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Abstract. Formulas for vertex eccentricity and radius for the
tensor product G ® H of two arbitrary graphs are derived. The
center of G® H is characterized as the union of three vertex sets
of form A x B. This completes the work of Suh-Ryung Kim,
who solved the case where one of the factors is bipartite, {im’s
result becomes a corollary of ours.

1 Introduction

The tensor product of two simple graphs G = (V(G), BF(G)) and H =
(V(H), E(H)) is the graph G ® H whose vertex set is V(G) x V(H), and
whose edge set is {(a, z)(b, y)|ab € E(G) and zy € E(H)}. In the literature,
the tensor product is also called the Kronecker product, the categorical
product or the direct product (See Section 5.3 of [2]).

The eccentricity of a vertex a of G is the largest possible distance from
a that a vertex b of G can have. The radius of G is the minimum of the
eccentricities of all vertices of G. The center of (G is the set of vertices
whose eccentricity equals the radius of G. For a standard reference, see [1].

In this article, we derive formulas for the eccentricity of a vertex in
G ® H, and for the radius of G ® H, where G and H are arbitrary simple
graphs. We also present an explicit description of the center of G @ H.
This completes the work of Suh-Ryung Kim [3], who treated the case in
which one of the factors is bipartite. The general case that we address is
considerably more complex.
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In what follows, we recall some necessary definitions and terminology.
In Section 2, we review the notion of distance in a graph. In order to obtain
results on distance in a tensor product, it will be necessary to introduce a
modified form of distance — called upper distance — on its factors. Section
3 reviews the graph-theoretic notions of eccentricity, radius and center. As
a preliminary to deriving a formula for eccentricity in a tensor product, we
introduce a modified form of eccentricity — called upper eccentricity — on
its factors. Our main results are proved in Section 4, and in Section 5 we
discuss how these results imply and generalize those of S. -R. Kim [3], and
we present a counterexample to Kim’s conjecture on the general case.

2 Distancein G and G H

Here we review the notion of distance in a graph, and derive a few results
concerning distance in G® H. To achieve the latter goal, it will be necessary
to present a variation of the usual distance in a graph G. The discussion is
phrased in the language of walks.

Recall that a walk in G is a sequence of vertices W = wjwaws - - 1wy,
where any two consecutive vertices are adjacent, and form an edge of the
walk. A walk is regarded as a traversal of edges in a specified order. The
length of W is |[W| = n — 1, and is regarded as the number of edges in
the walk (with the understanding that an edge may appear and be counted
multiple times). A trivial walk consists of a single vertex, and has length
0. Two walks have the same parity if the difference of their lengths is even,
and otherwise they have opposite parity. We also speak of a walk W and
an integer k as having the same (or opposite) parity, meaning |W| — k is
even (or odd). An even (odd) walk is one whose length is even (odd).

If W = wiwqws...w, and X = z12223- -2, are two walks of the same
length in graphs G and H, respectively, we denote by W & X the walk
(wy, x1)(we, 2)(ws, z3) - - (Wn, 2n) in G @ H. Notice that any walk in
G @& H can be written uniquely as W @& X, for appropriate walks W and X
of the same length in G and H, respectively.

The distance between two vertices ¢ and b of a graph &, denoted by
da(a,b), is the length of the shortest a-b walk in G, or oo if no such walk
exists. The upper distance between @ and b, denoted Dg(a,b), is the length
of the shortest a-b walk whose parity differs from that of dg(a,b). If G
is bipartite or trivial, then no such walk exists, and we say Dg(a,b) =
oo. Note that if G is connected and contains an odd cycle, then Dg(a,b)
is always finite. For example, in Figure 1, dg(a,d) = 2, Dg(a,d) = 3
dg(a,a) =0, and Dg(a,a) = 5.

An a-b walk W in a graph G is called minimal if |W| = dg(a,b), and
it is called slack if dg(a,b) < |W| < Dg(a,b). It is called critical if |W1] =
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Dg(a,b), and ample if Dg(a,b) < |W|. For example, if G is the T-cycle
abedefga, the walk abe is minimal, and cdefga is critical. The walk abcbe is
slack, and abcbcbe is ample. Notice that any minimal walk is necessarily
a path. Observe also that any wall in a bipartite graph is either minimal
or slack — it can be neither critical nor ample. The following observation,
which follows from the above definitions, will be used frequently.

Observation 1: An a-b walk W is minimal if and only if there exist no
shorter a-b walks. An a-b walk W is slack if and only if there exist shorter
a-b walks, and all such shorter walks have the same parity as W. An a-b
walk W is critical if and only if there exist shorter a-b walks, and all such
walks have a parity different than that of W. An a-b walk W is ample if
and only if there exist shorter a-b walks of both parities.

Next, we present two lemmas concerning distance in a tensor product.
Although there exist more formulaic expressions for distance (see, for in-
stance, [4, 3]) these lemmas will prevent our notation from getting out of
hand.

Lemma 1: Suppose G has a nontrivial a-b walk W and H has a nontrivial
z-y walk X. If W and X have the same parity, then degr ((a, ), (b,y)) <
max{|W|, | X|}.

Proof. If |W| = |X|, then W ® X is an (a,z)-(b,y) walk in G ® H of
length |W1| = max{|W|,|X|}, and the result follows. If |W| < |X]|, we
can extend W to an a-b walk W of length |X| by appending to its end
a walk bebebe - - -beb of even length | X| — |W| (which exists because X is
nontrivial). Then W @ X is an (a,2)-(b,y) walk in G ® H of length |X| =
max{|W|,|X|}. Thus, degu((a, ), (b,y)) < max{|W|,|X|}. A symmetric
construction works if |W| > | X]. |

Lemma 2: If there are no a-b and 2-y walks of the same length in G and H,
respectively, then degr((a, ), (b, y)) = co. Otherwise, dggu((a,z), (b,y))
= min{n |3 a-b and z-y walks of length n in G and H, respectively}.

Proof. If there are no a-b and z-y walks of the same length in G and H,
respectively, then there can be no (a,z)-(b,y) walks in G ® H, for such a
wallk would be of form W © X, where W and X are a-b and z-y walks of
the same length in G and H, respectively. Hence dgga((a,z), (b,y)) = oo
in this case.

Now assume there are a-b and z-y walks of the same length in G and H.
Set M = min{n|3 a-b and z-y walks of length n in G and H, respectively}.
By Lemma 1, it follows that degr((a, ), (b,y)) < M. On the other hand,
any (a,z)-(b,y) walk in G® H can be written as W ® X for some a-b walk
W in G and z-y walk X in H, both of the same length n. It follows that
dear((a, ), (b,y)) > M, and the proof is complete. [ |
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The following result is our primary tool for constructing minimal walks
n tensor products.

Proposition 1: Suppose W and X are walks of the same length in G and
H | respectively. Then the walk W ® X in G ® H is minimal if and only if
one of W or X is minimal, or if one is critical and the other is slack.

Proof. Let W be an a-b walk and let X be an z-y walk. If one of W or X
is minimal, then W @ X is minimal by Lemma 2. If W is critical and X is
slack, then every «-b walk in G that is shorter than W has a parity that is
opposite to that of W, but every a-y walk in H that is shorter than X has
the same parity as X. Hence there is no integer n < |W| = | X| for which
there are a-b and z-y walks of length n, so W ® X is minimal by Lemma
2. Reversing roles, if W is slack and X is critical, then W ® X is minimal.

Conversely, suppose W ® X 1s minimal. If one of W or X is minimal,
there is nothing to prove. So suppose that neither is minimal, meaning
that there are shorter a-b and x-y walks than W and X. Since W © X is
minimal, |W ® X| = degu((a, z), (b,y)). Lemma 1 then implies Lhat the
a-b walks that are shorter than W have one parity, and the z-y walks that
are shorter than X have the other parity. As |W| = |X|, Observation 1
shows that one of W and X is critical and the other is slack. |

3 Eccentricity and Centers

The eccentricity of a € V(G) is eg(a) = max{dg(a,b)|b € V(G)}. The
upper eccentricity of a is Fg(a) = max{Dg(a,b)|b € V(G)}. Moreover,
we define the even upper eccentricity to be the even integer El(a) =
max{Dc¢(a,b)|b € V(G), Dg(a,b) is even}, and the odd upper eccentricity
to be E¢(a) = max{Dg(a,b)|b € V(G), Dg(a,b) is odd}. Therefore E¢(a)
= max{F%(a), E5(a)}. Notice that Eg(a) = oo if G is disconnected, bi-
partite, or trivial, and by convention we set E%(a) =00 = E%;(a) in such
cases. As an 1llustration of these ideas, each vertex v of the graph G in
Figure 1 is labeled with a 4-tuple (E2(v), EL(v), Eg(v), ec(v)).

a {4,5,5,2)
\1)\(4,3,4, 1)
G wc (2,3,3,2)
d (2,3,3,2)
Figure 1. Each vertex v is labeled with (E%(v), EL(v), Eg(v), ec(v))

The radius of G is #(G) = min{e¢(a)|a € V(G)}, and the upper radius is
R(G) = min{Fg(a)|a € V(G)}. We also define the even and odd upper radii
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of G to be R*(G) = min{E%(a)|a € V(G)} and R}(G) = min{EL(a)|a €
V(G)}, respectively. For example, in Figure 1, R%(G) = 2, RY(G) = 3
R(G) =3, and r(¢) = 1.

Recall that the center of (G is the subset of V() consisting of all vertices
a for which eg(a) = »(G). For example, the center of the graph G in
Figure 1 counsists of the single vertex b. Consideration of the even and odd
upper eccentricity and radii in the factors of G ® H will be instrumental in
characterizing its center. We will need the following technical result.

)

Lemma 3: For any vertex a in a connected, nontrivial, nonbipartite graph
G, the numbers /g (a) and E}(a) differ by 1. Also, if a € V(G) is such
that R(G) = Eg(a), then R°(G) = EZ(a) and R} (G) = EL(a). (So R%(G)
and R'(G) differ by 1, and R(G) = max{R°(G), R*(G)}.)

Proof. Given a vertex a of G, Eg(a) = max{EZ(a), E5(a)} is finite be-
cause (& is connected, nontrivial and nonbipartite. Therefore, there exists
a critical a-b walk W of length E¢(a) in G. The statement will be proved
if we can produce a critical a-c¢ walk of length Fg(a) — 1 in G. We consider
two exhaustive cases.

Case 1. The walk W is closed, that is « = b. Then, as dg(a,b) = 0, W
must have odd length. Let X be the a-c walk obtained by deleting the last
edge ca of W. Then X has even length, and it must be critical, for were
there a shorter even a-c walk Y, then ¥ with the edge ca appended to its
end would be a shorter odd a-a walk than W, contradicting fact that W is
critical. Hence |X| = |W|—-1 = Eg(a) — 1.

Case 2. The walk W is not closed, that is a # b, Let M be a minimal
a-b walk. Let N be the minimal a-c walk obtained by deleting the last edge
chb of M, and let X be a critical a-c walk. Now, X has parity opposite to IV,
which has parity opposite to M, which has parity opposite to W. Therefore
X and W have opposite parities. Notice |X| > |W|— 1, for otherwise the
walk obtained by appending the edge cb to the end of X would have the
same parity as W, and be a shorter a-b walk than W, contradicting the
fact that W is critical. On the other hand, | X| < |W/|— 1, because W is a
critical walk of maximal length beginning at a, and its parity differs from
the critical walk X beginning at a. Thus |X| = |W|-1 = Eg(a) — 1.

This completes the proof that E2(a) and E}(a) differ by 1. To prove
the statements about R, R® and R!, choose a € V(G) for which R(G) =
Eg(a).

Observe that min{ EZ(a), E&(a)} < R%(G), for otherwise there is a b €
V(G) with R°(G) = EX(b) < min{EY(a), EL(a)} < max{E%(a), EL(a)}
= Eg(a), whence Eg(b) < Eg(a)—1. But, as EX(b) and EL (b) differ by 1,
this yields Fg(b) = max{EX(b), EL(0)} < Eg(a), contradicting the choice
of a. Thus, min{Eg(a), E4(a)} < RY(G), and similarly min{ E%(a), EL(a)}
< RYG).
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But also, R*(G) < E%(a) < max{F%(a), E5(a)}, and RY(G) < Eg(a)
< max{F%(a), EL(a)}. Therefore we have

min{ B3(a), BL(a)} < B(G), RY(G) < max{EY(a), E&(a)}.

From this it follows that, as E2(a) and E}(a) differ by 1, R%(G) = FZ(a)
and RY(G) = El(a). [ |

4 Results

We are now in a position to compute the eccentricity of a vertex of G @ H,
and also to find the radius and center of G ® H. This is done in Theorems
1,2, and 3.

Theorem 1: If ¢ and H are nontrivial graphs, and (a,z) € V(G®H), then
econ(a, r) =max{eg(a), ey (z), min{ E%(a), B} (2)}, min{ B (a), By (x)}}.

Proof. For simplicity, throughout this proof M will be the integer M =
max{eg(a), eg(z), min{ E%(a), B (z)}, min{ E{(a), Y% (z)}}.

To begin, observe the theorem is true when G ® H is disconnected:
Recall (c.f. Theorem 5.29 of [2]) that G ® H is disconnected if and only if
one of G or H is disconnected, or if both G and H are bipartite. Then

ecom(a, ) = oo

0

G @ H is disconnected

G or H is disconnected, or both GG and H are bipartite

0

eg(a) = oo or eg(z) = o0, or Eg(a) = oo = Eg(x)

ec(a) = oo or eg(z) = oo, or min{E&(a), E(2)} = co = min{Eg(a), EY(z)}

(3
M = 0.

It follows that the theorem is true when one of G or H is disconnected, or
if both G and H are bipartite, and this happens if and only if M = oco.
Therefore, for the rest of the proof we may assume G and I are connected,
and at least one is not bipartite, and that M 1s finite.

Now we show eggm(a,z) < M. For this, it suffices to show that any
minimal walk in G ® H which starts at (a,z) has length no greater than
M. Thus, let W& X be a minimal (a, 2)-(b, y) walk. By Proposition 1, one
of W or X is minimal, or one is critical and the other is slack. We consider
these possibilities one by one.
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If W is a minimal a-b walk, |[W @ X| = |W| <ega) < M. If X isa
minimal z-y walk, |W @ X| = |X| < eg(2) < M.

Next, suppose W is critical and X is slack. (So G necessarily has an
odd cycle.) First assume |W @ X| is even, so W @ X| = |W| < E%(a),
while |X| < Eg(z). But, as |X]| is slack and of even length, any critical
a-y walk must have odd length, so |X| < E4(z). (Or, if H is bipartite, | X|
< Ej(z) = oo automatically.) Therefore |[W @ X| = |X| < E}(z). Now
we have established |W ® X| < E2(a) and |W ® X| < EL(z), so |W @ X|
< min{E%(a), Ef(z)} < M. On the other hand, if [W ® X| is odd, then
W o X| = |W| < Eb(a), while | X| < Eg(z). But, as |X| is slack and of
odd length, it follows that any critical 2-y walk must have even length, so
|X| < E%(z). Hence |W ® X| = |X| < E%(z). This shows |W @ X| <
Ef(a) and |[W @ X| < Ef(2), so [W® X| < min{EL(a), E%(z)} < M.

Finally, if W is slack and X is critical, an argument symmetric to that
of the previous paragraph shows |W ® X| < M.

This completes the proof that eggm(¢,z) < M, and we now demon-
strate eqem(a,z) > M.

To prove egeu{a,z) > M, it suffices to show that we can always find
a minimal walk in ¢ @ H, starting at (a, ), and having length at least
M. To do this, it suffices to find four walks, each starting at (a,z), and
having lengths no smaller than eg(a), ex(z), min{EZ(a), E}(z)}, and
min{E}(a), EY(z)}, respectively. The remainder of this proof is a con-
struction of such walks.

Let W be a minimal walk of length eg(a) in G. Construct a walk X
of length |W|in H by defining X = zyzyzy - zyz if [W]is even, or X =
eyxyzy ---xy if |W] is odd (where zy is any edge of H that is incedent
with ). Then W ® X is minimal by Proposition 1, it starts at (a, ), and
its length is eg(a). A symmetric construction produces a minimal walk
starting at (¢, ) and having length ey (z).

Now we make a minimal walk starting at (@, ), having length at least
min{E%(a), E4(z)}. We break into two cases.

Case 1. EZ(a) > E}x(z). Since not more than one of G' or H can be
bipartite, it follows that not more than one of EZ(a) or E}(x) can be
infinite. Therefore E'};(z) is finite and H is not bipartite. Thus there is a
critical z-y walk X of length E}(z) in H. If G is bipartite, choose any edge
ac € E(G), and let W = acac- - - ac be a walk of length |X|in G, so W is
either minimal or slack. Then W ® X is minimal by Proposttion 1, it starts
at (a,z) and |W® X| = |X| = Ef(z) < min{EZ(a), E}(z)}. On the other
hand, if G is not bipartite, it has a critical a-b walk W of length E2(a).
Let Z be a minimal a-b walk in G, so Z and X have the same parity. If
|Z] > |X], then X may be extended to an 2-y walk X of length |Z]|, by
alternating back an forth along the last edge of X. Then, by Proposition 1,
Z @ X is minimal, it starts at (a, 2), and its length is |X| > |X| = E} (=)
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> min{E%(a), E;(2)}. If |Z| < |X], then Z may be extended to an a-b
walk Z of length |.X|, by alternating back an forth along the last edge of 7.
Notice that Z is slack because it is an a-b walk of length smaller than the
critical a-b walk W. (Because |Z| = |X| = EL(z) < E%(a) = |W|.) Thus,
by Proposition 1, 729X is minimal, it starts at (a, z), and its length is | X|
= Fy(z) > min{EZ(a), E}Y(2)}.

Case 2. EZ(a) < E};(z). As in the previous case, we reason that £%(a) is
finite and G is not bipartite. Thus there is a critical a-b walk W of length
El(a) in G. If H is bipartite, let X = zzxz- - - zz be a walk of length |W| in
H, s0 X is either minimal or slack. Then W ® X is minimal by Proposition
1, it starts at (¢,2) and |W @ X| = |W| = E%(a) < min{E%(a), E}(z)}.
On the other hand, if H is not bipartite, it has a critical z-y walk X of
length E} (x). Let Y be a minimal z-y walk in H, so Y and W have the
sanmie parity. If |[Y| > |W|, then W may be extended to an a-b walk W of
length |Y|, by alternating back an forth along the last edge of W. Then,

by Proposition 1, W @ Y is minimal, it starts at (,z), and its length is
W) > [W| = E%a) > min{E%(a), EL(z)}. If [Y| < [W|, then Y may
be extended to an z-y walk Y of length |W], by alternating back an forth
along the last edge of Y. Notice that ¥ is slack because 1t is an 2-y walk of
length smaller than the critical z-y walk X. (Because |Y| = |W| = E2(a)
< EL(z) = |X].) Thus, by Proposition 1, W ® ¥ is minimal, it starts at
(a, ), and its length is |[W| = E%(a) > min{ EX(a), EL(z)}.

Finally, the argument of the previous paragraph can be repeated, break-
ing into cases L} (a) > E%(2) and EL(a) < E¥%(2), and using W as critical
a-b walk of length EL(a) and X as a critical z-y walk of length E% (z). We
obtain a minimal walk in ¢ ® H which starts at (e,z) and has length at
least min{ E¢,(a), E% ()} [ |

Theorem 2: If G and H are nontrivial graphs, then the radius of G® H is
(G ® H) = max{r(G), r(H), min{ R®(G), R (H)}, min{ R}(G), R°(H)}}.

Proof. TFor simplicity, throughout this proof, K denotes the integer K =
max{r(G), r(H), min{ R®(G), RY(H)}, min{ R} (G), R°(H)}}.

Observe #(G @ H) > K: Choose a vertex (a,z) for which »(G ® H)
= egeu(a,z). But Theorem 1 provides a formuls for eggr(a, z). We get
(G ® H) = max{eg(a), ex(z), min{ E%(a), E}(x)}, min{ B4 (a), EY(z)}}
> max{r(G), r(H), min{ R*(G), R'(H)}, min{ R}(G), R°(H)}} = K.

Next, we show r(G ® H) < K. For this, it suffices to show that some
vertex (a,x) of G ® H satisfies eggu(a,z) = K. We break this into three
cases.

Case 1: R(G) > R(H). First, we simplify the expression for K. By
Lemma 3, max{R%(G), R}(G)} > max{R°(H), R'(H)}, and another ap-
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plication of Lemma 3 establishes R°(G) > R'(H) and RYG) > R°(H).
Then K = max{r(G),»(H),R'(H), R°"(H)} = max{r(G),r(H), R(H)} =
max{7(G), R(H)}.

Now choose « € V(G) and ¢ € V(H) for which eg(a) = r(G) and
Eg(z) = R(H). Then max{FEg(a), E¢(a)} = Eg(a) > R(G) > R(H)
= Eg(z) = max{EY(z), E}(x)}, from which Lemma 3 yields E%(a) >
El(z) and EL(a) > EY(z). Putting all this information into the formula
from Theorem 1 gives eger (e, z) = max{eq(a),eq(z), Ef(z), EY(2)} =
max{eg(a),ex(2), Ex(z)} = max{eg(a), Eg(z)} = max{r(G), R(H)} =
K.

Case 2: R(G) < R(H). Reverse the roles of G and H in Case 1.

Case 3: R(G) = R(H). By Lemma 3, this is max{RO( ), RHMG)} =
max{R°(H), R*(H)}, and from this, Lemma 3 again implies R%(GQ) =
RY(H) and RY(G) = RY(H). Thus in this case K simplifies as follows:

K = max{r(G),r(H) min{R*(G), RY(G)}, min{ RY(H), R°(H)}}
= max{r(G),7(H),R(G)~ 1, R(H) — 1}
=max{R(G)—1,R(H) — 1}
= R(G) -

Choose a € V() and 2 E V(H) for which Eg(a) = R(G) and Ey(z)
= R(H). Then max{f_', ), Bfi(a)} = Eg(a) = R(G) = R(H) = Eg(z)
= max{EY(z), B} (z)}, llom which Lemma 3 yields Fl(a) = L}]‘, (z) and
ElL(a) = EL(2). Putting this into the formula from Theorem 1 g,w&,
eaaH(a,z) =max{eg(a), eq(z), min{ E&(a), EG(a)}, min{ B} (2), EY () }}
= max{eg(a),eq(2), Eq(a) — 1, Eg(z) — 1} = max{Ec,-(a) -1, EH(a,) -1}
=max{R(G)-1,R(H)-1} = R(G) -1 =K. [ |

The next theorem is an explicit description of the center of G ® H. To
set the stage, put p = »(G ® H), and define the following nested sets.

A={eeV(G)|Eg(a) <p} CA={a€V(G)|Eg(a) < p+1} C
A={aeV(G)lea(a) < p}

B={eeV(H)|Eu(z) < p} CB={z € V(H)|En(z) <p+1} C
B={zcV(H)len(z) < p}

Theorem 3: If G and H are nontrivial, then the center of G ® H is the
vertex set (A x B) (Ax B)U (A x B).

Proof. We begin by verifying that each of the sets A x §, Ax B, and AxB
15 in the center of G @ H. It suffices to show that if (a, z) is in one of these
sets, then eggr(a,z) < p.

Flrst suppose (a,z) € A x B, so Egla) < p+
Since eg( ) < Eg(a), it follows that eg(a) <
< p. Also, since Eg(a) = max{FE%(a), E&(a)}

+ 1 and Eg(z) < p+ 1.
p, and similarly eg(z)
<p+1, and Eg(z) =
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max{E%(z), Ey(z)} < p + 1, it follows that each member of the multi-
set {EL(a), EG(a), E%(z), B} (z)} is at most p 4 1. But, as at most two
members (of the same parity) can equal p + 1, we infer that the set con-
tains two members of the same parity that are strictly smaller than p+ 1.
Hence, min{E%(a), E}(z)} < p and min{E§(a), EY(z)} < p. So Theorem
1 implies eggr(a,z) < p.

Next suppose (a,z) € AxB. (A symmetric argument will worlk for the
case (a,z) € Ax B). By definition of 4 and B, we get eg(a) < p and ey ()
< Ey(z) = max{EY(z), EL(z)} < p. Hence, min{E2(a), B} (z)} < p and
min{E(a), E%(z)} < p. Theorem 1 now implies eggr (a, z) < p.

Conversely, suppose (a,z) is in the center of G ® H, so eggm(a,z)
= p. By Theorem 1, we obtain the inequalities eg(a) < p, em(z) < p,
min{EL(a), E4(z)} < p, and min{EL(a), E4(z)} < p. The first two of
these inequalities are enough to show a € A and ¢ € B. To finish the
proof, we consider four mutually exclusive and exhaustive cases.

Case 1: min{E%(a), E}L(2)} = E'%(a) < pand min{EL(a), E% (z )} El(a)
< p. Then Eg(a) = max{E%(a), Eg(a)} < p, and (a,z) € A
Case 2: min{E%(a), EL(z)} = Ef(z) < p and min{E}(a

\./X
&
oS -
B

X e

H( =
E%(z) < p. ThenE‘H()_max{E (z), E(2)} < p, and (a, )eﬁ B.
Case 3: min{E%(a), EL(z)} = EL(2) < p and mln{EC( ),E%(z)} =
El(a) < p. Then, by Lemma 3, EH( ) = max{E}(z), Ey(e)} < p+1,

and Eg(a) = max{Eg(a),ElG(a)} <p+1,s0(a,z) € Ax B.

Case 4: min{£%(a), By (z)} = £%(a) < p and min{E{(a), Ef(z)} =

EY (z) < p. By the same argument as in Case 3, we get (a,z) € A x B.
These four cases show (a,z) € (A x B) U (A x B) U (A x B). |

Theorems 1, 2, and 3 simplify greatly if one factor of the tensor product
is bipartite. If G is a connected graph with an odd cycle, and H is bi-
partite, then Eg(a), EX(a) and E}(a) are finite, whereas Ey(z) = EY(x)
= FE}(z) = oo for any vertex z in H. Theorem 1 becomes eggr(a, ) =
max{ea (@), ex (@), F2(a), B4()} = max{ea(a), ex (2), Bala)} =
max{Fg(a),eg(z)}. Likewise, if H is bipartite, Theorem 2 reduces to
r(G ® H) = max{R(G),r(H)}, and in Theorem 3, B = B = . These
observations prove the following.

Corollary 1: If G and H are connected, G contains an odd cycle, and H
is bipartite, then eggm(a,z) = max{Eqg(a),em(z)} for any vertex (a,z).
Moreover, r(G ® H) = max{R(G),7(H)}, and the vertices in the center
of G® H are exactly A x B = {a € V(G)|Eg(a) < r(G® H)} x {z €
V(H)len(x) <r(G@ H)}.
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5 Relation to Kim’s Theorems

In the article Centers of a tensor composite graph (3], Suh-Ryung Kim
presents formulas for eccentricity and radius of G @ H, where G is a con-
nected graph which contains an odd cycle, and H is connected and bipartite.
The notation and approach differ slightly from ours. Here we recall the def-
initions and results, and indicate how the results of [3] are special cases of
ours.

Kim defines de(a,b) and d,(a,b) to be the lengths of the shortest a-b
walks of even and odd lengths, respectively. The double eccentricity of a
vertex a of G 1s defined to be deg(a) = max{de(a,b),d.(a,b)|b € V(G)},
and the double radius is defined to be dr(G) = min{deg(a)la € V(G)}. Kim
proves that eggu (@, ) = max{deg(a), ex(z)}, and (a, z) is in the center of
G®H if and only if eggr (a, 2) = max{dr(G),»(H)} (i.e. that r(G® H) =
max{dr(G),7(H)}). Simply observe deg(a) = Eg(a), and dr(G) = R(G),
and these results are our Corollary 1.

Kim conjectures in [3] that in the general case the formula for eccentric-
ity is eggm(a, ) = max{deg(a), dex(z)}, from which we would presume
r(G ® H) = max{dr(G),dr(H)}. In our notation, this is eggw(a,z) =
max{Eg(a), Eg(z)}, and r(G ® H) = max{R(G), R(H)}. Our Theorems
1 and 2 suggest that the truth is somewhat more intricate. In fact, we have
the following counterexample to Kim’s conjecture.

Let G be the graph in Figure 1, and consider G ® G. Our Theorem
1 gives egge(a,a) = max{2,2, min{4,5}, min{4,5}} = 4, whereas Kim’s
conjecture would yield egga(a, @) = max{5,4} = 5. Also, our Theorem 2
gives r(G®G) = max{1l,1,min{2,3}, min{2,3}} = 2, but Kim’s conjecture
is 7(G ® G) = max{3,3} = 3.
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