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Abstract—In many estimation situations, measurements are of
uncertain origin. This is best exemplified by the target-tracking
situation in which at each scan (of a radar, sonar, or electro-optical
sensor), a number of measurements are obtained, and it is not
known which, if any, of these is target originated. The source
of extraneous measurements can be false alarms—especially in
low-SNR situations that force the detector at the end of the signal
processing chain to operate with a reduced threshold—or spu-
rious targets. In several earlier papers, the surprising observation
was made that the Cramér–Rao lower bound (CRLB) for the
estimation of a fixed parameter vector (e.g., initial position and
velocity) that characterizes the target motion, for the special case
of multidimensional measurements in the presence of additive
white Gaussian noise, is simply a multiple of that for the case with
no uncertainty. That is, there is a scalar information-reduction
factor; this is particularly useful as it allows comparison in terms
of a scalar. In this paper, we explore this result to determine how
wide the class of such problems is. It turns out to include many
non-Gaussian situations. Simulations corroborate the analysis.

I. INTRODUCTION

A. Multiparameter CRLB

I N many estimation problems, one is faced with the problem
that one’s data is of uncertain origin. For example, in the

target-tracking situation, the data set may consist of “hits”
(threshold exceedances) indicative of a target’s presence in a
particular location at a particular time; however, hits may be of
spurious origin (that is, they arefalse alarms), and indeed, it
may be that the true target is unrepresented in the data set at
the time in question (amissed detection). At issue is how well
one can estimate a fixed parameter or parameter vector that
characterizes target motion given such uncertainty.

The measure in which we are interested is, not unnaturally,
the mean-squared error (MSE) of the estimate. The classical
result for this is known as the Cramér–Rao lower bound (CRLB)
(e.g., [12], [15]). Let us assume access to an observationthat
has probability density function (pdf) , meaning that the
pdf depends on a parameter vectorto be estimated. Let us
assume the existence of anunbiasedestimator , meaning
that we have
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in which denotes expectation parametrized by. Then, under
fairly broad regularity conditions, the CRLB has it that

(2)

in which

(3)

is Fisher’s information matrix. Again, under broad regularity
conditions, if a maximum-likelihood estimator (MLE) forex-
ists, then it achieves the CRLB asymptotically.

B. Measurements of Uncertain Origin

The general multiparameter CRLB is fairly standard; let us
now turn to the case of particular interest: that of measurement
origin uncertainty. Without loss of generality, we define the ag-
gregate observation from time 1 to time

(4)

in which the th observation is

(5)

meaning that there are individual observations that comprise
it.

In the target tracking scenario, is comprised of all ob-
servations collected at time, and these observations can be all
false alarms (the detection from the target has been missed) or
can contain exactly one true detection and false alarms.
In this situation, it is common to assume that is uniform
over the observation volume (or gated volume), i.e., is in-
dependent of , and that the number of false-alarms is Poisson,
meaning that (valid for )

(6)

are, respectively, thea priori probability that there are
observations at timeand the probability that one mea-

surement is target generated, given that there aremeasure-
ments at time. In the above

probability of detection;
average number of false alarms per unit observation
volume;
observation (surveillance) volume.

1053–587X/01$10.00 © 2001 IEEE



1326 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 7, JULY 2001

Although is, of course, known to the estimator, to compute
the MSE, it is necessary to average over the possible values of

. We further assume that

all false

all false

one true detection

one true detection

all false

from target

all others clutter

(7)

which requires some explanation. First, we assume that condi-
tioned on , are independent. Second, we
have assumed that given observations that comprise ,
any of events are possible: Either all observations

are distributed according to (which does not
depend on ), or exactly oneof these is distributed according
to (whichdoesdepend on ), whereas the rest remain dis-
tributed according to , with each of these events equally
likely.1 Regardless of which event is true, all observations
are independent given that event. Third, we have written the de-
pendence of the target-generated observations on the unknown
parameter as ; although variations are possible [7], this
model is most appropriate for a deterministic track (such as
straight-line or ballistic motion) in which the target’s location
is a function of a few “initial” parameters such as position and
velocity. Finally, it is important that the dependence of the ob-
servation on is as a direct translation (mean-shift).

C. Information-Reduction Factor

In order to apply (7) to (2), we first note that due to indepen-
dence among and to the logarithm, we have

(8)

1The first “all-false” event has prior probability(1� �(m )), whereas each
of the others (“one true andm � 1 false”) has probability�(m )=m .

in which

(9)

Further, since the number of observations is known to the
estimator, we also have

(10)

in which one should note that the term, corresponding
to the lack of a target-generated measurement, naturally has no
contribution. In the above equation

(11)

reflects estimation efficiency at a particular timefor a partic-
ular number of observations . We have the probability density
function of the observations at time, parametrized by

(12)

In [9] and [11], a surprising result was obtained. Under
the target-tracking assumptions above and further assuming
a Gaussian model for the true-observation pdf , it was
shown that

(13)

where is a scalar less than unity (in the literature usually de-
noted “ ” for historical reasons), and

(14)

is Fisher’s information matrix in scanfor the measurement-
certain case. Assuming, therefore, that does not vary with

(this is a reasonable approximation in the far-field tracking
situation), it therefore follows that the total Fisher information
matrix in the case of uncertain-origin measurements is

(15)

where

(16)

In other words, there is a scalarinformation-reduction factor
(less than unity) in the proportionality to account for the esti-
mation algorithm’s need to judge which of its observations (if
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any) are relevant and which are spurious.2 This, in our opinion,
is a remarkable result: The presence of spurious data in one’s
observation set affects observation efficiency, quantified by the
total information in the observations—which is given by a ma-
trix—in a scalarway. Thus, the presence of false measurements
and, indeed, the possible absence of a target-originated measure-
ment have an isotropic effect in the parameter space as far as the
“existing” information about the parameter is concerned.

The task in the present paper is to expound on this: How gen-
eral is (15)? In the following section, we develop some condi-
tions that are sufficient. Specifically, we isolate attention to the
satisfaction of a condition to be denoted A2) [the other condi-
tion A1) is trivial], which is a somewhat technical requirement
on the observation distribution . We further require that the
“false-alarm” distribution be either uniform B1), which
is a sensible condition, or target-centered B2), which is an un-
likely situation. We finally interpret A2) as C1), C2), or C3).
The last is the most general of these and means that (15) is true
for any that has elements that areiid and symmetric or can
be made so via a linear transformation.

A key benefit of (15) is in its distillation of the effect of mea-
surement origin uncertainty3 to ascalar information-reduction
factor as compared wiht the origin-uncertainty-free case. Thus,
in Section III, we explore the result for several non-Gaussian
measurement distributions with the goal of seeing their
relative effects. Section IV corroborates our results via simula-
tion, and in Section V, we summarize.

II. SOME SUFFICIENT CONDITIONS FOR A

MULTIPLICATIVE CRLB

To look for necessaryconditions for (15) to be true is likely
to be unrewarding since matrices can always add up in weird
ways; we will instead develop as wide a class ofsufficientsitu-
ations as possible. From (8) and (11), the task is clear: We must

2Calculation of this proportionality constant is remarkably involved. Unfortu-
nately, it arises from the need to evaluate a high-dimensional integral. However,
the proportionality constant has been tabulated for a number of cases, and since
it is sparsely parametrized, this is sufficient for many needs.

3It seems reasonable at this point to remind the ourselves that the “measure-
ment origin uncertainty,” which is referred to in this paper, is not that caused
by corrupting noise directly added to a quantity of interest, but rather by the ap-
pearance of spurious irrelevant measurements, by a lack of assurance thatany
measurement at a particular time is relevant, and overall by there being no la-
beling among the measurements.

characterize problems for which [see (13)], re-
gardless of the number of observationsof the time index .

We thus examine (12) and rewrite it as

Taking the gradient with respect toof the logarithm, we get

(17)

in which

...
...

...
...

(18)

is the Jacobian matrix of (we assume that and have
respective dimensions and ) and in which we define (19),
shown at the bottom of the page. We can thus write

(20)

where has been defined as the term in brackets. In addition
to the obvious scalar case that , we immediately observe
a pair of sufficient conditions under which (15) can be true.

A1) If and does not depend on, then we have

(21)

(19)
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and (15) is true. This appears to be more interesting
than it is since from these conditions, it must follow
that the rank of is one. An example is the estimation
of the position of a stationary target from range-only
measurements—a rather trivial problem resulting in a
singular , meaning that there is ambiguity.

A2) If

(22)
in which

(23)

corresponds to the measurement-origin-uncer-
tainty-free case [meaning that (14) can be written
as ] and where is a proportionality
constant, then (15) is true.

The second case is the interesting one.
To explore (22), we rewrite (19) as

(24)

in which

(25)

is recognizable as the posterior probability of the eventthat
the target-generated observation at timeis , conditioned
on the available data and parametrized by [4].
If (22) is to be true, then should not depend on ,
and it is seen that two possibilities on thespurious-observation
distribution are sufficient for this.

B1) is uniform, in which case, the substitution
removes the effect of in

the expectation (integration).
B2) , in which case, the

above substitution has the same effect.
Either of the above allows the integration implied by the expec-
tation over to be shifted by , and disappears from

. The first case B1) is that most commonly applied, and
we will continue with it being assumed.

Under the assumption of a uniform , we write
(24) (for ) as

(26)

in which

(27)

The disappearance of is obvious, and the time dependence
has been (notationally) ignored. By symmetry, we need only
concentrate on the event that the true measurement is labeled

. Further simplification is possible by rewriting (26) as

(28)

in which

(29)

Comparison of (28) with

(30)

which is from (23), makes the information reduction from the
measurements of uncertain origin clear.

To have of (26) proportional to —that is, to satisfy
condition A2)—is not straightforward. We present three cases
that have so far been found sufficient.

C1) If , then is a multiple of whose value
depends only on . Thus, although this condition at
first appears as the trivial A1), there is in fact no need
for a “stationary target,” given that can depend on
the time index. This is true regardless of the pdf .

C2) If all elements of are, given , independent and
identically-distributed (iid), and provided this distribu-
tion is symmetric, then (A2) is true.

C3) If all elements of can be made to be iid and sym-
metric via a linear transformation, then (A2) is true.

It has been assumed that (the probability that any given
measurement out is target-generated), from (6), does not de-
pend on . Intuitively, a time-varying may render observa-
tions from certain relatively more informative than they would
be without uncertainty in measurement origin, and this can af-
fect .

To show C2), note that even symmetry with respect to all
arguments of means that is even symmetric, and
hence, all off-diagonal terms in are zero. Further, since



NIU et al.: MATRIX CRLB SCALING DUE TO MEASUREMENTS OF UNCERTAIN ORIGIN 1329

all elements of are distributed identically, we have that
is a multiple of the identity matrix, as is . We thus have

(31)

To show (C3), suppose

(32)

with the elements of iid. We then have

(33)

in which

(34)

We also have

(35)

Comparing (33) and (35) and proceeding as with C2), C3) fol-
lows if the elements of are iid.

Case C3), with an identity linear transformation, becomes
C2), and C2), with , becomes C1). It can be seen that
case C3) includes any case in which is Gaussian. How-
ever, need not be Gaussian for C3) to be be satisfied: We
show the class schematically in Fig. 1.

Fig. 1. Schematic diagram of ways to generate observations such that
multiplicative CRLB is obtained.

III. COMPUTATION OF THEINFORMATION REDUCTION FACTOR

Equations (28) and (29) appear remarkably complicated for
numerical calculation since they require an-fold integral for
each number of measurements, and indeed, exact evaluation
would be a nasty chore. However, under case C2) [or case C3)
after linear transformation of the integration], it is only neces-
sary to evaluate one diagonal element of the matrix, and let us
assume this is the first element . In principle, this still in-
volves a difficult integration, but rewriting of (29) as

(36)

for insertion into

(37)

reveals that the averaged posterior probability need only be cal-
culated at aone-dimensional(1-D) grid of values. This is easily
and efficiently accomplished via a Monte Carlo technique [13].
In the above equation, is an identity matrix of size .

Similarly, we have

(38)

and it is easy to see (39), shown at the bottom of the next page.
Since “far out” measurements are accorded small weight

when a reasonable data association algorithm is used, we
restrict our measurements to a validation gate [4], i.e.,

... (40)
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where are the standard deviations of corresponding
dimensions of measurements, and we take . When condi-
tion C2) is met, i.e., all elements of are iid, then

(41)

Thus, in (36), can be replaced by the volume of validation
gate , which is defined as

(42)

We discuss the idea of a gate only insofar as it impacts the Monte
Carlo integration necessary to evaluate—strictly speaking,
gating is nevernecessaryfor estimation, and for theoretical re-
sults to be best understood, the gate should be ignored. We will
be interested in the situations where condition C2) or C3) is met.
The case where the distribution is Gaussian has been discussed
in [9] and [11], and hence, we will explore non-Gaussian mea-
surement distributions .

A. Generalized Gaussian Distribution

This family of symmetric distribution includes the Laplace
and the Gaussian. The density of a generalized Gaussian random
variable (zero mean) has the following form:

(43)

where is a scale parameter, andcontrols the shape. In order
to measure the distributional tail weight, we introduce the “kur-
tosis,” which is defined as

For , we have

(44)

which is Laplace (double-exponential), and the kurtosis is
. For , we have

(45)

Fig. 2. Information reduction factor� as a function of shape parameterk for
generalized Gaussian noise. Upper plot:P = 0:9 and�V = 0:1. Lower plot:
P = 0:5 and�V = 1.

which is Gaussian distribution, and the kurtosis is . For
, we get

(46)

and the kurtosis is . The shape parametermay be
any positive number; in general, the smalleris, the larger the
kurtosis and, hence, the heavier the tail of the distribution.

The results are shown for in Fig. 2. It is readily ap-
parent that the information reduction factoris more signifi-
cant (lower estimation fidelity) in the lower plot, corresponding
to greater uncertainty (lower probability of detection and more
false alarms). It is also interesting thatincreases with the rel-
ative tail weight of the measurement pdf. Precisely why this is
so is open to interpretation, and we offer the following. First, re-
call that is the information reduction factorrelativeto the case
of no measurement uncertainty but with the same measurement
pdf . We therefore speculate that a heavy-tailed distribu-
tion (low values of the shape parameter) is more forgiving of
and robust to outlying observations that may be spurious than
is a distribution that “expects” all to be reasonably centralized
about the mean.

(39)
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Fig. 3. The pdf of Johnson random variables for different kurtosis K (� = 1).

B. Johnson Distribution

A Johnson random variable is the result of a nonlinear trans-
formation upon a Gaussian random variable [10]. The density
of a Johnson r.v. is

(47)

where

(48)

(49)

in which denotes the “kurtosis.” Examples are shown in
Fig. 3.

Results for the Johnson case are shown in Fig. 4. As for
the generalized Gaussian distribution, the information reduction
factor increases (less information loss caused by measurement
uncertainty) as the tail weight increases; even for quite heavy-
tailed distributions (for a kurtosis value , the tail is very
heavy, and by comparison, the kurtosis of a Laplace random
variable is 6). It is interesting that the increase, as opposed to
the kurtosis, appears to flatten out. In this paper, we have not
considered the question, but it is possible that an asymptote is
reached; it seems unlikely that the value unity is ever reached
with data uncertainty.

IV. SIMULATION RESULTS

To corroborate our results, we have performed several simula-
tions. We explore a situation in which , which is the nar-
rowband sonar case with bearing and frequency measurements
(similar to that in [11]). Specifically, we have a constant-velocity

Fig. 4. Information reduction factor� as a function of kurtosis for the Johnson
noise. Upper plot:P = 0:9 and�V = 0:1. Lower plot:P = 0:5 and
�V = 1.

target from which an unknown narrowband signal emanates; the
observations are of angle (as observed from a moving platform)
and frequency (with an implied Doppler shift from the relative
target motion). Our intentions are

i) to simulate this system with missed detections, false-
alarms, and with non-Gaussian noise added to true ob-
servations when present;

ii) to estimate the target parameters (initial position, initial
velocities, and emitted frequency) via maximum likeli-
hood;

iii) to compare the resulting estimation covariance to the
(modified) CRLB theory just developed.

One subtlety encountered is that estimation proceeds by maxi-
mization over a likelihood surface having a reasonably complex
topography with the result that there is an occasional conver-
gence to a “local” likelihood maximum. To avoid having our
results skewed from this, we accept only estimates that pass a
sensible test on residual errors—the theory is nicely confirmed.

A. Target Model and ML Estimation

We assume that we have sets of measurements that are
indexed by with succeeding snapshots sepa-
rated by seconds. The target motion is parametrized by a
5-D vector

(50)

In (50), we use the -element of the quantities and
, which are the positions of the target in the east and north

directions, respectively, at the time; and are the corre-
sponding velocities, and is the unknown emitted frequency,
which is assumed constant. This parametrization is possible be-
cause the target is assumed to be moving at a constant velocity,
meaning that

(51)
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Fig. 5. Underlying coordinate frame for simulation.

The target is observed from a “platform” whose state at time at
is

(52)

The true noiseless measurements of the target are of bearing

(53)

and of shifted frequency; see (54) at the bottom of the page.
The coordinate frame is shown in Fig. 5, and the trajectories are
shown in Fig. 6. Although a constant-velocity targetis observ-
able via a nonmaneuvering platform via bearing and frequency-
shift measurements (it is not observable from bearing-only mea-
surements), a platform maneuver, as here, enhances accuracy.

The range of the measurements is for the bearing and
for the frequency, where the latter is the bandwidth of

the sonar signal processing filter. We identify a subregion

(55)

(56)

for the bearing and frequencies, respectively. We define
, which is our surveillance region.

The set of measurements in collected at is denoted
as

(57)

where and are the bearing and frequency measurements, re-
spectively. There are measurement pairs collected at time,
and this set will include the target-originated pair [according to
(53) and (54)] with probability and with a number of false
alarms having as prior a Poisson distribution with parameter

. The target-originated measurements are corrupted by ad-
ditional zero-mean and independent noises

(58)

Fig. 6. In corroborative simulation, the trajectories of target (solid) and
platform (dotted). “I:” Initial position of trajectories. “F:” final position of
trajectories.

where is the (unknown) index of the “good” measurement,
that is

(59)

where is the pdf of the measurement noise.4 Second, the
false measurements (clutter) are uniformly distributed

in
else

(60)

in the rectangle .5 Substituting these and (6) into (12), we
get the likelihood function of the measurements at the sampling
time

(61)

From (7), we have

(62)

Our MLE is found by maximizing (62). We use a simplex al-
gorithm to find the maximum—this is not particularly efficient,
but the goal of this section is corroboration and not suggestion
of a technique.

4This is condition C2).
5This is condition B1).

(54)
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Due to the multimodal nature of the log-likelihood ratio, we
have to decide whether our estimateis acceptable or not; if it is
not, then incorporation of the data to our estimate of covariance
will corrupt the results. In [9], a statistical test is given to distin-
guish between a local or global maximum. We perform this test
to accept or reject our estimate. Again, multifold integrations
are needed to get parameters for the statistical test [9].

B. Simulation Results

In narrowband sonar signal processing, different bands in the
frequency domain are defined by an appropriate cell resolution
and a center frequency about which these bands are located. The
received signal is sampled and filtered in these bands before
applying an FFT and beamforming. The signal processor was
assumed to consist of the frequency band [500 Hz, 1000 Hz]
with a 2048-point FFT so that the frequency resolution (cell) is

Hz (63)

For the bearing measurements, we assume that the sonar has 60
equal beams, resulting in an azimuth cell

(64)

Assuming a uniform distribution within a cell, the frequency and
bearing measurements have standard deviations

Hz

(65)

We take the surveillance regions for bearing and frequency as

Hz Hz (66)

We restrict the validation gate to . In our simulations, we
take as ground truth that the target moves at 10 m/s heading west
and 5 m/s heading north, starting from (5000 m, 35 000 m). The
emitted frequency is 750 Hz; therefore, the true target parameter
is [5000 35 000 5 750]. There are 30 measurements
(one each for 30 s), for a total observation interval of 15 min. For
the first 15 scans, the platform moves in the northwest direction,
and for the next 15, it moves northeast, both at 7.1 m/s. Fig. 6
shows the trajectories of target and platform.

We examine the case where the noise corrupting the target-
generated measurement is Johnson. For Johnson parameter,
as indicated by its kurtosis, we take 100 Monte Carlo runs.
An acceptance test automatically selects reasonable estimates.
To verify the theory, we use the normalized estimation error
squared (NEES) [2], which is defined as

(67)

where is the estimate, and is the appropriate Fisher infor-
mation matrix (20). Assuming the estimation error is approx-
imately Gaussian, the NEES is chi-square distributed with
degrees of freedom, where is the dimension of the pa-
rameter being estimated. Our results are listed in Tables I and

TABLE I
RESULT OF MONTE CARLO RUNS FOR

JOHNSONNOISE. P = 0:9 AND �V = 0:1

TABLE II
RESULT OF MONTE CARLO RUNS FOR JOHNSON NOISE.

P = 0:5 AND �V = 1:0

II. When and , corresponding to aper-reso-
lution-cell(or per test) signal to noise ratio of 16 dB,6 the NEES
of the accepted estimations all fall within the 99% confidence
region. When and , corresponding to a
per-resolution-cellSNR of 4.8 dB,7 eight of NEESs fall in the
99% confidence regions, whereas three are slightly too small.
The deviations are minor, however, and are most likely the re-
sult of inappropriateness in the Gaussian assumption either in
the test for acceptance or the NEES confidence values. In any
event, even these small deviations occur for cases that areclosest
to the previously studied Gaussian situation. In Fig. 7, for a par-
ticular Johnson parameter value, the results of estimation, along
with the theoretically predicted covariances, are shown. These

6The SNR numbers are given for reference only, and to calculate them, a
Swerling I target model is assumed. Other definitions of SNR includeper-Hertz
(in this case 10 dB) andbroadband(i.e., over the whole 6–Hz window, in this
case 2.4 dB).

7Here, theper HertzSNR is�1:2 dB, and thebroadbandSNR is�9 dB.
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Fig. 7. True and estimated trajectories from 100 Monte Carlo runs for Johnson
noise caseP = 0:9, �V = 0:1, and kurtosis= 11.5. Note that in almost all
cases, the estimated values lie within their respective ellipses.

latter are presented as two ellipses referring to the 99% confi-
dence regions of the position estimates at the initial and final
sampling instants, based on the CRLB (31). We can see that in
98 out of 100 Monte Carlo runs, the estimated initial and final
positions fall into the 99% confidence region.

V. SUMMARY

Measurements are ofuncertain originwhen, among those
collected at each time (each “snapshot”), at most one can be
said to be directly relevant to estimation of a quantity of in-
terest. The remaining measurements have nothing to do with
that quantity and can be considered “false alarms.” Indeed, at
a given instant, the measurementwith relevance can be absent,
denoting a “missed detection.” The remarkable observation was
recently made that the Fisher information matrix (and multipa-
rameter CRLB), for the special case of bearings-only tracking
and corrupting Gaussian noise, is, for the casewith uncertainty
in measurement origin, simply a multiple (theinformation re-
duction factor) of thatwithoutuncertainty. In this paper, we have
investigated this result in greater depth and have found sufficient
conditions for it to be true.

The interesting sufficient conditions are the following:

i) the probabilities of detection ( s) and false alarm rates
are constant across all observation snapshots; and

ii) a false (irrelevant) measurement has a uniform distribu-
tion; and

iii) the random element to the true (relevant) observation is
additive noise; and either

iv) this noise is iid in each dimension; or
v) there exists a linear transformation by which the noise

could be made to be iid.

Naturally, this includes all Gaussian situations; the class is rea-
sonably rich but not all-inclusive. We have checked the general-
ized Gaussian and Johnson cases and confirmed the analysis via
simulation. One result is that the information reduction factor

increases—meaning that the degradation in theoretical estima-
tion performance decreases—as the corrupting noise becomes
heavier tailed. Presumably, an (optimal) estimator that is robust
to large amplitude noise is also more forgiving of spurious mea-
surements.

Finally, let us note that there is a rich and interesting tradition
of bounds on estimation performance for dynamic systems (e.g.,
[3], [5], [8]), culminating in the excellent and explicit CRLB for
the nonlinear filtering problem in [14]. In this paper, we have
concentrated on results for parameter estimation only (i.e., the
case without dynamics, and without need to resort to the MAP-
estimation CRLB), but we have explored the case that there is
measurement origin uncertainty (which is not treated in [3], [5],
and [8]) and have focussed on thescalar information reduction
factor. However, it is natural to consider the marriage of these
two formulations, that is, to find bounds on estimation for a
dynamic system with measurement origin uncertainty. This is,
for us, current and future work.
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