms yield sim-
ilar tracking performance, which is close to that provided by
the optimal exhaustive search approach, and they outperform
the greedy search and nearest neighbor approaches significantly.
Using the optimal solution of the convex optimization problem
as the probability of transmission at each data rate, convex opti-
mization based bit allocation satisfies the total bit constraint on
the average while the other bit allocation methods put a strict
constraint on the total number of bits. In terms of computa-
tional complexity, A-DP is computationally more efficient than
GBFOS and convex optimization methods especially for a large
sensor network with a large .
In this paper, we have applied the proposed approaches to a

particular type of sensor network, where sensors transmit quan-
tized signal amplitudes. Based on simulation results, we have
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Fig. 7. , , . (a) Average number of active sensors . (b) MSE at each time step . (c) Average number
of active sensors (d) MSE at each time step, .

shown that the convex optimization method, the GBFOS algo-
rithm, and the A-DP algorithm provide very similar estimation
performance. However, the proposed approaches are very gen-
eral and their applications are not limited to any particular type
of sensor network. For example, one can apply them to sensor
networks where sensors quantize their bearing readings. For dif-
ferent types of sensor networks, it is difficult to predict whether
or not these approaches will lead to similar results without sim-
ulation experiments. Therefore, it is worthwhile to introduce all
the approaches with different complexities, which may poten-
tially lead to different tradeoffs between estimation performance
and computational complexity.
In this work, we developed and compared bit allocation

schemes in target tracking for one step ahead only. Our future
work will cover extensions of proposed schemes to non-myopic
scenarios. Multi-target tracking by dynamic bit allocation will
also be considered as a future research direction.

APPENDIX A

It is easy to show that

(37)

Then, substituting (37) in (17), we have

(38)

Due to the symmetry between elements and

(39)
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and

(40)

APPENDIX B

The element of the gradient vector is,

(41)

Let be an invertible matrix and be a scalar. Using the prop-
erty

and the definition

each element of the gradient vector is obtained as

(42)

In order to compute , for
and , we define

(43)

Using the properties

and

we get

Finally the Hessian matrix is obtained as

(44)
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