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Abstract

Any graph G admits a neighborhood multiset A (G) = {Ng(x) | = €
V(G)} whose elements are precisely the open neighborhoods of G. We say
G is neighborhood reconstructible if it can be reconstructed from A4 (G),
that is, if G & H whenever A4 (G) = A4 (H) for some other graph H. This
note characterizes neighborhood reconstructible graphs as those graphs G
that obey the exponential cancellation G¥2 =~ HX> — G =~ H.
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Our graphs are finite and may have loops, but not parallel edges. The open
neighborhood of a vertex x of a graph G is Ng(z) := {y € V(G) | zy € E(G)}.
Notice that © € Ng(z) if and only if zz € E(G), that is, there is a loop at .

To any graph G there is an associated neighborhood multiset A (G) = {Ng(x)
| z € V(G)} whose elements are the open neighborhoods of G. It is possible that
N(G) = A (H) but G 2 H. Figure 1 shows the simplest instance of this. Here
G % H but A (G) = {{0},{1}} = A (H). Figure 2 shows a more complex and
interesting example.

Ne() = {1} =nNg(1) Q) Q)
0 o 1 Ne(1) = {0} = Nu(0) O gt

Figure 1. Two non-isomorphic graphs with the same neighborhood multiset.
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Ng(0) = {1,2,8} =
Ne(1) = {0,5,7} =
N¢(2) = {0,3,4} =
Ne(3) = {2,7,9} =
Ne(4) = {2,5,6} =
Ne(5) = {1,4,9} =
Ng(6) = {4,7,8} =
Ne(7) = {1,3,6} =
Ne(8) = {0,6,9} =
N¢(9) = {3,5,8} =

Figure 2. The Petersen graph is not neighborhood reconstructible. It is paired here with
a different graph that has the same neighborhood multiset. Example from Mizzi [5, § 3.9].

A graph G is called neighborhood reconstructible if A (G) = A (H) implies
G = H for any graph H with V(H) = V(G). Figure 2 shows that the Petersen
graph is not neighborhood reconstructible. Aigner and Triesch [1] attribute the
neighborhood reconstruction problem to Sés [9]. They note that deciding if a
graph is neighborhood reconstructible is NP-complete.

Given graphs G and K, the graph exponential G¥ is the graph whose ver-
tex set is the set of all functions V(K) — V(G), where two functions f,g are
adjacent precisely if f(z)g(y) € E(G) for all zy € E(K). (See [6, 8].) If
V(K) = {v1,...,vn}, then a function f : V(K) — V(G) can be identified with
an n-tuple f = (z1,...,x,) € V(G)" signifying f(v;) = z;.

We are interested exclusively in G*2. Note V(G¥2) = V(G) x V(G), and
two functions (z1,z2) and (y1,y2) are adjacent if and only if z1y2 € E(G) and
xay1 € E(G). That is,

B(G"?) = {(z1,22)(y1,32) | 2132 € E(G) and 2391 € B(G)}.

See Figure 3, which shows that GX = HX does not necessarily imply G = H.

1o K, o1 LD [oN? (0,1) (8)
(D"-04 () = o\

0
0 (0,0) (1,0) é (0,0) (1,0)

Figure 3. Two exponentials G*2 and H%2. This shows GX = HX may not imply G = H.

Actually, the conditions under which GX = HX implies G = K are not fully
understood today. (The issue is further complicated by the fact that there are
at least two definitions of graph exponentiation; compare [4].) This note links
one instance of this exponential cancellation to neighborhood reconstruction. Our
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main result is that G is neighborhood reconstructible if and only if GK2 = HX2
implies G = H for all graphs H. To understand why we might expect this,
consider Proposition 1 below, whose proof is almost automatic. (Figures 1 and 3
illustrate Proposition 1.)

Proposition 1. If G and H are two graphs on the same vertex set and N (G) =
N (H), then GK2 = Kz,

Proof. Say A4 (G) = A (H). As G and H have the same neighborhood multiset,
there is a bijection ¢ : V(G) — V(H) for which Ng(x) = Ng(p(x)) for each
x € V(G). (Such map ¢ is unique if no two vertices of G have the neighborhood;
otherwise there is more than one ¢.) The bijection A : V (GKQ) -V (HKZ)
where \(z,y) = (p(z),y) is an isomorphism. Indeed,

(x,y)(u,v) € E (GKQ) <= v € Ng(z) and y € Ng(u)
= ve NH(SD( ) and y € Ny (p(u))
= (p(@)y) (p(u),v) € E(H™)
= )\(aj,y) )\(u,v) € E(HKQ) -

We will use this proposition in the proof of our main result. We will also
need the direct product of graphs: G x H is the graph whose vertex set is the set
Cartesian product V(G x H) = V(G) x V(H), and whose edges are

E(G x H) ={(z,y)(«'y) | za’ € E(G) and yy' € E(H)} .

See Chapter 8 of [2] for a survey of the direct product.

For a positive integer k, the direct power G¥ is G x --- x G (k factors).
Any square G? admits a mirror automorphism pu : G2 — G? of order 2, where
p(z,y) = (y,z). From the definitions it is immediate that

(1) (z,y)(u,v) € E(G?) ifand only if (z,y)u(u,v) € E(G*?),
(2) (z,y)(u,v) € B(G®?) if and only if p(z,y)(u,v) € E(G?).

Recall the following two results (by Lovédsz) concerning direct powers and
products. (They are Theorems 2 and 5, respectively, in [7].)

Proposition 2. If G*¥ = H* for a positive integer k, then G = H.

Proposition 3. If Gx K = H x K, then there is an isomorphism GX K — Hx K
of form (z,y) — (AN(z,y),y) for some map A : G x K — H.

Actually, we will only need a weaker instance of Proposition 3, one that is
easy to prove from scratch. If G x Ky = H x Ks, then there exists an isomorphism
G x K9 — H x Ky of form (z,y) — (Mz,y),y).
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We are ready for our main theorem.

Theorem 4. A graph G is neighborhood reconstructible if and only if the expo-
nential cancellation law G*2 =2 HX2 = G = H holds for any graph H.

Proof. Say the exponential cancellation law GX2 = HX> = @ = H holds.
Let A (G) = A (H) for a graph H with V(H) = V(G). Proposition 1 yields
GK2 = K2 whence G = H. Thus G is neighborhood reconstructible.
Conversely, suppose G is neighborhood reconstructible. Say GX2 = HX2 for
some graph H. We must show G = H.
Put V(K3) = {0,1}. Take an isomorphism ¢ : GX2 — H¥2. Using (1) and
(2), observe that

(z,9)(u,v) € B(G?) <= (z,y)plu,v) € E(G"?)
= o(z,y) op(u,v) € E(H"?)
— pp(x,y) eu(u,v) € E(H?).

From this we get an isomorphism © : G? x K9y — H? x K5 defined as

| (pp(x,y),e) ife=0,
o)) ={ (e et

From G? x Ky = H? x Ky we get G? x Ky x K9 = H? x Ky x K3, yielding
(G x K2)? = (H x K3)%. By Proposition 2 we have G x Ko = H x K. Then
Proposition 3 guarantees an isomorphism 6 : G x Ky — H x Ky having form

_f (Zo(=),e) ife=0,
0(z,¢) —{ Ona) o) ife—1

for two bijections Ao, A1 : V(G) — V(H), which (by definition of the direct
product) necessarily satisfy zy € E(G) if and only if A\o(z)A1(y) € E(H).

Now form a graph H’ on V(G) whose edges are precisely A; ' (u)A;*(v) for
each wv € E(H). Thus A\|' : H — H’ is an isomorphism.

We claim that Ng(z) = Ny (A7 Ao(z)) for each z € V(G) = V(H'). Note
y € Ng(x) if and only if zy € E(G), if and only if )\0( JA(y) € E(H), 1f and only
if \"\Ao(z) A\[M A1 (y) € E(H'), if and only if A\[ AO( Yy € E(H'), if and only if
y € Ng/(A\{"Ao(2)). Thus indeed Ng(z) = Ny (AT Ao()).

Consequently A (G) = A (H'), so G = H' because G is neighborhood re-
constructible. But H' = H, so G = H. [ ]

The present note is a sequel to [3], which characterizes neighborhood recon-
structible graphs as those graphs G which obey the cancellation law G x K &
H x K = G =2 K for all graphs H and K.
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