Name: \qquad R. Hammack

Score: \qquad

Directions: Choose any four questions. Each of your four chosen questions is 25 points, for a total of 100 points. If you do more than four questions, please clearly indicate which of the four you want to contribute toward your 100 points.

1. Prove: A graph G is m-colorable if and only if $\alpha\left(G \square K_{m}\right) \geq n(G)$.
(α is the independence number.)
2. (a) Prove that there is no simple graph with 6 vertices and 13 edges that has chromatic number 3.
(b) Give an example of a simple graph with 6 vertices and 12 edges that has chromatic number 3.
3. Given finite sets $S_{1}, S_{2}, \ldots, S_{m}$, form the set $U=S_{1} \times S_{2} \times \cdots \times S_{m}$. Let G be the graph with $V(G)=U$ and

$$
E(G)=\left\{\left(x_{1}, x_{2}, \ldots x_{m}\right)\left(y_{1}, y_{2}, \ldots, y_{m}\right) \mid x_{i} \neq y_{i} \text { for each } 1 \leq i \leq m\right\}
$$

That is, two vertices are adjacent if and only if they differ in every coordinate. Determine $\chi(G)$.
4. Let G be a simple graph with n vertices. Recall that $\chi(G ; k)=\sum_{r=1}^{n} p_{r}(G) k(k-1)(k-2) \cdots(k-r+1)$, where $p_{r}(G)$ is the number of partitions of $V(G)$ into r non-empty independent sets. Use this to prove that the coefficient of k^{n-1} in $\chi(G ; k)$ is $-e(G)$.
5. Prove: If a graph G has c components, then $\chi(G ; k)=k^{c} f(k)$, where $f(0) \neq 0$.
6. Prove: If G is a graph for which $\chi(G ; k)=k^{c} f(k)$, where $f(0) \neq 0$, then G has c components.
7. (a) Prove that every n-vertex plane graph that is isomorphic to its dual has $2 n-2$ edges.
(b) For each $n \geq 4$, construct an n vertex plane graph that is isomorphic to its dual.
8. The 4 -color theorem asserts that if G is planar, then $\chi(G) \leq 4$. Use this to prove that every planar graph decomposes into the union of two bipartite graphs. That is, prove that if G is planar, then there exist bipartite graphs A and B with $V(A)=V(B)=V(G)$, and $E(G)=E(A) \cup E(B)$, while $E(A) \cap E(B)=\emptyset$.
9. Prove that every simple planar graph with at least four vertices has at least four vertices of degree less than 6 .
10. Prove that $3 \nu\left(K_{n, n}\right) \leq \nu\left(K_{n, n, n}\right) \leq 3\binom{n}{2}^{2}$.

