
Target Localization and
Tracking in Noncoherent
Multiple-Input Multiple-Output
Radar Systems
RUIXIN NIU, Senior Member, IEEE

RICK S. BLUM, Fellow, IEEE

PRAMOD K. VARSHNEY, Fellow, IEEE

ANDREW L. DROZD, Fellow, IEEE

For a noncoherent multiple-input multiple-output (MIMO)
radar system, the maximum likelihood estimator (MLE) of
the target location and velocity, as well as the corresponding
Cramér-Rao lower bound (CRLB) matrix, is derived. MIMO
radar’s potential in localization and tracking performance is
demonstrated by adopting simple Gaussian pulse waveforms.
Due to the short duration of the Gaussian pulses, a very high
localization performance can be achieved, even when the matched
filter ignores the Doppler effect by matching to zero Doppler
shift. This leads to significantly reduced complexities for the
matched filter and the MLE. Further, two interactive signal
processing and tracking algorithms, based on the Kalman
filter and the particle filter (PF), respectively, are proposed
for noncoherent MIMO radar target tracking. For a system
with a large number of transmit/receive elements and a high
signal-to-noise ratio (SNR) value, the Kalman filter (KF) is a
good choice; while for a system with a small number of elements
and a low SNR value, the PF outperforms the KF significantly.
In both methods, the tracker provides predictive information
regarding the target location, so that the matched filter can match
to the most probable target locations, reducing the complexity
of the matched filter and improving the tracking performance.
Since tracking is performed without detection, the presented
approach can be deemed as a track-before-detect approach. It is
demonstrated through simulations that the noncoherent MIMO
radar provides significant tracking performance improvement
over a monostatic phased array radar with high range and
azimuth resolutions. Further, the effects of coherent integration
of pulses are investigated for both the phased array radar and
a hybrid MIMO radar, where only the pulses transmitted and
received by colocated transceivers are coherently integrated and
the other pulses are combined noncoherently. It is shown that the
hybrid MIMO radar achieves significant tracking performance
improvement when compared with the phased array radar, by
using the extra Doppler information obtained through coherent
pulse integration.
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I. INTRODUCTION

Recent years have witnessed significant advances

in multiple-input multiple-output (MIMO) wireless

communication systems, which provide diversity

gain and degree-of-freedom (or spatial multiplexing)

gain [1, 2] by employing multiple transmit and

receive antennas and space-time modulation and

coding strategies. Similar ideas can be used in radar

systems to improve radar performance in various

ways. In general, a MIMO radar can be defined as

a radar system with multiple transmit waveforms

that is able to jointly process signals received at

multiple receive antennas. Elements of MIMO

radar transmit independent waveforms resulting in

an omnidirectional beam pattern or create diverse

beam patterns by controlling correlations among

transmitted waveforms [3]. A MIMO radar may

be configured with its antennas colocated [4] or

widely distributed over an area [5]. It is shown in [6]

that a radar network has the potential to achieve an

improvement in signal-to-noise ratio (SNR) through

coherent network sensing, and an improvement in

target discrimination due to the varying target aspect.

Wideband distributed coherent aperture tests and

demonstrations for next generation ballistic missile

defense radar have been successfully carried out

[7]. In cohere-on-receive mode, an N2 SNR gain is

achieved over a single aperture; in cohere-on-transmit

mode, an N3 SNR gain is achieved [7]. In [8] it

is observed that MIMO radar has more degrees

of freedom than systems with a single transmit

antenna. These additional degrees of freedom support

flexible time-energy management modes [9], lead to

improved angular resolution [10, 11], and improve

parameter identifiability [12]. With widely-separated

antennas, MIMO radar has the ability to improve

radar detection performance by exploiting radar cross

section (RCS) diversity [13], detect and estimate slow

moving targets by exploiting Doppler estimates from

multiple directions [14, 15], and support accurate

target location and velocity estimation [16—19]. Some

of the recent advances in MIMO radar have been

documented in [20].

One important problem for MIMO radar systems

is to localize and track targets in a certain surveillance

region. In [16] the potential of MIMO radar systems

to locate a single point scatterer is explored. It has

been shown that a coherent MIMO radar system

with widely spaced MIMO transmit and receive

elements can provide a very high performance in

localizing the scatterer, with an accuracy largely

determined by the wavelength of the signal instead

of the signal bandwidth, which determines the range

estimation accuracy in a noncoherent radar system

[21]. The coherent MIMO radar requires coherent

signal receptions at a particular receive element, even

for signals that are not transmitted by this receiving
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Fig. 1. Signal propagation path in MIMO radar system.

element. Since the transmitter/receiver elements are

widely distributed, at a particular receiver it is difficult

to maintain coherent signal waveforms of all the

transmitters. Further, the reflected signal from a fading

target may have an unknown phase shift, which in

many cases is difficult to estimate. Considering all of

these practical issues, noncoherent signal reception,

which does not require the signal phase information at

the receivers, is an attractive alternative. In this paper

we focus on localization and tracking of a target using

noncoherent MIMO radar. As demonstrated later,

the noncoherent MIMO radar with widely spaced

transmit and receive elements can provide localization

and tracking accuracies that are significantly higher

than that of a monostatic phased array radar with

high range and azimuth resolutions. Further, a hybrid

MIMO radar is presented, which achieves high

Doppler resolution by coherently integrating only

pulse trains transmitted and received by the colocated

transceivers. In the hybrid MIMO radar, the pulse

trains transmitted and received by non colocated

transmitter-receiver pairs are combined noncoherently.

In the proposed noncoherent MIMO radar system, the

signals received at distributed receivers are processed

jointly and the matched filter outputs are directly used

for target tracking in a track-before-detect (TBD)

framework. To the best of our knowledge, our work

represents the first publication on TBD in MIMO

radar.
The paper is organized as follows. In Section II

the system model for a noncoherent MIMO radar
is introduced. In Section III a maximum likelihood
(ML) location and velocity estimation procedure
is provided and its corresponding Cramér-Rao
lower bound (CRLB) matrix is derived. Also in
Section III simple Gaussian pulse waveforms with
short duration are used for the MIMO radar to obtain
very high localization performance, even when
the corresponding matched filter ignores Doppler
effect and matches to zero Doppler shift, implying
significantly reduced matched filter complexity.
Interactive signal processing and target tracking in
a noncoherent MIMO radar system are discussed
in Section IV. There, we show that for a system
with high SNR and a relatively large number
of transmit/receive elements, the Kalman filter
(KF) delivers an optimal or near-optimal tracking

performance; for a system with a small number of
elements and a low-SNR value, the particle filter (PF)
is a good choice, which does not require a linear and
Gaussian parametric model for the location estimates.
The interaction between the tracker and the matched
filters and the location estimator has been investigated.
It is shown that the feedback from the tracker to
the matched filter and the location estimator could
significantly reduce the cost and resources required
by the latter operations. The noncoherent and hybrid
MIMO systems are compared with a phased array
radar in terms of the tracking performance. Finally,
the work is summarized in Section V.

II. SYSTEM MODEL

In this paper we investigate the localization
and tracking potential of noncoherent MIMO radar
with widely spaced transmit and receive elements.
For simplicity, we consider a single target in a
two-dimensional space, with coordinates (x,y) and
velocity (vx,vy). The target reflects all impinging
electromagnetic (EM) waves isotropically. Suppose
that there are M transmit elements and N receive
elements in the MIMO radar system. Denote the
coordinates of the kth transmit element as (xk,yk),
where k = 1, : : : ,M, and the coordinates of the lth
receive element as (xl,yl), where l = 1, : : : ,N. As
illustrated in Fig. 1, the time delay of the received
signal at the lth receiver due to the kth transmitter
may be written as

¿kl =
dk + dl
c

(1)

where

dk
¢
=

q
(x¡ xk)2 + (y¡ yk)2

dl
¢
=

q
(x¡ xl)2 + (y¡ yl)2

(2)

and c is the speed of the light. For nonmaneuvering
targets, the Doppler shift of the received signal at the
lth receiver due to the kth transmitter is

fkl =
fc
c

·
vx(xk ¡ x) + vy(yk ¡ y)

dk
+
vx(xl ¡ x) + vy(yl ¡ y)

dl

¸
(3)

where fc is the carrier frequency.
Assume that the signal transmitted by the kth

transmit element is

sk(t) =
p
2Re

np
Eks̃k(t)e

j2¼fct
o

(4)

where Ref¢g denotes the real part operation and s̃k(t)
is the complex envelope of the pulse transmitted by
the kth transmit element. Let the complex envelope be
normalized such thatZ 1

¡1
js̃k(t)j2dt= 1: (5)

As a result the energy of the transmitted signal sk(t)
is Ek.
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Assuming that the number of scatterers which

make up the target is large and none of them

dominates, the complex envelope of the reflected

signal received at the lth receive element could be

modeled as a time-delayed and frequency shifted

version of s̃k(t) multiplied by a complex Gaussian

random variable (RV) ãkl, and

ãkl » CN (0,2¾2kl)
where 2¾2kl denotes the variance of the complex

Gaussian RV. Note that the variance of ãkl reflects the

cumulative effects of the antenna gain and large-scale

path loss, which are deterministic. ãkl, an RV, models

the fluctuation of the RCS of the target. Further, we

assume that the received signal is corrupted by an

additive complex white Gaussian random process

nl(t)

nl(t) =
p
2Refñl(t)ej2¼fctg (6)

where for simplicity and clarity of presentation, we

assume that ñl(t) is white

ñl(t)» CN (0,N0)
and

E[ñl(t)ñ
¤
l (u)] =N0±(t¡ u): (7)

We assume that ãkls and the ñl(t)s are mutually

independent, ãkls are independent across different

paths, indexed by the (k, l) pairs, and ñl(t)s are

independent across different receive elements.

In summary the received target signal return at the

lth receive element can be written as

rl(t) =

p
2Re

(
MX
k=1

p
Ekãkls̃k(t¡ ¿kl)ej2¼(fc+fkl)(t¡¿kl) + ñl(t)ej2¼fct

)
(8)

where ¿kl is the time delay of the received signal

at the lth receiver due to the kth transmitter, which

has been defined in (1), and fkl is the Doppler shift

corresponding to the (k, l)th path, which has been

defined in (3). In the baseband, we can write the

complex envelope of the received signal as

r̃l(t) =

MX
k=1

p
Ekãkls̃k(t¡ ¿kl)ej2¼fklte¡j2¼(fc+fkl)¿kl + ñl(t)

=

MX
k=1

p
Ekãkls̃k(t¡ ¿kl)ej2¼fklt+ ñl(t): (9)

Note that e¡j2¼(fc+fkl)¿kl has been absorbed in ãkl, which
is a circularly symmetric Gaussian RV. Transmit

elements transmit orthogonal waveforms, which

approximately maintain orthogonality even for

different mutual delays and different Doppler shifts,

namelyZ 1

¡1
s̃k(t)s̃

¤
l (t¡ ¿)e¡j2¼ftdt = 0 8k 6= l, f, and ¿:

(10)

This implies that a receive element can separate the

signals transmitted from different transmit elements,

by using correlation receivers (or matched filters) that

are matched to different waveforms. Even though

the orthogonal waveform assumption is infeasible in

practical systems, we assume that the cross-correlation

of any two different waveforms is negligible while

obtaining closed-form mathematical results. The

degradation of localization and tracking performance

due to nonnegligible cross-correlation between

waveforms and its mitigation could be investigated

in the future. The complex envelopes of the received

baseband signals can be represented in an N £ 1
vector form r̃(t) = [r̃1(t), : : : , r̃N(t)]

T.

III. MAXIMUM LIKELIHOOD ESTIMATION OF
TARGET LOCATION AND VELOCITY

A. Theoretical Derivations

Once the received signal vector r̃(t) is available to

the MIMO system, the target location and velocity

can be estimated through the maximum likelihood

estimator (MLE). Let us denote x= [x y vx vy]
T.

Since r̃(t) is a collection of time-continuous random

signal waveforms, it is desirable to reduce it to a

set of RVs. A classical solution to the problems of

detection and estimation of signal waveform in the

presence of noise is to represent r̃l(t), a Gaussian

random process, in terms of a series expansion [22].

The MLE of the target state x, which consists of its

location and velocity, based on the coefficients of the

series expansion has been derived and provided in the

following theorem.

THEOREM 1 The MLE of x based on r̃(t) is

argmax
x

MX
k=1

NX
l=1

½kljrkl(x)j2
N0(1+ ½kl)

(11)

where

rkl(x)
¢
=

Z 1

¡1
r̃l(t)s̃

¤
k(t¡ ¿kl(x))e¡j2¼fkl(x)tdt (12)

and

½kl
¢
=2¾2klEk=N0 (13)

is the SNR for the k, lth path.

PROOF The series expansion of the r̃l(t) can be

obtained using techniques presented in [22, ch. 3].
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Given a complete orthonormal set fÁ1(t),Á2(t), : : :g,
r̃l(t) is expanded as follows

r̃l(t) = lim
K!1

KX
k=1

rklÁk(t) (14)

where

rkl
¢
=

Z 1

¡1
r̃l(t)Á

¤
k(t)dt (15)

is the coefficient corresponding to the kth orthonormal

basis function, and (¢)¤ denotes the complex conjugate
operation. The convergence in (14) is in mean-square

sense, namely

lim
K!1

E

24¯̄̄̄¯r̃l(t)¡
KX
k=1

rklÁk(t)

¯̄̄̄
¯
2
35= 0: (16)

Now, it is natural to choose the first M

orthonormal basis functions as s̃1(t¡ ¿1l)ej2¼f1l t, : : : ,
s̃M(t¡ ¿Ml)ej2¼fMlt, respectively. Therefore, using
(9) for 1· k ·M, (15) becomes

rkl =

Z 1

¡1
r̃l(t)s̃

¤
k(t¡ ¿kl(x))e¡j2¼fkl(x)tdt

=

Z 1

¡1

"
MX
i=1

p
Eiãils̃i(t¡ ¿il)ej2¼filt+ ñl(t)

#

£ s̃¤k(t¡ ¿kl(x))e¡j2¼fkl(x)tdt

=
p
Ekãkl+ nkl (17)

where

nkl
¢
=

Z 1

¡1
ñl(t)s̃

¤
k(t¡ ¿kl)e¡j2¼fkltdt: (18)

Note that the third step of (17) follows from the

assumption of orthonormal waveforms made in (5)

and (10). With the same orthonormal waveform

assumption and the assumption that ñl(t) is a white

complex Gaussian random process with zero mean

and variance N0, it is easy to show that

E[nkl] = 0 (19)

and

E[nkln
¤
jl] =

Z Z
E[ñl(t)ñ

¤
l (u)]s̃

¤
k(t¡ ¿kl)e¡j2¼fklts̃j(u¡ ¿jl)ej2¼fjludtdu

=

Z Z
N0±(t¡u)s̃¤k(t¡ ¿kl)s̃j(u¡ ¿jl)ej2¼(fjlu¡fklt)dtdu

=

Z
N0s̃

¤
k(t¡ ¿kl)s̃j(t¡ ¿jl)ej2¼(fjl¡fkl)tdt

=N0±(k¡ j) (20)

where ±(¢) denotes a Dirac delta function in the
second line of (20), and a Kronecker delta function

in the last line. As a result,

nkl » CN (0,N0) (21)

and nkl and njl are independent for all k 6= j. This
leads directly to

rkl » CN (0,2Ek¾2kl+N0) (22)

and rkl and rjl are independent for all k 6= j.
The remaining coefficient rkls for k >M can be

generated by using some arbitrary orthonormal set

fÁM+1(t),ÁM+2(t), : : :g whose member functions are
orthogonal to fs̃1(t¡ ¿1l)ej2¼f1l t, : : : , s̃M(t¡ ¿Ml)ej2¼fMltg,
8¿1l, : : : ,¿Ml, and 8f1l, : : : ,fMl. Hence, for k >M,

rkl =

Z 1

¡1
r̃l(t)Á

¤
k(t)dt

=

Z 1

¡1

"
MX
i=1

p
Eiãils̃i(t¡ ¿il)ej2¼filt+ ñl(t)

#
Á¤k(t)dt

= nkl: (23)

Using the orthonormal property of fÁM+1(t),ÁM+2(t),
: : :g and following a similar procedure as used in (20),
it is easy to show that nkl (k >M) and njl (1· j ·M)
are jointly Gaussian and independent and identically

distributed (IID).

The approximation of the likelihood function of

r̃kl(t) via series expansion is not very well defined

[22]. The likelihood function is proportional to the

likelihood ratio, up to a factor that is not a function

of x, assuming that H1 represents the signal presence

hypothesis as modeled in (9), and H0 represents the

noise-only hypothesis. Hence, one can maximize the

likelihood ratio, whose approximation through series

expansion does not have the convergence problem,

instead of the likelihood function to find the MLE

of x.

Define rl = [r1l r2l ¢ ¢ ¢]T. With the fact that rkl = nkl
when either H0 is true, or H1 is true and k >M, and

using (21) and (22), it is straightforward to derive the
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likelihood ratio of rl

p(rl j x,H1)/
p(rl j x,H1)
p(rl jH0)

=

MY
k=1

p(rkl j x,H1)
p(rkl jH0)

1Y
k=M+1

p(rkl jH1)
p(rkl jH0)

=

MY
k=1

N0
2¾2klEk +N0

exp

½
2¾2klEkjrklj2

N0(2¾
2
klEk +N0)

¾ 1Y
k=M+1

p(nkl)

p(nkl)

=

MY
k=1

1

1+ ½kl
exp

(
½kl
¯̄R1
¡1 r̃l(t)s̃

¤
k(t¡ ¿kl(x))e¡j2¼fkl(x)tdt

¯̄2
N0(1+ ½kl)

)
: (24)

Employing the assumption that ñl(t)s are

independent across receive antennas (indexed by l),

we can express the likelihood function of r̃(t) as

p(r̃(t) j x,H1)

/
NY
l=1

MY
k=1

1

1+ ½kl

£ exp
(
½kl
¯̄R1
¡1 r̃l(t)s̃

¤
k(t¡ ¿kl(x))e¡j2¼fkl(x)tdt

¯̄2
N0(1+ ½kl)

)
:

(25)

Given (25), it is straightforward to express the

log-likelihood function of r̃(t) as

lnp(r̃(t) j x,H1)

=

MX
k=1

NX
l=1

(
½kl

¯̄R 1
¡1 r̃l(t)s̃

¤
k(t¡ ¿kl(x))e¡j2¼fkl(x)tdt

¯̄2
N0(1+ ½kl)

)
+ c

(26)

where c is a constant which is independent of x. The

MLE of x, or x̂(r̃(t)), is therefore

argmax
x
lnp(r̃(t) j x,H1): (27)

From (11) or equivalently (26), it is clear that the

log-likelihood of r̃(t) is proportional to a weighted

sum of the magnitude squares of correlation-receiver

(matched filter) outputs, where the correlation

operations are performed for all the different

combinations of r̃l(t) and s̃k(t¡ ¿kl(x))ej2¼fkl(x)t. The
matched filters need a hypothesized x and hence ¿kl(x)

and fkl(x) to generate the reference signals. The MLE

is performed by searching a grid of hypothesized

xs. Let us denote the dimension of x as nx, and

assume that along each dimension there are Ng grid

points, implying a total of (Ng)
nx grid points. The

log-likelihood in (26) can be evaluated in either a

centralized or a distributed manner. In the distributed

approach, for a particular x, each receiver maintains

a bank of M matched filters with time-delayed and

frequency-shifted versions of signals transmitted by

all the transmitters as their reference signals. The

received signal at each receiver is processed locally

and the weighted sums of the magnitude squares of

the matched filter outputs are transmitted to a central

node for all the different xs. Hence, each receiver

needs to perform M(Ng)
nx integrations. The central

node collects all the local weighted sums to obtain

the global weighted sum, or the log-likelihood. In

the centralized approach, the signal r̃(t) collected at

the distributed receivers are transmitted to a central

processing node, where each component of r̃(t) is

processed by a bank of correlation filters (matched

filters). The log-likelihood can be readily calculated

by taking a weighted sum of the magnitude squares of

all the matched filter outputs. The central node needs

to preform MN(Ng)
nx integrations. Note that during

the MLE, no hard decisions (detections) are made

and all the information in r̃(t) has been preserved.

The optimal weighted sum in the MLE requires the

knowledge of the SNRs (½kls) for all the different

paths, except when all these SNRs are identical.

Now let us study the performance limit of the

target location and velocity estimator in terms of the

CRLB. Previously, we have derived the CRLB for

the target location estimate using noncoherent MIMO

radar in [23]. The CRLB for the joint location and

velocity estimation problem is derived and stated in

the following theorem, which is similar to the CRLB

derived for MIMO radar in [24], [25].

THEOREM 2 Assuming the existence of an unbiased

estimator x̂(r̃(t)), the CRLB is given by

Ef[x̂(r̃(t))¡ x][x̂(r̃(t))¡ x]Tg ¸ J¡1 (28)

in which J is the Fisher information matrix (FIM)

J=

MX
k=1

NX
l=1

Jkl

=

MX
k=1

NX
l=1

2½2kl
1+ ½kl

Ckl (29)
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where
Ckl

¢
=AklBkA

T
kl

ATkl
¢
=

·
®kl ²kl 0 0

´kl ·kl ¸kl 'kl

¸
Bk

¢
=

·
¯2k »k

»k °2k

¸ (30)

®kl
¢
=
1

c

μ
x¡ xk
dk

+
x¡ xl
dl

¶
²kl

¢
=
1

c

μ
y¡ yk
dk

+
y¡ yl
dl

¶
´kl

¢
=
fc
c

·
(yk ¡ y)[vy(xk ¡ x)¡ vx(yk ¡ y)]

d3k
+
(yl¡ y)[vy(xl¡ x)¡ vx(yl¡ y)]

d3l

¸

·kl
¢
=
fc
c

·
(xk ¡ x)[vx(yk ¡ y)¡ vy(xk ¡ x)]

d3k
+
(xl¡ x)[vx(yl¡ y)¡ vy(xl¡ x)]

d3l

¸
¸kl

¢
=
fc
c

μ
xk ¡ x
dk

+
xl¡ x
dl

¶
'kl

¢
=
fc
c

μ
yk ¡ y
dk

+
yl¡ y
dl

¶

(31)

dk and dl have been defined in (2), and

¯2k = 4¼
2

"Z
f2jS̃k(f)j2df¡

μZ
fjS̃k(f)j2df

¶2#
(32)

is the mean-square bandwidth of the transmitted signal

s̃k(t), with S̃k(f) being its Fourier transform. Finally,

°2k
¢
=

Z
t2js̃k(t)j2dt¡

μZ
tjs̃k(t)j2dt

¶2
(33)

and

»k = Im

½Z
ts̃k(t)

@s̃¤k(t)
@t

dt

¾
: (34)

The inequality in (28) means that E[(x̂¡ x)(x̂¡ x)T]¡
J¡1 is a positive semidefinite matrix.

PROOF See Appendix I.

Note that ¯2k approximately measures the

frequency spread of the signal s̃k(t), and °
2
k measures

the time spread of the signal [21]. For a real baseband

signal s̃k(t), it is easy to show that the second term on

the right hand side of (32) is zero. Also, according to

Parseval’s theorem, one hasZ
jS̃k(f)j2df =

Z
js̃k(t)j2dt= 1: (35)

Therefore, for a real s̃k(t), we have

¯k =

"R
f2jS̃k(f)j2dfR jS̃k(f)j2df

#1=2
(36)

which is called the effective bandwidth of the signal

s̃k(t). It is quite clear from Theorem 2 that the location

and velocity estimation accuracy is determined

jointly by the SNR, the signal bandwidth, and the

geometry of the target, and the transmit and receive

elements.

Based on (30), it can be shown that Ckl, a 4£4
matrix, has the following elements

Ckl(1,1) = ®
2
kl¯

2
k +2®kl´kl»k + ´

2
kl°

2
k

Ckl(1,2) =Ckl(2,1) = ²kl(®kl¯
2
k + ´kl»k)

+·kl(®kl»k + ´kl°
2
k )

Ckl(1,3) =Ckl(3,1) = ¸kl(®kl»k + ´kl°
2
k )

Ckl(1,4) =Ckl(4,1) = 'kl(®kl»k + ´kl°
2
k )

Ckl(2,2) = ²
2
kl¯

2
k +2²kl·kl»k +·

2
kl°

2
k

Ckl(2,3) =Ckl(3,2) = ¸kl(²kl»k +·kl°
2
k )

Ckl(2,4) =Ckl(4,2) = 'kl(²kl»k +·kl°
2
k )

Ckl(3,3) = ¸
2
kl°

2
k

Ckl(3,4) =Ckl(4,3) = ¸kl'kl°
2
k

Ckl(4,4) = '
2
kl°

2
k :

(37)

B. Selection of Waveforms

The optimal waveform design for target location

and velocity estimation is not the focus of this

paper and could be investigated in our future work.

Instead, in this paper we adopt simple Gaussian

pulse waveforms to demonstrate the potential of the

MIMO radar in target localization and tracking. More

specifically we assume that the complex envelope of

the kth transmitted signal is a Gaussian pulse with a
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frequency shift [k¡ (M +1)=2]fg

s̃k(t) =

μ
1

¼T2

¶1=4
e¡t

2=(2T2) exp
h
j2¼(k¡ (M +1)=2)fgt

i
,

¡1< t <1 (38)

where T is a parameter that determines the effective

duration of the pulse.

Note that as long as fg is large enough (fg >

¯+2fmax), where fmax
¢
=maxk,l(jfklj), the signals

transmitted by different elements can maintain

orthogonality, since equivalently they are modulated

to different carrier frequencies with large enough gap

(fg) between adjacent carrier frequencies.

Based on (30) and (78), and using definitions in

(32), (33), and (34), for the Gaussian pulse defined in

(38), it can be shown that the FIM for estimating ¿kl
and fkl based on r̃kl(t) is

B0kl =
2½2kl
1+ ½kl

264
1

2T2
0

0
T2

2

375 : (39)

From (39) it is obvious that T determines the

accuracy of the delay and Doppler shift estimates of a

particular Gaussian pulse waveform. A smaller T leads

to better performance in delay (position) estimate, but

poor performance in Doppler shift (velocity) estimate.

The optimal waveform design problem, which

involves the trade-off between delay and Doppler shift

estimation performances, is beyond the scope of this

paper. Since we assume later in the tracking examples

that the uncertainty in target motion is small and the

target moves at a near-constant velocity, the velocity

estimate (based on a sequence of position estimates)

provided by the tracker will become very accurate

over time. Considering this, we choose a small T so

that more accurate delay and hence position estimates

can be obtained.

To be more concrete, we give an example of

a MIMO radar system. The target’s coordinates

are [1 4] km and its velocity is [60 300] m/s. In a

3£ 3 MIMO system, we assume that each element
consists of both a transmitter and a receiver, and the

coordinates of these elements are [98:5 17:4] km,

[70:7 70:7] km, and [17:4 98:5] km, respectively. The

carrier frequency is fc = 1 GHz. A small T is chosen,

namely T = 1:1254£10¡7 s. For simplicity, we further
assume that each path has the same SNR value,

meaning that ½kl = ½, for all the (k, l) combinations.

We define the SNR in dB as 10log10 ½.

Due to the small T chosen in the experiment,

the Fisher information about Doppler shift, which

is proportional to °2k = T
2=2, is negligible. More

specifically, a velocity of 300 m/s along the line of

sight corresponds to a Doppler shift of 1000 Hz.

In comparison, at SNR of 20 dB, the CRLB on

the standard deviation (SD) of the Doppler shift

estimation error is 8:9£ 105 Hz, which implies
that the Doppler shift estimate is very coarse and

contains little information. Using the parameters

in this example, it can be shown that the FIM of x

defined in (29) and (37) is almost a block diagonal

matrix, since »k = 0 and °
2
k is very small. The entries

in the upper left 2£ 2 block of the CRLB matrix,
which corresponds to the position estimate covariance,

are much smaller than those in the lower right 2£ 2
block of the CRLB matrix, which corresponds to the

velocity estimate covariance.

Using Gaussian pulses as defined in (38), based on

Theorem 1, the matched filter output can be derived as

MX
k=1

NX
l=1

½kljrklj2
N0(1+ ½kl)

(40)

where

rkl
¢
=
p
Ekãkle

¡¢¿2
kl
=(4T2)e¡T

2¼2¢f2
kl + nkl

¢¿kl = ¿kl¡ ¿kl(x)
¢fkl = fkl¡fkl(x)

(41)

are the mismatches between the true time delay

and Doppler shift and those determined by the

hypothesized x, and nkl has been defined in (18). It is

clear from (41) that the matched filter’s sensitivities

to mismatches in time delay and Doppler shift are

determined by T. Since we have chosen a very small

T (1:1254£ 10¡7 s), the matched filter cannot discern
an accurate match in fkl from a relatively coarse one.

For example,

e¡T
2¼210002

e0
= 1¡ 1:25£ 10¡7:

This implies that a perfect match in Doppler (¢fkl
= 0) yields an almost identical rkl to that when

the mismatch is as large as 1000 Hz. Thus, in this

paper, we can assume that the matched filter always

matches its frequency to zero Doppler shift, and yet

achieves almost the same output as if it were matched

to the exact Doppler shift. Thus in the simulations

throughout the paper, we use this assumption and the

Doppler shift (and hence velocity) estimates are not

necessary. Only the time delays are used to estimate

the position of the target. Note that by ignoring all

the Doppler shifts (fkl(x)), by replacing them all

with zeroes, the complexity of the matched filter

is significantly reduced. Further, the corresponding

MLE is significantly simplified, since only a position

estimate is needed, and the grid search complexity is

reduced from (Ng)
4 to (Ng)

2.

By ignoring Doppler shift, similar to the derivation

of (26) and (27), the MLE of the target position
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μ = [x y]T based on the received signal r̃(t) can be
derived as

argmax
μ

MX
k=1

NX
l=1

½kl
¯̄R1
¡1 r̃l(t)s̃

¤
k(t¡ ¿kl(μ))dt

¯̄2
N0(1+ ½kl)

: (42)

The FIM for position estimates can be derived in a

manner similar to that of Theorem 2,

Jμ =

MX
k=1

NX
l=1

2½2kl¯
2
k

1+ ½kl

·
®2kl ®kl²kl

®kl²kl ²2kl

¸
: (43)

Using the parameters in this example, it is easy to

show that J¡1μ is indistinguishable from the upper left

2£ 2 block of J¡1. This is because in (37), »k = 0,
and °2k is negligible compared with ¯

2
k , so that the

Doppler shift contributes little to the estimation of

target positions. We show later in the paper that even

the solution with this very simple waveform leads to

very accurate localization and tracking performance.

C. Simulation Results

1) Estimation Performance versus SNR: In

the following, we give an example to illustrate the

performance of the ML location estimator with

various SNR values. The setup and parameters of the

MIMO system have been described in Section IIIB.

In order to find the global maximum during the

ML estimation formulated in (42), a systematic grid

search is first employed to find an approximate global

maximum point, with a complexity proportional to

(Ng)
2. Any standard optimization algorithm could then

be used to refine the search for the global maximum.

The root mean square errors (RMSEs) of the ML

location estimator are obtained through 1000 Monte

Carlo simulations and plotted in Fig. 2, in which the

theoretical CRLB on the RMSE is plotted as well.

It is clear that in the log-log scale, the CRLB on the

RMSE is almost a linearly decreasing function of

SNR, especially for high SNR values. This is due

to the fact that at high SNR, the FIM is scaled by a

factor that is approximately linear in ½, according to

(29) or (43). It can also be observed that the MIMO

system achieves a very high localization accuracy,

with an RMSE in the order of meters for high SNR

values. However, the RMSEs do not converge to

the CRLBs, even for very high SNR values. This

is because for the estimation problem formulated

in the paper, the ML estimates are asymptotically

efficient only in the classical sense, when the number

of transmit/receive elements is very large, instead of in

the high SNR sense [21].

To further check the efficiency of the ML estimate,

we use the normalized estimation error squared

(NEES) [26], which is defined as

²μ = (μ¡ μ̂)TJμ(μ¡ μ̂) (44)

Fig. 2. RMSEs for ML estimator using a 3£ 3 MIMO system.

TABLE I

Average NEES Based on 1000 Monte Carlo Runs for the MLE

SNR (dB) 5 10 15 20 25 30

NEES 6.67 2.94 2.84 2.76 2.80 2.69

where μ̂ is the estimate, and Jμ is the FIM. It is
well known that the ML estimate is asymptotically

Gaussian with the mean equal to the true value of

the parameter to be estimated and variance given

by the CRLB. Assuming that the estimation error

is approximately Gaussian, the NEES is chi-square

distributed with nμ degrees of freedom, where nμ = 2

is the dimension of the parameter being estimated,

namely μ. For multiple Monte Carlo simulations, the
average of NEES is usually used, which is defined as

²̄μ =
1

Nm

NmX
i=1

²iμ (45)

where Nm is the number of Monte Carlo simulations.

Nm²̄μ has a chi-square density with Nmnμ degrees of

freedom. Based on 1000 Monte Carlo runs, our results

are listed in Table I. The two-sided 99% confidence

region for the average NEES is [1:84, 2:17]. The

results show that the average NEES always falls

outside the two-sided 99% confidence region, even

with an SNR of 30 dB. This implies that the MLE is

not asymptotically efficient in the high SNR sense.

2) Estimation Performance versus Number of

Transmit/Receive Elements: Now let us study the

performance of the ML location estimator with

various numbers of transmit/receive elements. In

this subsection, we use the same system parameters

and setup as in Section IIIC1, except that the SNR is

fixed at 10 dB, and M transmit/receive elements are

evenly deployed along an arc with a radius of 100 km

and its origin at [0 0] km. Based on 1000 Monte
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Fig. 3. RMSEs for the MLE using M £M MIMO system.

SNR= 10 dB.

TABLE II

Average NEES Based on 1000 Monte Carlo Runs for the MLE

M 3 4 5 6 7 8

NEES 3.08 2.43 2.47 2.19 2.13 2.06

Carlo simulation runs, the RMSEs of the ML location

estimator are obtained and plotted in Fig. 3. The

theoretical CRLB on the RMSE is plotted in Fig. 3 as

well. It is clear that the MIMO system achieves a very

high localization accuracy, especially for a MIMO

system with a large M. It can also be observed, as

M increases, the RMSEs quickly approach their

theoretical bounds, the CRLBs.

Based on 1000 Monte Carlo runs, the NEES for

the ML location estimates are provided in Table II.

The results show that for an M £M MIMO system,

when M is greater than or equal to 7, the average

NEES falls in the two-sided 99% confidence region.

This means that the MLE is asymptotically efficient

in the classical sense. That is, the errors “match” the

covariance given by the CRLB for a MIMO system

with a large number of transmit/receive elements.

IV. INTERACTIVE SIGNAL PROCESSING AND
TARGET TRACKING

In the last section we showed that a MIMO radar

system can render highly accurate target location

estimates. As a sequence of such location estimates

are available, it is natural to use them to infer the

time-varying target state, which typically consists

of target location and velocity. This process is also

called target tracking and there exist many filtering

techniques to solve this problem, including the KF

for a linear-Gaussian tracking problem, the extended

KF (EKF) [26] and unscented KF (UKF) [27] for

nonlinear tracking problems, and the PF [28, 29]

for the general nonlinear non-Gaussian filtering

problem. In this section, we show that for a MIMO

radar system with a high SNR and a relatively large

number of transmit/receive elements, the KF is very

well suited to track a target with linear dynamic

model, while the PF, a Monte Carlo simulation

based nonparametric algorithm, is very appropriate

for a MIMO radar system with a small number of

transmit/receive elements and a low SNR. Note that

in the proposed tracking approach, no hard decisions

are made at the matched filter output. Instead, the

matched filter outputs are directly used for target

tracking. Hence, the proposed tracking algorithm is

a TBD approach.

A. Target Dynamic Model

For simplicity and illustration purposes, in the

tracking examples, we adopt a discrete-time linear

and Gaussian dynamic target model. We consider a

single target moving in a two-dimensional Cartesian

coordinate plane. Target dynamics is defined by the

4-dimensional state vector

xm = [x(t) y(t) _x(t) _y(t)]Tjt=m¢
= [xm ym _xm _ym]

T (46)

where m is the discrete time index, and ¢ is the

system sampling interval. xm and ym denote the

coordinates of the target in the horizontal and the

vertical directions with the corresponding velocities _xm
and _ym, respectively, at time t=m¢. The superscript

T denotes the transpose operation. Target motion is

defined by the following widely used white noise

acceleration model [26]

xm = Fxm¡1 + vm¡1 (47)

where

F=

26664
1 0 ¢ 0

0 1 0 ¢

0 0 1 0

0 0 0 1

37775 (48)

is the state transition matrix, and vm¡1 is the process
noise vector which is assumed to be white, zero-mean,

and Gaussian with the following covariance matrix

Q= q

266666666664

¢3

3
0

¢2

2
0

0
¢3

3
0

¢2

2

¢2

2
0 ¢ 0

0
¢2

2
0 ¢

377777777775
(49)

where q denotes the power spectral density of

the process noise, and indicates the process noise

intensity. Note that (47) is a linear dynamic model.

However, the measurement model, which is
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characterized by the likelihood function provided in

(25) with fkl being set to zero, may or may not be

deemed as linear and Gaussian, depending on whether

the ML location estimation error can be deemed as

additive/Gaussian or not, as explored in Sections IIIC1

and IIIC2.

B. Interactive Signal Processing and Target Tracking
with a Kalman Filter

For target tracking, a sequence of measurements

needs to be made over time. Here we assume that

every ¢ seconds, the transmit elements transmit

orthogonal signals with Gaussian pulse complex

envelopes that have been defined in (38). The signal

returns received at all the receive elements are then

processed jointly to obtain an ML estimate of the

target location, as discussed in Section III. Also in

Section III we have shown that for a MIMO system

with a large number of transmit/receive elements,

the ML location estimate can be approximately

deemed as a Gaussian RV, with mean being the

true target location, and covariance provided by

the CRLB matrix. In this case, both target dynamic

and measurement models are linear and Gaussian,

rendering the KF a suitable filtering algorithm to deal

with this scenario. More specifically, the tracking

algorithm at each recursion includes two steps:

first the target location is estimated using the MLE

introduced in Section III. The ML estimate is then

fed into the KF as a measurement to update the target

state estimate. As a result, the measurement model is

provided as

ym =Hxm+wm (50)

where ym
¢
= μ̂m = [x̂m ŷm]

T is the ML estimate of the

target location,

H=

·
1 0 0 0

0 1 0 0

¸
(51)

and wm is a white Gaussian noise with covariance

matrix

R(xm,ym) = J
¡1
μ (xm,ym) (52)

where Jμ(xm,ym) is the FIM of the ML location

estimator, which is a function of the true target

location [xm ym]
T. One problem encountered in

evaluating R(xm,ym) is that [xm ym]
T is the part of the

unknown target state that itself needs to be estimated

by the tracking filter. There are several possible

solutions to this problem. One can use the estimated

value of [xm ym]
T to replace its true value in (52). The

estimated value can be provided by the MLE of the

target location as discussed in Section III, or the KF

state prediction x̂mjm¡1 made based on measurements
from time 0 to time m¡1. Further, one can first
estimate R(xm,ym) employing either one of the above

methods, and then obtain the updated KF estimate

x̂mjm, which in turn leads to a more accurate estimate
of R (namely, R(x̂mjm, ŷmjm)), which is then plugged
into the KF again to obtain the final estimate x̂mjm.
Note the third method incurs extra complexity than

the first two methods. More specifically, it requires

two KF iterations at each step, the first one for a

better estimate of R(xm,ym), and the second one for

the final target state estimate. In the tracking example

provided below, simulation results show that there are

little differences in tracking performances when using

different Rs estimated by different methods.

Next, we explore the interaction between target

location estimation and target tracking. As discussed

earlier the output of the ML location estimator serves

as the measurement input for the tracker, based on

which tracker can update its target state estimate. On

the other hand, the KF at the m¡ 1th iteration can
provide the state prediction x̂mjm¡1 and the uncertainty
associated with this prediction, in the form of the

covariance matrix

Pmjm¡1 = Ef(x̂mjm¡1¡ xm)(x̂mjm¡1¡ xm)Tg: (53)

In other words, at time m¡ 1, the KF provides prior
information regarding the target position at time

m. This prior information can be utilized to reduce

the search space for the ML location estimator, the

complexity of the optimization algorithm for MLE,

and the number of matched filters required for the

MLE. Here we limit the search space of the MLE

by a rectangle that circumscribes an ellipse, which

represents the confidence region of the predicted

position with a level of confidence very close to but

not equal to 100%. Mathematically, the uncertainty

ellipse is represented by the following formula:

(μm¡ μ̂mjm¡1)
T§¡1

mjm¡1(μm¡ μ̂mjm¡1)· ° (54)

where §mjm¡1 is the submatrix of the covariance
matrix Pmjm¡1 that corresponds to the prediction
of μm

§mjm¡1 =
·
Pmjm¡1(1,1) Pmjm¡1(1,2)

Pmjm¡1(2,1) Pmjm¡1(2,2)

¸
(55)

and ° controls the volume of the ellipse. Since

μ̂mjm¡1 »N (μm,§mjm¡1)

(μ̂mjm¡1¡μm)
T§¡1

mjm¡1(μ̂mjm¡1¡μm) follows a Â
2
2

distribution with 2 degrees of freedom. Therefore,

by setting ° = F¡1
Â2
2

(1¡®), in which F¡1
Â2
2

(¢) denotes
the inverse function of the cumulative distribution

function (cdf) of a Â22 distribution, (54) gives the 1¡®
confidence region of μm. For example, ° = 9:21 leads

to a 99% confidence region. The rectangle which

circumscribes the uncertainty region, represented

NIU, ET AL.: TARGET LOCALIZATION AND TRACKING IN NONCOHERENT MIMO RADAR SYSTEMS 1475



Fig. 4. Interactive signal processing and KF-based target tracking for MIMO radar systems.

Fig. 5. Illustration of 99% confidence regions provided by KF prediction and uniform matched filter matching points.

by an ellipse as in (54), can be easily derived and

provided in the following proposition.

PROPOSITION 1 The rectangle which circumscribes the

ellipse determined by (54) is

x̂mjm¡1¡
s

b22°

b11b22¡ b212
· x· x̂mjm¡1 +

s
b22°

b11b22¡ b212
(56)

and

ŷmjm¡1¡
s

b11°

b11b22¡ b212
· y · ŷmjm¡1 +

s
b11°

b11b22¡ b212
(57)

where b11, : : : ,b22 denote the elements of §
¡1
mjm¡1,

namely

§¡1
mjm¡1 =

·
b11 b12

b12 b22

¸
: (58)

PROOF See Appendix II.

Since the target will be located in the rectangle

region with a probability close to unity, the matched

filter does not have to match to a position outside

this rectangle. Hence, the search space of the MLE,

and the number of positions to which the matched

filter at the MIMO receiver needs to match, have been

significantly reduced. In summary, the interactive

signal processing and target tracking MIMO radar

system is illustrated in Fig. 4. The signal processing

front end provides target location information, which

is fed into the tracker as an input measurement. The

tracker provides tracking information regarding the

position and velocity of the target and feeds back the

predicted prior information to the signal processing

part, helping to reduce the complexity of the matched

filter.

For simplicity, the rectangle area that circumscribes

the confidence region of the location prediction is

discretized uniformly into points in a 2-dimensional

space. The ML location estimator evaluates likelihood

at these points, by matching matched filter to the

target locations represented by these points. In this

manner, an approximate global maximum point is

found, starting from which a standard optimization

algorithm is then used to refine the search for the

global maximum point. The 99% confidence regions

provided by the KF prediction have been illustrated in

Fig. 5 for three consecutive KF iterations. As we can

1476 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 2 APRIL 2012



see, the true target location has always been located in

the 99% confidence region of the KF prediction.

C. Interactive Signal Processing and Target Tracking
with a Particle Filter

As shown in Section IIIC2, when the number of

elements is large and the SNR is relatively high, the

estimation error of the MLE can be characterized

by a Gaussian noise with zero-mean and covariance

matrix equal to the CRLB matrix. However, at low

SNR values and with a small number of elements, this

approximation is not accurate any more, as illustrated

in Sections IIIC1 and IIIC2. The distribution of the

ML estimation error for a nonlinear problem is in

general unknown, and can only be approximated

through extensive simulations. The tracking approach

discussed in Section IVB is not appropriate for a

system with a small number of transmit/receive

elements at low SNR values, since in its measurement

model, there is severe mismatch between the

nominal parametric linear and Gaussian assumption

described by (50) and (52) and the true nonlinear and

non-Gaussian estimation errors. In such scenarios, a

natural choice is to use the nonparametric sequential

Monte Carlo techniques, also referred to as PFs,

to track the target. In the following we provide

a brief introduction to the PF that we use in the

paper.

Bayesian Sequential Estimation and Particle

Filtering: Bayesian sequential estimation, also known

as Bayesian filtering, is the most commonly used

framework for tracking applications. In Bayesian

filtering, the tracking algorithm recursively calculates

the belief in the state xm based on the observations

y from time 1 to time m. In other words we are

interested in finding the posterior distribution (or

the filtering distribution) p(xm j y1:m), where y1:m =
fyi, i= 1, : : : ,mg. At each time m, the minimum mean

square error (MMSE) estimate of the target state

x̂mjm can be obtained by taking the expectation of
xm with respect to its posterior distribution. In order

to recursively calculate the posterior distribution,

we need to have three distributions [28], namely

the initial state distribution p(x0) at time 0, the state

transition model p(xm j xm¡1) which represents the
state dynamics and the likelihood function p(ym j xm)
which depends on the observation model.

In particle filtering, the main idea is to find a

discrete representation of the posterior distribution

p(xm j y1:m) by using a set of particles with associated
weights

p(xm j y1:m)¼
NpX
j=1

w(j)m ±x(j)m
(xm¡ x(j)m ) (59)

where Np is the total number of particles and w
(j)
m is

the weight of particle x(j)m at time m. In this paper we

employ the sequential importance resampling (SIR)

particle filtering algorithm [28] to solve the nonlinear

non-Gaussian Bayesian dynamic estimation problem.

The advantage of the SIR PF is that it is very easy

to implement and computationally more efficient

compared with other variants of PFs. Here we do not

discuss the details of the algorithm for brevity and

refer interested readers to [28], [29] for details.

In our problem the initial set of particles is drawn

from a prior distribution ¼(x0) which is assumed

to represent p(x0). The state-space distribution

p(xm j xm¡1) that is needed for the prediction stage is
derived by using (47). Therefore, the only remaining

distribution that has to be calculated for the sequential

estimation problem is the observation likelihood

function p(ym j x(j)m ). In this paper the observation is
a collection of matched filter outputs, namely r̃, which

has been defined in Section III. The observation

likelihood function p(r̃m j x(j)m ) has been derived in
Section III and provided by (25) with fkl(x) being set

to zero.

Being a nonparametric tracking algorithm, the PF

does not need the first and second moments of the

measurements, namely the mean and the covariance

matrix of the measurement to work, as opposed to

the KF discussed in Section IVB. All it requires is

the likelihood function p(ym j x(j)m ). Furthermore, in
the PF-based tracking algorithm, there is no need

to go through the two-step procedure (including

location estimation and target state update), which is

required by the KF. In the PF, at each iteration, the

location estimate is not explicitly needed. The target

location information provided by the received MIMO

signal is incorporated in the filtering process through

the particle weighting process. These factors make

the PF very convenient and simple to implement.

As a result, the PF is ideal for tracking in a MIMO

radar system with a small number of transmit/receive

elements and with a low-SNR value, where the

linear-Gaussian measurement model is not valid any

more. Once the PF updates its state estimate using

MIMO radar matched filter outputs, it propagates

its particles for the next time step based on (47).

Analogous to the case of the KF, the matched filter

will only match the positions that are determined by

the propagated particles, so that the complexity and

cost of the matched filter are significantly reduced.

The diagram for a MIMO tracking system using a PF

is shown in Fig. 6, which illustrates the interaction

between the signal processing part and the particle

filter.

In Fig. 7, the evolution of the particles in a PF is

shown over three consecutive iterations. As can be

seen, the particle “cloud” covers a region where the

true target is located. In the MIMO radar the matched

filers will match to the locations determined by the

propagated particles as we have discussed earlier.
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Fig. 6. Interactive signal processing and PF-based target tracking for MIMO radar systems.

Fig. 7. Illustration of particle propagation over time.

D. Simulation Results

In this subsection, we give numerical examples

for target tracking using a noncoherent MIMO radar

system.

1) 5£5 MIMO Radar at High SNR: As shown

in Section IIIC2, when a MIMO system has a

large number of transmit/receive elements, the

measurement, namely the ML location estimate,

can be deemed as linear and Gaussian, and the KF

is the optimal tracking algorithm. It is known that

the performance bound for any recursive nonlinear

non-Gaussian tracking filter is provided by the

posterior CRLB (PCRLB) [30]. The approach for

recursively evaluating the PCRLB for the tracking

problem formulated in this paper has been provided

in Appendix IV in detail. It is also known that

for a linear Gaussian problem, the KF is efficient,

meaning that its RMSE can actually reach the PCRLB,

which in this case coincides with the state estimate

covariance matrix calculated by the KF.

Next, we give a tracking example to demonstrate

the superior tracking performances provided by a

noncoherent MIMO radar. We use a 5£ 5 noncoherent
MIMO radar system, whose transmit/receive

elements are deployed as shown in Fig. 8. For the

noncoherent MIMO radar system, T = 1:1254£
10¡7 s, and SNR= 10 dB. At time 0, the initial
target position and velocity are (¡0:89,¡5:02) km
and (59:04,334:83) m/s, respectively. The target is

observed for a period of 31 s, and the observations

are obtained at a frequency of 1 Hz (¢= 1 s). In this

case, even though the ML estimate is not efficient, as

demonstrated in Section IIIC2, our results show that

the KF still provides very good performance.

Both the KF discussed in Section IVB, and the

PF described in Section IVC are used to track the

target. For a fair comparison we set both the number

of matching grid points in the KF and the number of

the particles as 2000, so that the matched filters in the

two cases have roughly the same complexity. Note

that in the PF there is no need for the maximization

step, which is, however, required in the KF case. This

implies that the matched filter/KF combination results

in higher complexity, since it needs to match to extra

locations during the local optimization process after

the grid search is performed.

In some harsh scenarios with very low SNR and a

small number of elements, the tracking filters may not
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Fig. 8. Target trajectory and sensor configuration for 5£ 5 MIMO radar system.

keep track of the target all the time. We define that a

track is lost when a filter’s position estimation error

(em) is greater than a certain threshold ¿ , namely

em
¢
=
q
(xm¡ x̂mjm)2 + (ym¡ ŷmjm)2 > ¿ (60)

where x̂mjm and ŷmjm are the position estimates made at
time m based on measurements y1:m by the filter, and

the position estimation error (em) keeps increasing for

two consecutive time steps. Here we set ¿ = 21:21 m.

The positional RMSE at the time step m is

defined as

RMSEp(m)

=

"
1

NI

NIX
i=1

[xm(i)¡ x̂mjm(i)]2 + [ym(i)¡ ŷmjm(i)]2
#1=2

:

(61)

Note that NI is the total number of Monte Carlo runs

in which the tracker maintains the track of the target

from time m= 1 to m= 31, and i denotes the index

for such Monte Carlo runs. The velocity RMSE is

defined in a similar manner.

MIMO Radar versus High Resolution Monostatic

Radar: First, the 5£5 noncoherent MIMO radar
system is compared with a monostatic phased array

radar with high range and bearing resolutions. We

assume that in the phased array radar, a square planar

array is used, which consists of L identical isotropic

antennas with identical inter-antenna distance of

¸=2, where ¸ is the wavelength corresponding to the

carrier frequency. Further, for symmetry we assume

that L= (2K +1)2, where K is an integer, implying

that the phased array has a size of ((2K +1)=2)¸£

((2K +1)=2)¸. Since the transmitter and receiver in

a monostatic radar are colocated, it is much easier

to perform coherent pulse-Doppler processing. It is

assumed that the radar transmits a coherent Gaussian

pulse train to improve the Doppler resolution and to

enhance the SNR through coherent integration of the

pulse train. The pulse train with unit-energy and Np
Gaussian pulses is provided as follows.

s̃(t) =
1p
Np

Np¡1X
i=0

Ã
1

¼T2p

!1=4
e¡(t¡iTR)

2=(2T2p ) (62)

where Tp is the Gaussian pulse duration, TR is the

pulse repetition interval, which takes a value much

greater than Tp (TRÀ Tp). The FIM for estimating the

time delay ¿ and Doppler shift f based on received

signal r̃(t) has been derived and provided in the

following proposition.

PROPOSITION 2 The FIM for estimating ¿ and f based

on a Gaussian pulse train is

L¿f =
2½2t
½t+1

2664
1

2T2p
0

0
T2p

2
+
T2R
12
(N2p ¡ 1)

3775 (63)

where ½t is the total SNR after coherent pulse

integration.

PROOF See Appendix III.

Comparing Proposition 2 to (39), it is clear

that using a pulse train instead of a single pulse,

extra Fisher information ((T2R =12)(N
2
p ¡ 1)) about

the Doppler shift has been gained. Further, the

azimuth (bearing) of the target can be estimated by
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processing the received phased array signal. As shown

in [31], for arrays of identical isotropic antennas in

temporally and spatially white noise, if the square

planar array’s center is chosen as the origin of the

Cartesian coordinate system, and the principal axes

of inertia of the array are chosen as the x and y axes,

then we have the FIM for estimating azimuth, time

delay and Doppler shift as

L=

24 8¼2½tL¸2
Q 0

0 L¿f

35 (64)

where 0 is a zero matrix with proper dimension,
Q =Qxx =Qyy is the array configuration parameter

(moment-of-inertia parameter) [31],

Qxx
¢
=

LX
k=1

(xk ¡ x̄)2

Qyy
¢
=

LX
k=1

(yk ¡ ȳ)2
(65)

x̄=
1

L

LX
k=1

xk = 0

ȳ =
1

L

LX
k=1

yk = 0

(66)

where (xk,yk) denote the coordinates of the kth

antenna in the coordinate system with the origin at

the center of the phased array. For the square planar

array with inter-antenna distance of ¸=2, it is easy to

show that Q = ¸2L(L¡ 1)=48. Plugging Q and (63)
into (64), we finally have

L= ½t

26666664

¼2(L¡ 1)
6

0 0

0
½t

(½t+1)T
2
p

0

0 0
½t

½t+1

·
T2p +

T2R
6
(N2p ¡ 1)

¸

37777775 : (67)

Now let us determine the value of Tp for the

phased array radar. For a fair comparison, it should

be set as T=M, where T is the pulse duration in the

MIMO system, so that in the phased array radar, the
signal bandwidth is M times that in the MIMO radar.
However, in deriving (67) the narrowband assumption
[31], [32] in array processing has to be satisfied,
which means that the propagation time across the the
array is much smaller than the reciprocal of the signal
bandwidth, or equivalently ¢¿max=(

p
2Tp)¿ 1, where

¢¿max is the maximum travel time between any two
elements in the array. Following this assumption and
considering the specific square planar array that we
assumed, it requires that TpÀ

p
L=(2fc). Therefore,

we set Tp as Tp =max(T=M,5
p
L=fc). To make a fair

comparison, we assume that the signal power of the
phased array radar is M times that of each individual
transmitter used in a MIMO radar. Considering that
the noise power at the receiver is N0fB , where fB is
the signal bandwidth and is proportional to 1=Tp, the

SNR per pulse for phased array radar is MTp=T times
of the SNR for the MIMO radar system. In addition,
the SNR is improved Np-fold after the pulse train is
integrated coherently. In summary, the phased array
radar has a total SNR ½t = (NpMTp=T)½, where ½ is the
SNR for the MIMO radar.
The monostatic radar’s position is identical to

that of the third transmitter/receiver element of the
MIMO radar. The following parameters are used in
the phased array radar: L= 3025, fc = 1 GHz, Np =

25. As a result, Tp = 2:75£ 10¡7 s, for ½= 10 dB,
½t = 34:85 dB, and the SDs in azimuth, range, and
Doppler measurements are ¾b = 2:57£10¡4 rad,
¾r = 0:75 m, and ¾d = 380 Hz, respectively.
In the case of the monostatic phased array radar,

we use both an EKF and a PF to track the target. The

measurement consists of azimuth (μ), range (ds), and

Doppler shift (fs). It can be shown that the Jacobian

matrix in the EKF is

U= (rx[μ ds fs])
T

=

26666664

¡(y¡ ys)
d2s

(x¡ xs)
d2s

0 0

(x¡ xs)
ds

(y¡ ys)
ds

0 0

2fc(ys¡ y)[vy(xs¡ x)¡ vx(ys¡ y)]
cd3s

2fc(xs¡ x)[vx(ys¡ y)¡ vy(xs¡ x)]
cd3s

2fc(xs¡ x)
cds

2fc(ys¡ y)
cds

37777775 (68)
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Fig. 9. RMSEs of target state estimates for 5£ 5 noncoherent
MIMO radar system and for monostatic phased array radar. For

MIMO radar: SNR = 10 dB, T = 1:125£ 10¡7 s; for phased array
radar: total SNR ½t = 34:85 dB, Np = 25, Tp = 2:75£ 10¡7 s,

TR = 4:67£ 10¡6 s, L= 3025.

where (xs,ys) denote the coordinates of the phased

array radar. For the phased array radar, the calculation

of the PCRLB on the tracking estimation mean

square error (MSE) has been provided in detail in

Appendix IVB.

The tracking accuracies of the MIMO radar and

the monostatic radar have been compared in Fig. 9.

In the MIMO radar system, both the KF and the PF

have an in-track percentage of 100%. Even though

the PF has a slightly better tracking performance

than the KF, RMSEs of both the KF and the PF are

quite close to the PCRLB. This means that the KF

is nearly optimal even though the estimation error

of the MLE cannot be deemed as a Gaussian RV as

we have shown in Section IIIC2. In this case, with a

much smaller computational complexity, the KF is a

better choice than the PF.

It is clear that the MIMO radar exhibits significant

improvement in tracking accuracy. For example, at

the end of the 31-s interval, the MIMO radar’s RMSE

for position estimate is 1.86 m, while the monostatic

radar’s RMSE for position estimate is 8.71 m. The

inferior tracking performance of the phased array

radar is mainly due to its poor cross-range accuracy.

The SD of azimuth estimation error of ¾b = 2:57£
10¡4 rad corresponds to a cross-range accuracy of
25.7 m at a range of 100 km.

2) 3£3 MIMO Radar at Low SNR: Here we

give tracking examples to demonstrate the superior

tracking performances provided by a PF in a small

MIMO radar system with low SNR. In the following

tracking example, we use a 3£ 3 noncoherent MIMO
radar system, whose transceivers coincide with the

first, third, and fifth elements as shown in Fig. 8. We

assume a very low SNR here, namely SNR= 5 dB.

Fig. 10. RMSEs for target state estimates by 3£ 3 MIMO radar

system. SNR= 5 dB.

TABLE III

In-Track Percentage for Various SNR Values

SNR (dB) 0 1 2 3 4 5 6

PF 41 64 86 92 96 98 99

KF 13 34 40 72 82 91 97

TABLE IV

Positional RMSE (in meters) at the end of Track for Various SNR

Values

SNR (dB) 0 1 2 3 4 5 6

PF 9.29 8.96 7.02 5.79 5.77 4.80 4.01

KF 15.32 12.62 9.52 8.81 8.32 6.72 5.52

Note: RMSE is calculated only for those situations where the

track is maintained until the final time step K.

In a total of 500 Monte Carlo simulation runs, the

PF can keep track of the target in 490 runs while the

KF in 457 runs. Further, we compare the RMSEs of

these two filters, which are shown in Fig. 10. Note

that these RMSEs results are obtained by taking

averages over only the simulation runs where the filter

keeps track of the target. It is clear that the PF has a

much better tracking accuracy than the KF, especially

for the positional estimates. Also plotted in Fig. 10

is the PCRLB. As expected, even the PF cannot

reach the PCRLB since this is a highly nonlinear and

non-Gaussian tracking problem.

Next, let us examine more tracking examples. In

Table III, the in-track percentage is shown for the

3£ 3 MIMO system at various SNR values. Clearly,

the PF can maintain a track with a much higher

probability when the SNR is very low. For example,

at SNR=2 dB, the PF has in-track percentage of 86%,

while the KF can only achieve in-track percentage

of 40%. In addition to the in-track percentage, the
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RMSEs are compared for the PF and the KF. In

Table IV, the positional RMSE at the final time step

m= 31 is listed for various SNR values. Again, we

can see that the PF has a much smaller RMSE. In

summary, the PF outperforms the KF significantly

both in terms of in-track percentage and RMSEs,

especially in the severe scenario with a very low

SNR and a small number of MIMO transmit/receive

elements. Note that even for a small MIMO radar

system operating at very low SNR, the PF can still

achieve a higher tracking performance than the

monostatic radar with high resolutions in range and

azimuth. This is clear when Fig. 10 and Table IV are

compared with Fig. 9.

E. Coherent Integration of Pulses

So far, for a MIMO system, we have assumed

that a single Gaussian pulse has been used by each

transmitter, and the Doppler information has been

ignored. Similar to a monostatic radar a coherent

pulse train can be used by the MIMO system to

improve both the accuracy of the Doppler estimate

and the SNR through coherent integration. In a

distributed MIMO system if a signal is transmitted

by a transmitter that is not colocated with the receiver,

it is very difficult to coherently integrate the pulses,

since the receiver needs to remember the initial phase

of each pulse in the pulse train. Therefore, in this

paper a hybrid MIMO system is presented, where a

receiver coherently integrates the pluses transmitted

by its colocated transmitter, and it processes the

pulses transmitted by noncollocated transmitters

noncoherently and ignores the Doppler information.

As a result, in the hybrid MIMO system the FIM for

estimating ¿kl and fkl based on r̃kl(t) is either

B0kk =
N2p ½

2
kk

1+Np½kk

2664
1

T2p
0

0 T2p +
T2R
6
(N2p ¡ 1)

3775 8k

(69)

or

B0kl =
Np½

2
kl

1+ ½kl

24 1

T2p
0

0 0

35 8k 6= l (70)

where ½kl denotes the SNR per pulse for the klth path.

In the derivation of (70), we assume that each pulse

in the pulse train is processed independently through

noncoherent matched filter. Since the noise is assumed

to be white, the matched filter outputs for different

pulses in the pulse train are independent and we have

an Np-fold increase in FIM.

1) Pulse Train with Constraint on Total SNR: In

order to separate the effect of the increased Doppler

resolution by coherent pulse integration on the

tracking accuracy from that of the increased SNR,

we next assume that in the pulse train used either by

Fig. 11. PCRLBs on target state estimate RMSEs for hybrid

MIMO radar. T = 10¡5 s, TR = 1:70£ 10¡4 s SNR= 10 dB.

the hybrid MIMO system or the phased array radar,

the total SNR is a constant, which is set as 10 dB.

This implies that the per pulse SNR is proportional

to 1=Np. The PCRLBs on the target state estimate

RMSEs are plotted for the hybrid MIMO system and

the phased array radar in Figs. 11 and 12, respectively.

It is clear that by using a pulse train, the tracking

accuracy can be improved for both the MIMO system

and the phased array radar, even though the total SNR is

fixed. This is a result of the extra Fisher information

on Doppler shift gained due to the greatly improved

effective time duration of the signal as shown in (63)

or (69). Comparing Fig. 11 with Fig. 12, we can

see that the pulse train leads to a more pronounced

improvement in MIMO radar tracking performance

than that in the phased array radar. This is because

that MIMO system provides more spatial diversity for

signal paths with more transmitter-receiver pairs, and

the improvement in Doppler resolution has an impact

on all the M kk paths for k = 1, : : : ,M.

2) Pulse Train with Constraint on Per-Pulse SNR:

Next, let us study the overall impact of the pulse

train on the tracking accuracy, including both the

increased Doppler accuracy and the improved SNR.

For the noncoherent MIMO system, for all the kl

combinations, Bkls are set as in (70), by ignoring

the Doppler information. For both noncoherent and

hybrid MIMO systems, the SNR per pulse is set as

½p1 = 3 dB, Tp1 = 10
¡5 s, TR1 = 1:70£10¡4 s. For the

phased array radar, Tp2 = Tp1=M, the SNR per pulse is

½p2 =MTp2=Tp1 = 1:995 (or 3 dB), and TR2 = TR1. As

we can see in Fig. 13, when Np = 1, all three systems

provide almost the same tracking performance. As

Np increases, all three systems have more accurate

tracking results. The noncoherent MIMO system

has almost the same tracking performance as that of

the phased array radar. The hybrid MIMO system

leads to significant performance improvement in both
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Fig. 12. PCRLBs on target state estimate RMSEs for monostatic

phased array radar. T = 2£ 10¡6 s, TR = 1:70£ 10¡4 s, total
SNR = 10 dB.

position and velocity estimation compared with the

noncoherent MIMO radar and the phased array radar.

This is again due to the fact that the hybrid MIMO

system gains much more Doppler shift information

than the phased array radar, by integrating pulses

coherently using more colocated transmitter-receiver

pairs.

V. CONCLUSIONS

In this paper we have proposed localization

and tracking methods for a noncoherent MIMO

radar system. The MLE for the target location and

velocity has been derived, and its corresponding

CRLB matrix has been provided. Simple Gaussian

pulse waveforms with short duration were adopted

for the MIMO radar system to demonstrate MIMO

radar’s potential in accurate target localization. The

Gaussian pulse leads to very accurate localization

performance, even when the matched filter ignores

the Doppler shift and matches to zero Doppler shift,

which significantly simplifies its implementation.

Simulation results were provided to support the

theoretical derivations. Based on the localization

method, we also proposed two interactive signal

processing and tracking algorithms. For a system with

a large number of transmit/receive elements and with

a high SNR value, the KF is a good choice, since

the MLE can be approximately modeled as a linear

function of the target state, which is corrupted by an

additive Gaussian noise. For a system with a small

number of elements and a low SNR value, the PF

outperforms the KF significantly, both in terms of the

RMSE and in-track percentage. In both methods the

tracker provides predictive information regarding the

target location, so that the matched filter can match to

the most probable target locations, reducing the cost

and improving the tracking performance. Numerical

Fig. 13. PCRLBs on target state estimate RMSEs for 5£ 5
noncoherent MIMO radar, 5£ 5 hybrid MIMO radar, and

monostatic phased array radar. Curves with same line type and

symbols from top to bottom correspond to Np = 1, 10, 100,

respectively. For MIMO systems: Tp = 10
¡5 s, TR = 1:70£ 10¡4 s,

SNRp = 3 dB; for phased array radar: Tp = 2£ 10¡6 s,
TR = 1:70£ 10¡4 s, SNRp = 3 dB.

results also demonstrated that the noncoherent

MIMO radar and a hybrid MIMO radar system

provides significant performance improvement over

a monostatic phased array radar with high range and

azimuth resolutions. Future work could take into

consideration the multi-target case. In addition, in

this paper, the results are derived based on the white

noise and orthogonal waveform assumptions. In the

future, we will investigate the cases with colored

noise plus clutter and waveforms with nonnegligible

cross-correlations.

APPENDIX I. PROOF OF THEOREM 2

Let us first consider the Fisher information

contained in signal r̃kl(t), namely

Jkl = E[rx lnp(r̃kl(t) j x)rTx lnp(r̃kl(t) j x)]: (71)

Using the chain rule, we have

rx lnp(r̃kl(t) j x)

= [rx¿kl rxfkl]

2664
@ lnp(r̃kl(t) j ¿kl,fkl)

@¿kl

@ lnp(r̃kl(t) j ¿kl,fkl)
@fkl

3775
=Aklbkl (72)

where
Akl

¢
=[rx¿kl rxfkl]

bkl
¢
=

2664
@ lnp(r̃kl(t) j ¿kl,fkl)

@¿kl

@ lnp(r̃kl(t) j ¿kl,fkl)
@fkl

3775 (73)
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and ¿kl and fkl are the time delay and Doppler shift of

the received signal at the lth receiver due to the kth

transmitter, respectively. From their definitions in (1)

and (3), it is clear that ¿kl and fkl are functions of μ.

Now plugging (72) into (71), we have

Ckl =AklEfbklbTklgATkl
=AklB

0
klA

T
kl (74)

where B0kl
¢
=EfbklbTklg.

By taking the gradient with respect to x=

[x y vx vy]
T on both sides of (1), we get

rx¿kl =

2666666666664

@¿kl
@x

@¿kl
@y

@¿kl
@vx

@¿kl
@vy

3777777777775
=
1

c

266666664

x¡ xk
dk

+
x¡ xl
dl

y¡ yk
dk

+
y¡ yl
dl

0

0

377777775
(75)

where dk and dl have been defined in (2). Similarly,

by taking the gradient with respect to x on both sides

of (3), we have

rxfkl =
fc
c

26666666666664

(yk ¡ y)[vy(xk ¡ x)¡ vx(yk ¡ y)]
d3k

+
(yl¡ y)[vy(xl¡ x)¡ vx(yl¡ y)]

d3l

(xk ¡ x)[vx(yk ¡ y)¡ vy(xk ¡ x)]
d3k

+
(xl¡ x)[vx(yl¡ y)¡ vy(xl¡ x)]

d3l
xk ¡ x
dk

+
xl¡ x
dl

yk ¡ y
dk

+
yl¡ y
dl

37777777777775
: (76)

Combining (75) and (76) we obtain Akl = [rx¿kl rxfkl].
Note that B0k = E[bklb

T
kl] is the FIM for estimating

¿kl and fkl based on received signal r̃kl(t), which has

been provided in [21], namely

B0kl =
2Ē2r

N0(Ēr+N0)

·
¯2k »k

»k °2k

¸

=
2½2kl
1+ ½kl

Bk (77)

where the identities Ēr = 2Ek¾
2
kl and ½kl = 2Ek¾

2
kl=N0

have been used,

¯2k = 4¼
2

"Z
f2jS̃k(f)j2df¡

μZ
fjS̃k(f)j2

¶2#
:

(78)

Note that S̃k(f) is the Fourier transform of s̃k(t).

Further,

°2k
¢
=

Z
t2js̃k(t)j2dt¡

μZ
tjs̃k(t)j2dt

¶2
(79)

»k = Im

½Z
ts̃k(t)

@s̃¤k(t)
@t

dt

¾
: (80)

Substituting (77) in (74), we finally have

Jkl =
2½2kl

(1+ ½kl)
AklBkA

T
kl =

2½2kl
(1+ ½kl)

Ckl: (81)

Since ãkl and ñkl are mutually independent and they

are independent across different paths, the Fisher

information is additive and

J=

MX
k=1

NX
l=1

Jkl =

MX
k=1

NX
l=1

2½2kl
(1+ ½kl)

Ckl: (82)

APPENDIX II. PROOF OF PROPOSITION 1

The boundary of the uncertainty ellipse specified

in (54) can be expressed as the following quadratic

form

(μm¡ μ̂mjm¡1)
T

·
b11 b12

b12 b22

¸
(μm¡ μ̂mjm¡1) = °: (83)

Now let us denote u= xm¡ x̂mjm¡1 and v = ym¡
ŷmjm¡1, we have

b22v
2 +2b12uv+ b11u

2¡ ° = 0: (84)

Solving the above equation we get

v =
¡b12u§

q
(b212¡ b11b22)u2 + b22°

b22
: (85)

To obtain real solutions for the above equation, the

following inequality should be satisfied

u2 · b22°

b11b22¡ b212
: (86)

Since §¡1
mjm¡1 is positive definite, the inequality

b11b22¡ b212 > 0 holds and has been used in the
derivation of (86). By symmetry, it is easy to show
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that

v2 · b11°

b11b22¡ b212
: (87)

APPENDIX III. PROOF OF PROPOSITION 2

Provided that TRÀ Tp, it could be approximately

assumed that there is no overlap between adjacent

Gaussian pulses since the tail of the Gaussian function

decays very fast. Based on this assumption it is easy

to verify that
R js̃(t)j2 = 1. Further, we have

¯2 =

Z ¯̄̄̄
@s̃(t)

@t

¯̄̄̄2
dt¡

¯̄̄̄Z
s̃(t)

@s̃¤(t)
@t

dt

¯̄̄̄2
: (88)

The first term in (88) isZ ¯̄̄̄
@s̃(t)

@t

¯̄̄̄2
dt

=

Z
1

NpT
4
p

"
Np¡1X
i=0

μ
1

¼T2p

¶1=4
e¡(t¡iTR )

2=(2T2p )(t¡ iTR)
#2
dt

=
1

NpT
4
p

Np¡1X
i=0

Z μ
1

¼T2p

¶1=2
e¡(t¡iTR )

2=T2p (t¡ iTR)2dt

=
1

2T2p

where the second step follows the nonoverlapping

Gaussian pulse assumption. Similarly, it can be shown

that the second term in (88) is¯̄̄̄Z
s̃(t)

@s̃¤(t)
@t

dt

¯̄̄̄2
= 0: (89)

Therefore, we have the (1,1) elements of B is

2½2

1+ ½
¯2 =

2½2

1+ ½

1

2T2p
: (90)

The rest of the terms in B can be derived in a

similar manner.

APPENDIX IV. POSTERIOR CRAMÉR-RAO LOWER
BOUNDS

A. PCRLB for Tracking in MIMO Radar

Let x̂m(y1:m) be an estimator of the state vector

xm at time m, given all the available measurements

y1:m up to time m. Then, the MSE matrix of the

estimation error at time m, Pm is bounded below by

the PCRLB G¡1m

Pm = Ef[x̂m(y1:m)¡ xm][x̂m(y1:m)¡ xm]Tg ¸G¡1m
(91)

where Gm is the FIM. In [30] Tichavský, et al. provide

a recursive approach to calculate the sequential

FIM Gm:

Gm+1 =D
22
m ¡D21m (Gm+D11m )¡1D12m : (92)

For the linear target dynamic model (47) and

nonlinear measurement model explained in Section III,

the recursion equations in [30] become

D11m = E[¡¢xmxm lnp(xm+1 j xm)] = FTQ¡1F (93)

D12m = E[¡¢xm+1xm
lnp(xm+1 j xm)] =¡FTQ¡1 (94)

D21m = E[¡¢xmxm+1 lnp(xm+1 j xm)] = (D12m )T (95)

D22m = E[¡¢xm+1xm+1
lnp(xm+1 j xm)]

+E[¡¢xm+1xm+1
lnp(ym+1 j xm+1)]

=Q¡1 +D22,bm : (96)

The operator ¢ in (93)—(96) is defined as the

second-order derivative and ¢£ª =rªrT£. It is
important to note that all the above expectations

in (93)—(96) are taken with respect to the joint

probability distribution p(x0:m+1,y1:m+1).

The initial FIM G0 can be calculated from the

a priori probability density function (pdf) p(x0)

G0 = Ef¡¢x0x0 lnp(x0)g: (97)

Based on the fact that xm, xm+1, and ym+1 form a

Markov chain, the joint pdf for the expectation can be

rewritten as follows

p(x0:m+1,y1:m+1)

= p(x0:m,y1:m)p(xm+1 j xm)p(ym+1 j xm+1):
(98)

Using this property along with the target dynamic and

measurement models described in Sections III and IV,

it is straightforward to derive D22,bk as

D22,bk =¡Ep(xm)p(xm+1 jxm)p(ym+1 jxm+1)[¢
xm+1
xm+1

lnp(ym+1 j xm+1)]
= Ep(xm)p(xm+1 jxm)[¤(xm+1)] (99)

where

¤(xm+1) =

·
Jμ(xm+1) 0

0 0

¸
(100)

where Jμ has been provided in (43), and 0 is a

2£ 2 zero matrix. The inner integrations in (99)
can be approximately evaluated by converting them

into summations using Monte Carlo integration

methodology. In order to do this, we first generate

a set of samples x
(j)
m+1 » p(xm+1 j xm) with identical

weights w
(j)
m+1 =N

¡1
p , where j = 1, : : : ,Np. Then, the

above expectations can be approximated as follows:

Ep(xm+1jxm)[¤(xm+1)]¼
1

Np

NpX
j=1

¤(x
j
m+1): (101)

The final expectation with respect to p(xm)

in (99) can be obtained by averaging the above

approximations over a number of Monte Carlo trials,

i.e., over a number of sample tracks.
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B. PCRLB for Tracking in Phased Array Radar

For target tracking in phased array radar, the

calculation of the PCRLB can be carried out in a

similar manner as described in Appendix IVA, and

one only needs to replace ¤(xm+1) in (100) with the

following

¤(xm+1) =U
T(xm+1)LU(xm+1) (102)

where L and U have been define in (67) and (68)
respectively.
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