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Abstract. Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus
in which the n-dimensional hypercube graph can be embedded. We give a new proof of the
formula by building this surface as a union of certain faces in the hypercube’s 2-skeleton. For
odd dimension n, the entire 2-skeleton decomposes into (n − 1)/2 copies of the surface, and
the intersection of any two copies is the hypercube graph.

1. INTRODUCTION. What graphs can be drawn on what surfaces without crossed
edges? Kuratowski’s theorem [3, Theorem 6.18] implies that the complete bipartite
graph Km,n (Figure 1) cannot be drawn on the sphere (or plane) without crossed edges
if min{m, n} ≥ 3. One can try to draw K3,3 on the sphere, but will always fail. How-
ever, it can be drawn on the torus, as shown in Figure 1.

The genus of a graph G, denoted γ (G), is the least integer g for which G can be
drawn on a closed, connected, orientable surface of genus g without edges crossing.
(A sphere has genus 0; a surface with g holes has genus g.) Thus γ (K3,3) = 1.

Figure 1. Left: The complete bipartite graph Km,n can be regarded as having m black vertices, n white
vertices, and an edge joining any two vertices of different colors. Right: K3,3, K4,4, and K4,5 on surfaces.

Figure 1 also shows K4,4 and K4,5, together with drawings of them on tori of genus 1
and 2, respectively. Indeed, Ringel [16] proved that for 2 ≤ m ≤ n,

γ (Km,n) =
⌈

(m − 2)(n − 2)

4

⌉
.

Thus γ (K4,4) = 1 and γ (K4,5) = 2, so our drawings in Figure 1 are optimal.
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Such genus formulas have been established for most well-known families of graphs.
For instance, the difficult proof of the simple formula γ (Kn) = ⌈(n − 3)(n − 4)/12⌉
was instrumental in settling the Heawood map coloring conjecture [3, Chapter 7], [17].

For the n-dimensional hypercube graph Qn, Ringel [15] and Beineke and Harary [2]
used recursive arguments exploiting the hypercube’s product structure to deduce

γ (Qn) = 1 + (n − 4)2n−3. (1)

Their proofs lead to generalizations like [9, 11–14, 19]. In contrast, our short, visual
proof directly constructs the genus surface from the square faces of the n-cube and
further shows that for odd n, the 2-skeleton of the n-cube is the union of (n−1)/2
copies of the genus surface, with no common faces, intersecting pairwise at Qn.

Sections 2 and 3 define hypercubes, skeleta, and 2-cell embeddings of graphs in
surfaces, and state Euler’s formula for genus. Our proof of equation (1) is in Section 4
while Section 5 gives the bonus: a factorization of the 2-skeleton into genus surfaces.

2. HYPERCUBES. Let I denote the unit interval [0, 1] and let O denote its bound-
ary O := ∂I = {0, 1}. (We use the notation O because it will be useful to regard an
interval as being “active” [I ] or “inactive” [O] in the manner described below.)

The n-dimensional hypercube, or n-cube is the polytope Hn = I n ⊆ Rn. Thus
Hn = {(x1, . . . , xn) | 0 ≤ xi ≤ 1} ⊆ Rn is the intersection of the 2n half-spaces xi ≥ 0
and xi ≤ 1, for 1 ≤ i ≤ n. (See [20] for an introduction to polytopes.)

The 2n vertices of Hn are the elements of On, which we identify with the binary
strings of length n. (For example, (1, 0, 1, 0) is 1010, etc.) The edges of Hn are
the connected components of the products O × O × · · · × I × · · · × O having one
active factor I and n−1 inactive factors O. Thus Hn has n2n−1 edges, and each is a
line segment joining two vertices that differ in exactly one coordinate (namely the
active coordinate). The faces of Hn are the squares that are the connected components
of

O × · · · × I × · · · × I × · · · × O,

where two of the factors are I ’s and the rest are O’s. Thus Hn has
(
n

2

)
2n−2 faces, and

the boundary of each face consists of four edges. Likewise Hn has
(
n

3

)
2n−3 3-faces

O × · · · × I × · · · × I × · · · × I × · · · × O,

formed by choosing three positions for the I ’s. Each 3-face is a 3-cube whose boundary
has six faces. In general, for each 0 ≤ k ≤ n, the n-cube has

(
n

k

)
2n−k k-faces formed

by choosing k active factors. Each k-face is a k-cube. (For brevity we call the 0-faces,
1-faces, and 2-faces vertices, edges, and faces, respectively, as stated above.)

The (n−1)-faces are called the facets of Hn. For each 1 ≤ k ≤ n, there are two
opposite facets that are the two components of I × I × · · · × O × · · · × I , where the
sole O = {0, 1} is the kth factor. The reader should verify that any two nonopposite
facets intersect in an (n−2)-face. Collectively the facets form the boundary of Hn.

The k-skeleton of Hn is the union of all its k-faces, so the 2-skeleton is the union
of all the (square) faces. The 1-skeleton is the hypercube graph, denoted Qn. Its
vertices are the n-digit binary strings, and an edge connects any two vertices that differ
in exactly one position. Figure 2 shows Q2, Q3, and Q4.

The hypercube graph Qn of any dimension is bipartite, that is, its vertices can be
partitioned into two sets (say, black and white) such that each edge joins a black vertex
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Figure 2. The 2-, 3-, and 4-dimensional cubes.

to a white vertex. (The black vertices are those binary strings with an odd number of
1’s, while the white vertices have an even number of 1’s, as in Figure 2.)

Figure 2 illustrates another nice feature of hypercubes: Hn can be edge-colored with
colors 1, . . . , n, so that an edge whose endpoints differ in the kth coordinate gets color
k. Note that each vertex is incident with exactly one edge of each color.

3. TWO-CELL EMBEDDINGS OF GRAPHS. Surfaces are mathematical objects
that look locally like the plane, but which can differ radically from the plane glob-
ally. The Earth’s surface is an example: it looks locally like a plane (at least on flat
land) while globally it is not a plane at all, but a sphere. More exactly, a surface is a
compact connected topological space in which each point has a neighborhood that is
homeomorphic to an open disk. See introductory texts such as [6] and [3, Chapter 7]
for development of the informal remarks we make here.

The orientable surfaces are the sphere, the torus, the 2-holed torus, and, in general,
surfaces with g holes. (Nonorientable surfaces are those that one can cut a Möbius
band out of, but they are not our focus here.) The number of holes in an orientable
surface is called its genus. We denote the (unique!) surface of genus g by Tg. If T is an
arbitrary orientable surface, its genus is denoted by γ (T ), so γ (Tg) = g. The sphere
has genus 0, and is thus denoted as T0. Figure 3 shows some examples.

As noted earlier, the genus γ (G) of a graph G is the smallest integer g for which G
can be drawn on Tg without crossed edges. Such a drawing of G on Tg is regarded as a
continuous injection G → Tg, and is called an embedding of G in Tg. An embedding
of G in a surface of genus γ (G) is called a genus embedding of G. Figure 1 shows
genus embeddings of K3,3, K4,4, and K4,5.

Figure 3. Examples of tori. The sphere T0 (left) followed by T1, T2, and T3.
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An embedding ϕ : G → T divides T into regions, which are the connected compo-
nents of T \ ϕ(G). A 2-cell embedding is one in which each region is homeomorphic
to an open disk. The regions of a 2-cell embedding are called faces.

Every genus embedding is a 2-cell embedding [3, Theorem 7.2]. For example, the
embedding of K3,3 in Figure 1 has three faces: two squares and one octagon. The
embedding of K4,4 has eight faces, each a square.

Euler’s formula [3, Theorem 7.1] implies that if a 2-cell embedding of a connected
graph in a closed orientable surface T has v vertices, e edges, and f faces, then

γ (T ) = 2 − v + e − f

2
. (2)

Checking this on the embedding of K4,4 in Figure 1 we get 1 = 1
2 (2 − 8 + 16 − 8).

For K4,5 in Figure 1, we get 2 = 1
2 (2 − 9 + 20 − f ), so there are f = 9 faces.

If a 2-cell embedding of a connected graph with v vertices and e edges has f faces
F1, . . . , Ff , and each Fi is a pi-gon, then because each edge is on exactly two faces, we
get 2e = p1 + · · · + pf . If the graph is bipartite, then it has no triangles, so 2e ≥ 4f .
Then equation (2) yields a lemma [3, Corollary 7.6].

Lemma 1. If G has v vertices, e edges, and is bipartite, then γ (G) ≥ 1
4
(4 − 2v + e).

4. GENUS EMBEDDINGS OF HYPERCUBES. We are ready for our theorem.

Theorem 1. The genus of the hypercube graph Qn is γ (Qn) = 1 + (n − 4)2n−3.

Proof. Color the edges of Hn with colors 1, 2, . . . , n, so that any edge joining vertices
that differ in the kth coordinate is given the color k. Any face of Hn whose edges are
colored k and ℓ is then “bicolored” by the pair kℓ. Assemble the collection F of all
faces of Hn having one of the bicolors 12, 23, 34, . . . , (n−1)n, n1. For any one of
these n bicolors, Hn has 2n−2 faces of that particular bicolor, so |F | = n2n−2. Any
edge e of Qn belongs to exactly two faces in F : if e has color k, then these two faces
have bicolors (k−1)k and k(k+1) (addition modulo n). Thus n faces of F are arranged
cyclicly around each vertex, in the manner described by Figure 4. It follows that the
faces F form a surface T in the 2-skeleton of Hn, with Qn embedded in it. This surface
has n2n−2 square regions, and it is connected because Qn is connected.

Assume for the moment that this surface is orientable. By the genus formula (2),

γ (T ) = 2 − v + e − f

2
= 2 − 2n + n2n−1 − n2n−2

2
= 1 + (n − 4)2n−3.

Thus we have embedded Qn in a surface of genus 1 + (n − 4)2n−3. Is this the lowest
genus possible? Lemma 1 says yes: γ (Qn) ≥ 1

4 (4 − 2 · 2n + n2n−1) = γ (T ).
To finish the proof we must verify that T is orientable. There is indeed something

to prove here, for when n≥ 4, the 2-skeleton of Hn contains Möbius strips (Figure 5,
left). We must verify that none exist in T . To do this, note that each face of T has a
local orientation given by the “right-hand rule” at either one of its black vertices: place
your right hand at a black vertex with fingers pointing from edge color i to edge color
i+1. Your thumb points in an “up” direction for this square, and your other fingers
indicate a counterclockwise orientation for the square. (At white vertices, the thumb
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Figure 4. The squares in F that surround a vertex.

points “down.”) Figure 5 shows that this orientation is preserved as we move from
square to adjacent square on T . It follows that T is orientable.

Figure 5. Left: A Möbius strip in H4. Right: Squares in T are oriented by the right-hand rule at black vertices.
Squares bicolored (i−1)i, i(i+1), and (i+1)(i+2) are shown.

Let’s carry out the construction of this proof for Q3, Q4, and Q5.
First, Q3. Color the edges of Q3 solid, dashed, and dotted, as in Figure 2. By

our construction, we form a surface T by including the solid/dashed faces, the
dashed/dotted faces, and dotted/solid faces of H3. These are in fact all the faces
of H3, and we get the six faces shown in the upper left of Figure 6. They form the
surface of the 3-cube, which is topologically equivalent to the sphere T0.

Next, consider Q4, with edges colored as in Figure 2. Our construction dictates that
we form a surface T by including the solid/dashed faces, the dashed/dotted faces, the
dotted/dash-dotted faces, and the dash-dotted/solid faces of H4. There are sixteen such
faces. We see them on the bottom left of Figure 6. The resulting surface is T1, the torus.
This surface does not include the solid/dotted and dashed/dash-dotted faces of H4, but
we clearly see their perimeters because their edges belong to the included faces. In
walking through the hole of the torus, one walks through all four solid/dotted faces
and sees the perimeters of all four dashed/dash-dotted faces, which are inside the torus.
The representation of H4 in Figure 2 has a long history. According to Robbin [18] such

356 c⃝ THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 128



Figure 6. Genus embeddings of Q3, Q4, and Q5.

a perspective view of H4 (which is now standard) originated with V. Schlegel (1843–
1905).

Let’s now apply our construction to get a genus embedding of Q5. We will not
assign specific colors to the edges so as to avoid visual clutter in the image. Say the
five edge colors of Q5 are 1, 2, 3, 4, and 5. We thus include the 5-cube faces bicolored
12, 23, 34, 45, and 51 to obtain the embedding of Q5 in T5, shown in Figure 6.

This embedding does not include the 5-cube faces bicolored 13, 35, 52, 24, and 41.
Thus the embedding uses exactly half the faces of the 5-cube. One can walk through
this model and see all the edges and half the faces of H5, without any intersections.
The other half of the faces of the 5-cube form a surface isometric to this one. (See
Section 5.) The missing faces are clearly visible because their perimeters are edges of
faces that do belong to the embedding.

One nice feature of these embeddings is that they aid greatly in the visualization of
hypercubes. One can, for example, easily pick out all ten facets of Q5, and see how
they fit together. To highlight this, we offer a few exercises related to our model of H5

in T5 (Figure 6).

Exercise 1: Locate all 80 faces (squares) of H5 in this model.
Exercise 2: Identify all ten facets of H5. (The facets are 4-cubes.)
Exercise 3: The 5-cube has 40 3-faces (each one a 3-cube). Find them (or at least some
of them). For each one, locate the two 4-cube facets that share it.
Exercise 4: For an arbitrary vertex, find five 4-cube facets that share this vertex.

5. PARALLEL GENUS EMBEDDINGS. In [2] and [15], the approach to cube
embedding is extrinsic; the authors describe a recursive procedure that hooks together
two lower-genus surfaces by a family of connecting “tubes.” In contrast, our intrinsic
method has the interesting consequence that the entire 2-skeleton can be decomposed
into copies of the genus surface.
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Recall that a cycle Z in a graph is a Hamiltonian cycle if Z contains all vertices of
the graph. The complete graph Kn is the graph with vertex set {1, 2, . . . , n} and with
an edge joining each pair of distinct vertices. Any ordering i1i2 . . . in of {1, 2, . . . , n}
gives rise to a Hamiltonian cycle Z = i1i2 . . . in in Kn whose n edges are {ikik+1 | 1 ≤
k ≤ n} (arithmetic modulo n).

Arguing as in the proof of Theorem 1, if Z = i1i2 . . . in is any Hamiltonian cycle in
Kn, then the union of the faces of Hn that are bicolored ikik+1 (1 ≤ k ≤ n), addition
mod n, is a surface T (Z) that is a genus embedding for Qn ⊆ T (Z). In fact, if σ is
the permutation k *→ ik, 1 ≤ k ≤ n, then σ induces a permutation of the standard unit
vectors in Rn which carries T isometrically onto T (Z) sending vertices to vertices,
edges to edges, and faces to faces. If Z′ = i ′

1i
′
2 . . . i ′

n is another Hamiltonian cycle in
Kn and if Z and Z′ share no edge, then T (Z) ∩ T (Z′) = Qn.

We call a family of surfaces T (Z1), T (Z2), . . . , T (Zs) a parallel family if every
face (square) of Hn belongs to exactly one of the T (Zk). A collection of Hamiltonian
cycles Z1, Z2, . . . , Zs of Kn is a Hamiltonian decomposition of Kn if each edge
belongs to exactly one of the cycles.

It has long been known that for odd n, Kn has a Hamiltonian decomposition into
(n−1)/2 Hamiltonian cycles. (This was a problem in recreational mathematics, asking
whether one could find seating arrangements around a round table that gave each pair
of people a unique side-by-side appearance. See [1].) We get a nice consequence for
the hypercube.

Theorem 2. For odd n ≥ 3, each Hamiltonian decomposition of Kn gives rise to a
parallel family of (n−1)/2 genus embeddings of Qn. That is, the 2-skeleton of Hn can
be decomposed into face-disjoint isometric copies of genus embeddings of Qn.

Proof. Let s = (n−1)/2. Take a Hamiltonian decomposition Z1, . . . , Zs of Kn. The
genus embeddings T (Z1), . . . , T (Zs) of Qn intersect pairwise in Qn. From the proof
of Theorem 1, T (Zk) has n2n−2 faces, so the s copies contain all n2n−2(n − 1)/2 =(
n

2

)
2n−2 faces of Qn.

After completing this article, we found that Das [5] also obtained Theorem 1
(but not Theorem 2) using a more general version of our approach, but avoiding the
issue of nonorientability by induction on dimension. Das credits the idea of using the
2-skeleton to Coxeter’s constructions of certain skew polyhedra [4]. Indeed, two of
Coxeter’s skew polyhedra coincide with our genus surfaces for Q4 and Q5, though
Coxeter does not refer to graph genus.

In fact, the ideas above can be generalized in other directions. Any decomposition
of Kn into edge-disjoint cycles, possible for n ≥ 3 odd by a theorem of Euler [8, p. 64],
yields a parallel family of surfaces for the 2-skeleton of Hn; see [7]. But the parallel
family given by Theorem 2 has all surfaces pairwise isometric. Can this polytopal
perspective be applied to other graph genus questions? What about the nonorientable
genus of the n-cube [10]? It seems that many nice questions remain.
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