PDF.js viewer 12/5/20, 3:00 PM

Z_ THE ART oF DISCRETE AND
L APPLIED MATHEMATICS

@creative
commons

ISSN 2590-9770

The Art of Discrete and Applied Mathematics 4 (2021) #P1.01
https://doi.org/10.26493/2590-9770.1312.5b4
(Also available at http://adam-journal.eu)

Palindromic products®

Richard H. Hammack® ¢, Jamie L. Shive
Virginia Commonwealth University, Dept. of Mathematics, Richmond, VA 23284, USA

Received 28 July 2019, accepted 20 January 2020, published online 8 September 2020

Abstract

A graph G on n vertices is said to be palindromic if there is a vertex-labeling bijection
f:V(G) = {1,2,...,n} with the property that for any edge vw € E(G) there is an edge
zy € E(QG) for which f(z) =n — f(v) + 1and f(y) =n — f(w) + 1.

This notion was defined and explored in a recent paper [R. Beeler, Palindromic graphs,
Bulletin of the ICA, 85 (2019) 85-100]. The paper gives sufficient conditions on the factors
of a Cartesian product of graphs that ensure the product is palindromic, but states that it
is unknown whether the conditions are necessary. We prove that the conditions are indeed
necessary. Further, we prove a parallel result for the strong product of graphs.

Keywords: Palindromic graphs, cartesian product of graphs, strong product of graphs.
Math. Subj. Class. (2020): 05C76, 05C78

1 Introduction

A recent article by R. Beeler [1] introduced a new concept. A graph G on n vertices is
palindromic provided that there is a vertex-labeling bijection f : V(G) — {1,2,...,n}
with the property that to each vw € E(Q) there corresponds an zy € E(G) for which
f@)=n+1-f(v)and f(y) =n+1— f(w).

Palindromic graphs, like palindromic words, have a certain symmetry. The mapping
V(G) — V(G) whose effect on labels is k — n+1—k is an involution (an automorphism
of order 2). View it as a mirror symmetry, where the vertices are ordered on a line by their
labels, as in Figure 1.

This induced involution has no fixed vertex if n is even, and exactly one fixed vertex
if n. is odd. Tndeed. we have the followine characterization of nalindromic eranhs as those
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graphs admitting an involution that fixes at most one vertex. (The order of a graph is its
number of vertices. For other standard terms and notations not defined here see West [5].)
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Figure 1: Palindromic graphs of even order admit an involution with no fixed points. Palin-
dromic graphs of odd order admit an involution with exactly one fixed point.

Theorem 1.1 (Beeler [1]). A graph of even order is palindromic if and only if it admits
an involution with no fixed vertices. A graph of odd order is palindromic if and only if it
admits an involution with exactly one fixed vertex.

Guided by this theorem, we define a graph to be even palindromic if it is palindromic
and of even order; it is odd palindromic if it is palindromic and of odd order. An invo-
lution that fixes at most one vertex is called a palindromic involution; one that fixes no
vertex is an even palindromic involution, and one that fixes exactly one vertex is an odd
palindromic involution. Thus a graph is even palindromic if and only if admits an even
palindromic involution; it is odd palindromic if and only if it admits an odd palindromic
involution. A fixed point is a fixed vertex.

Beeler [1] characterizes several classes of palindromic graphs, including hypercubes
(see Figure 2). More generally he addresses the Cartesian product of graphs, and we will
expand upon this in the next section.

=

Fioure 2: Everv hvnercihe is nalindromic. Here i< the 4-cube.
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2 Cartesian Products

The Cartesian product of graphs G and H is the graph GCH with vertices V(G) x V (H)
and edges

E(GOH) = {(z,y)(¢',y') | 22’ € E(G) andy = y/, orz = 2’ and yy' € E(H)}.

(See Figure 3.) This product is commutative and associative in the sense that the maps
(z,y) — (y,z) and ((z,y),2) — (z,(y, %)) are isomorphisms GOOH — HUOG and
(GOH)OK — GO(HOK).

Given automorphisms « : G — G and 8 : H — H, it is straightforward from the
definitions that (z,y) — (a(z),B(y)) is an automorphism of GCJH. For example, in
Figure 3, let « : G — G be the even palindromic involution of G reflecting G across
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Figure 3: Cartesian product of graphs.

a vertical axis. Let § : H — H be the identity. Then (z,y) — (a(z),y) is an even
palindromic involution of GLIH reflecting it across a vertical axis. This suggests that if
one factor of a product is even palindromic, then the product will be even palindromic.
Indeed, we have the following result [ |, Theorem 4.4].

Lemma 2.1. If G or H is even palindromic, then GUH is even palindromic. If G and H
are odd palindromic, then GL1H is odd palindromic.

Proof. Let one of G or H (say ) be even palindromic. Theorem 1.1 yields an even
palindromic involution @ : G — G. Form the even palindromic involution (z,y)
(a(z),y) of GLH. Thus the product is even palindromic. For the second statement, say
both G and H are odd palindromic. By Theorem 1.1, G has an involution o with exactly

Ana fivad nnint . (That ic Al .Y — ». )\ Rar the cama reacan  H hac an inualutinn R with
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exactly one fixed point yo. Then (z,y) — (a(z),5(y)) is an involution of GO H that has
exactly one fixed point (xg, yo). Therefore GLIH is odd palindromic. d

Lemma 2.1 spells out conditions on the factors that are sufficient for a palindromic
product. Beeler [1] states that it is unknown whether these conditions are also necessary.
We will shortly prove that in fact they are, but we first need to review prime factorizations
over the Cartesian product.

Observe that K;LIG = G for any graph G, so K] is the unit for the Cartesian product.
A nontrivial graph G is prime over [ if for any factoring G = AUB, one of A or B is K
and the other is isomorphic to G. Certainly every graph can be factored into prime factors.
Sabidussi and Vizing [3, 4] proved that each connected graph has a unique prime factoring
up to order and isomorphism of the factors. More precisely, we have the following.

Theorem 2.2 ([2, Theorem 6.8]). Let G and H be isomorphic connected graphs G =
G:0---0OGy and H = H.O- - - UHy, where each factor G; and H; is prime. Then k = £,
and for any isomorphism ¢ : G — H, there is a permutation © of {1,2,...,k} and
isomorphisms ©; : G ;) — H; for which
(1,22, .., Tk) = (©1(Tr(1)), L2(Tr(2)s - - > k(@ r(r)))-
Now we can prove our main result about palindromic Cartesian products.
Theorem 2.3. Suppose G and H are connected graphs. Then:

(1) G or H is even palindromic if and only if GLH is even palindromic.

4 Art Discrete Appl. Math. 4 (2021) #P1.01

(2) G and H are odd palindromic if and only if GL1H is odd palindromic.

Proof. One direction is Lemma 2.1. Conversely, suppose GLH is palindromic and let ¢
be a palindromic involution of it. Take prime factorings G = G1---0G; and H =
Gj+10- - - OGk, so ¢ is an involution of GOH = (G:0---0G;)0(G,;+10- - - OGk).

The involution ¢ permutes the prime factors of this product in the sense of Theorem 2.2,
where the permutation 7 satisfies 72 = id. Using commutativity of [J, group together the
prime factors G; of G for which 1 < 7(7) < j, and call their product A. (By convention,
A = K; if there are no such factors G;. The same applies for the graphs B and D defined
below.) Let B be the product of the remaining factors G; of G. Also group together the
prime factors G; of H for which j+1 < m(¢) < k, and call their product D. The Cartesian
product of the remaining factors of H is then a graph isomorphic to B. The structure
of ¢ under this scheme is as indicated below, where the arrows represent isomorphisms
@i : Gr(;) — G; between factors.

G H

A B B D
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A B B D

We have coordinatized G and H as G = AOB and H = BUD, and ¢ is an involution
of GOH = (AOB)O(BOD) for which ¢((a,b), (¢, d)) = ((a(a), B®')), (v(b), 6(d))),
for automorphisms o : A — A, B,7v: B — Band § : D — D. But because ¢? is the
identity, it must be that o2 = id, v = 87! and §2 = id. Thus we have involutions o and §
of A and D, respectively, and

o((a,0), (', ) = ((a(a), BV)), (671 (b), 5(d))), @.1)
From (2.1) it is evident that the fixed points of ¢ (if any) are precisely
((ao, B(b)), (b,do)) with a(ag) = ao, 6(do) = do, and b € V(B). (2.2)

Thus ¢ has a fixed point if and only if both o and § have fixed points. Further, if ¢ has a
fixed point, then it has exactly |V (B)| of them.

Now suppose GL1H is even palindromic. Let ¢ be an even palindromic involution of
GUH (having no fixed point). From (2.2), at least one of « or ¢ has no fixed point; say it
is a. Then « is an even palindromic involution of A, so A is even palindromic. By the first
part of the theorem, G = A[IB is even palindromic. Similarly H is even palindromic if §
has no fixed points.

Suppose GLIH is odd palindromic. Let ¢ be an odd palindromic involution whose
sole fixed point is ((ao,B(bo)), (bo,do)). The remark following (2.2) implies ¢ has at
least |V (B)| fixed points, so B = K;. Thus we can drop B from our discussion, so
G = A, H = D and ¢(a,d) = (a(a),d(d)). We now have involutions o : G — G and
0 : H — H with fixed points ag and dp, respectively. Also (ag, dp) is a fixed point of . If

R. H. Hammack and J. L. Shive: Palindromic products

the involution « of G had a second fixed point a1, then (ag, do) and (a1, dy) would be two
distinct fixed points of ¢. Thus ag is the only fixed point of ¢, so a (hence also G) is odd

palindromic. By the same reasoning H is odd palindromic.

3 Strong Products

The strong product of graphs G and H is the graph G X H with vertex set V(G) x V(
where distinct vertices (z,y) and (z’,y’) are adjacent whenever

O

H),
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(zz' € E(G)ory=1y') and (z=2"oryy € E(H)).

See Figure 3. We quickly review this product’s properties; Chapter 7 of [2] proves all
assertions made here. The strong product is commutative and associative. If Ng[z| :=
N(z) U {z} is the closed neighborhood of a vertex z € V(G), then

Newul(z,y)] = Nelz] x Nuly). (3.1

Also K1 X G = @G for all graphs G. A graph G is prime over X if for any factoring
G = AX B, one of A or B is K; and the other is isomorphic to G.

H GXH
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Figure 4: Strong product of graphs.

Given automorphisms @ : G — G and 8 : H — H, it is straightforward from the
definitions that (z,y) — (a(z),8(y)) is an automorphism of G X H. For instance, in
Figure 4, let « : G — G be the even palindromic involution of G reflecting G across
a vertical axis. Say 8 : H — H is the identity. Then (z,y) — (a(z),y) is an even
palindromic involution of GX H reflecting it across a vertical axis (relative to the drawing).

This suggests that we might expect a result for the strong product that is parallel to
Theorem 2.3 for the Cartesian product. Indeed, this is exactly the case, but the proof is
more involved. The complication is that in general the strong product has no result parallel
to Theorem 2.2, unless we impose an additional restriction. A graph is called S-thin if
no two distinct vertices have the same closed neighborhood. We will need the following
analogue of Theorem 2.2 for S-thin graphs.

Theorem 3.1 ([2, Theorem 7.16]). Let ¢ be an automorphism of an S-thin connected
graph G with prime factorization G = G1 X Gy X - - - X G. Then there is a permutation
7 of {1,2,...,k} and isomorphisms o; : Griy — G for which ¢(x1,2,...,2k) =

((pl (Irr(l))’ (P2(xﬂ'(2))’ SRR Sok(xﬂ'(k)))

6 Art Discrete Appl. Math. 4 (2021) #P1.01
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We say that vertices z and y of a graph are in relation S, written xSy, provided that
each has the same closed neighborhood, that is, N[z] = N[y|. It is easy to check that S is
an equivalence relation of the graph’s vertex set. We call an S-equivalence class of V' (G)
an S-class of G. (Note that a graph is S-thin if and only if each S-class consists of a single
vertex.) In general, if X is an S-class of graph G, then the subgraph of G induced on X is
the complete graph K| x|. Also, for any distinct S-classes X and Y, either each vertex of
X is adjacent to all vertices of Y, or no vertex of X is adjacent to any vertex of Y.

Given a graph G, we define the quotient G/S to be the graph whose vertices are the
S-classes of G, and for which XY € E(G/S) provided that X # Y and G has an edge
joining X to Y. Check that G/S is always S-thin.

Because S is defined in terms of the adjaceny structure of a graph, any isomorphism
¢ : G — H sends S-classes of G bijectively onto S-classes of H. From the discussion
above it should be clear that any isomorphism ¢ : G — H induces an isomorphism ¢ :
G/S — H/S where ¢(X) = ¢(X), that is, ¢(X) is the image of the S-class X under ¢.

But the existence of an isomorphism ¢ : G/S — H/S does not necessarily mean that
there is an isomorphism ¢ : G — H. However, if | X| = |¢(X)| for each X € V(G/S),
then we can lift ¢ to an isomorphism ¢ : G — H simply by declaring ¢ to restrict to a
bijection X — @(X) for each X.

Using Equation (3.1), one can show that the S-classes of G X H are precisely the (set)
Cartesian products X x Y, where X is an S-class of G and Y is an S-class of H. In other
words, the vertices of (G x H)/S are X x Y, where X € V(G/S)andY € V(H/S).
Further, there is a natural isomorphism

(GRH)/S — G/SKH/S (3.2)

XxY +— (X,Y). ’

In the proof our main theorem we will switch between X x Y and (X,Y’) when expedient.
The proof also uses all ideas discussed so far in this section.

Theorem 3.2. Suppose G and H are connected graphs. Then:
(1) G or H is even palindromic if and only if G X H is even palindromic.
(2) G and H are odd palindromic if and only if G X H is odd palindromic.

Proof. If G or H (say G) is even palindromic, then there exists an even palindromic invo-
lution @ of G, so (z,y) — (a(z),y) is an even palindromic involution of G X H. Next
suppose GG and H are odd palindromic. Then G has an odd palindromic involution o with
fixed point zy, and H has an odd palindromic involution 3 with fixed point yy. Then
(z,y) — (a(x),B(y)) is an odd palindromic involution of G X H whose sole fixed point
is (.’L‘o, yo).

It remains to prove the converses of the two statements. We will do this in three parts.
The first part codifies the structure of involutions of G X H.

Part I (Involution structure) Let ¢ : G X H — G X H be an involution. By the remarks
preceding this theorem, ¢ induces an automorphism & of the S-thin graph (G X H)/S =
G/S ® H/S. Because ¢ is an involution, we have »? = id. (Note that & could be the
identity even if ¢ is not. This is the case if ¢ fixes each S-class, i.e., it restricts to a

12/5/20, 3:00 PM
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permutation on each S-class.)

R. H. Hammack and J. L. Shive: Palindromic products 7

Take prime factorings G/S = G1 X --- X G; and H/S = Gj41 X --- X Gg. Then ¢
is an automorphism (of order 1 or 2) of the graph

G/SXH/S=(Gi1X---KG;) X (Gjt1 K- K Gg).

Now, ¢ permutes the prime factors of this product in the sense of Theorem 3.1, where the
permutation 7 satisfies 72 = id. As in the proof of Theorem 2.3, group together the prime
factors G; of G/S for which 1 < 7(¢) < 7, and call their product A. Let B be the product
of the remaining factors of G/S. Also group together the prime factors G; of H/S for
which j + 1 < 7(¢) < k, and call their product D. The product of the remaining factors of
H/S is then a graph isomorphic to B. Now we have G/S = AKX B and H/S = BX D,
and ¢ is an automorphism of

G/SXH/S=(AXB)X (BX D)
satisfying >? = id, and for which (as in the proof of Theorem 2.3) we have

&((a,b), (t',d)) = ((a(a), BEY)), (B71(b),6(d))) 3.3)

for automorphisms oo : A — A, B: B — Bandd : D — D, with o = id and 62 = id.
In (3.3), the ordered pairs (a, b) and (a(a), 5(b')) are vertices of G/S, which are S-
classes of G (subsets of V' (@)), and hence they have cardinalities |(a, b)| and |(a(a), B(b")).
Similarly, (b', d) and (8=1(b), 6(d)) are S-classes of H/S.
By the remarks preceding this theorem, the involution ¢ of G X H sends the S-class
(a,b) x (v, d) bijectively to S-class (a(a), B(b")) x (B71(b),(d)), so

(a,b)] - 1(¥,d)| = [ (a(a), B®))| - [ (877 (b), 6(a)) ] (3.4)
foralla € V(A), bt/ € V(B) and d € V(D). Putting b’ = B71(b) yields
[(a,0)] - [(B7(b),d)| = |(e(a), b)) | - [ (87" (b),(d))|- 3.5)
In (3.5) replace d with §(d) (and use 62 = id) to get
|(a,b)| - 1(87(6),6(d))| = | (a(a), 1)) | - | (87 (b),d) . (3.6)

Equations (3.5) and (3.6) imply |(a,b)| = |(a(a),b)|. Form an automorphism & :
AR B — AX B as &(a,b) = (a(a),b)). Then &* = id, so we have an involution (if it is
not the identity map) & : G/S — G/S that maps each vertex (S-class) (a, b) to the vertex
(S-class) (a(a), b) of the same cardinality

|(6,6(d))| = |(b,d)]

Also (3.5) and (3.6) yield |(87%(b),6(d))| = [(B7*(b),d)],
https://adam-journal.eu/plugins/generic/pdfJsViewer/pdf.js/web/vi...urnal.eu%2Findex.php%2FADAM%2Farticle%2Fdownload%2F1312%2F1183%2F Page 8 of 11
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forall b € V(B) and d € V(D). Form the automorphism 6 : B X D — B X D where
5(b,d) = (b,6(d)). Then 62 = id, so we have an involution (if not the identity map) 4 :
H/S — H/S mapping each S-class (b, d) to the S-class (b, §(d)) of the same cardinality.
__ In summary, for any involution ¢ of GX H, we have constructed automorphisms a and
§ of G/S and H/ S, respectively, for which &% = id and 62 = id. And |&((a,b))| = |(a,b)|
for any S-class (a, b) of G. Thus we can lift & to an automorphism A : G — G by declaring
that X restricts to a bijection (a,b) — (a(a),b), for each S-class (a,b) of G. Similarly,
16((b,d))| = |(b,d)| for any S-class (b,d) of H, so we can lift § to an automorphism
p: H — H. In parts II and III of the proof these lifts will be palindromic involutions.

8 Art Discrete Appl. Math. 4 (2021) #P1.01

To carry out this plan we will need to consider S-classes of G X H that are fixed by ¢
(i.e., the S-classes whose vertices are permuted by ¢.) By Equation (3.3), the fixed points
of ¢ (respectively, the fixed S-classes of ) are

((ao,ﬁ(b)), (b, do)) where a(ao) = aop, 5(d0) =dpand b € V(B) 3.7
(ao, ﬁ(b)) X (b, d()) where a(ao) = ag, 5(d0) =dpand b € V(B) 3.8)

We call an S-class even (odd) if it has even (odd) cardinality.

Part II (Converse of Statement (1)) Suppose G X H is even palindromic. Then there is an
even palindromic involution ¢ of G X H. We retain the development and notation of Part
I of the proof. _

Our strategy is to show that one of @ : G/S — G/Sor§ : H/S — H/S has no
odd fixed point (S-class). For if this is the case for (say) «, then & can be lifted to an
automorphism A : G — G sending any S-class (a, b) bijectively to (a(a),b). Whenever
o fixes an S-class (a,b), we can arrange for A to restrict to an order-2 fixedpoint-free
permutation of the even set (a, b). Then A will be an even palindromic involution of G, so
G is even palindromic.

Suppose to the contrary that & had an odd fixed point (a,b) and & had an odd fixed
point (b', d). (So a(a) = a and §(d) = d.) By (3.4),

|(a,0)[- | (', d)| = |(a, B0)))]- [ (B~ (b), d)].
N N —
odd odd

Then (a, B(b")) is odd, so (a, B(b')) x (b, d) is an odd S-class of GX H. But the involution
© fixes this odd S-class, by (3.8). Thus ¢ fixes some point of this S-class, contradicting
the fact that ¢ is even palindromic.

Part III (Converse of Statement (2)) Suppose G X H is odd palindromic. Then there is an
odd palindromic involution ¢ of G X H with fixed point (zg, yo). Then ¢ fixes the S-class

xr .1 Nnra
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A Nt contains (Zo, Yo ), WHICH NECESSArily nas 1orm A = (ao, 5(00)) X (0o, Ao ), Wnere
a(ag) = ag and 6(dy) = do. (See (3.8) in Part I.) As the involution ¢ fixes exactly one
vertex, which is in X, we know X has odd cardinality. Thus (ag, 8(bo)) is an odd S-class
of G/S, and (bg, dp) is an odd S-class of H/S. Note that (ag, 5(bp)) is a fixed point of

a and (bo, dp) is a fixed point of §. Suppose ¢ had another odd fixed point (b1, d;). Then
d(d1) = d; and by Equation (3.4),

(a0, 5060) |- (1) = (a0, B52)| - (o, ) |-

-~ -~

odd odd

Therefore | (a0, B(b1)) | and |(bg, d1 )| are odd. Then (ag, B(b1))x (b1, d1) and (ag, B(bo)) X
(bo, dy) are odd S-classes of G x H that are fixed by ¢. But X = (ag, 8(bo)) X (bo,dp) is
the only such S-class, hence 8(b1) = S(bo) and dy = dp. This means (b1,d1) = (bo, do).
Conclusion: (bg, do) is the only odd S-class of H/S that is fixed by d. Therefore we can
lift 6 : H /S — H/S to an odd palindromic involution x4 : H — H sending each S-class
(b, d) bijectively to (b, (d)), having only one fixed vertex on the odd fixed class (bg, dp)
and no fixed points on any other fixed (even) S-class. Thus H is odd palindromic.

By a symmetric argument, G is also odd palindromic. O
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4 Conclusion and Open Questions

Our Theorems 2.3 and 3.2 characterize palindromic Cartesian and strong products in terms
of the palindromic properties of their factors. There are four standard associative graph
products, the Cartesian, strong, direct and lexicographic products. (See [2].) Here we
have only addressed two of these four products. A natural unexplored problem, then, is
to establish analogous results for palindromic direct and lexicographic products. However,
because the automorphism structure of these products is not as rigid as for the Cartesian
and strong products (cf. Theorems 2.2 and 3.1 above), the results and proofs are likely to
be substantially different from those presented here.
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