Name: \qquad R. Hammack

Score: \qquad

Directions: Choose any four questions. Each of your four chosen questions is 25 points, for a total of 100 points. If you do more than four questions, please clearly indicate which of the four you want to contribute toward your 100 points.

1. Say G is a simple graph with 19 edges, and $\delta(G) \geq 3$. Knowing nothing else about G, answer the following questions.
(a) What is the maximum number of vertices that G could have?
(b) What is the maximum number of vertices that G could have for which we can be 100% certain that G is non-planar?
2. Suppose D is an n-vertex simple digraph with no cycles. Prove that the vertices of G can be ordered as $v_{1}, v_{2}, \ldots, v_{n}$ such that if $v_{i} v_{j} \in E(D)$, then $i<j$.
3. Let $n \in \mathbb{N}$. Prove that there is an n-vertex tournament in which every vertex is a king if and only if $n \notin\{2,4\}$.
4. Prove that no tournament has exactly two kings.
5. Prove that every simple planar graph with at least four vertices has at least four vertices of degree less than 6 .
6. Prove that if G is planar and every face in a plane embedding of G has even length, then G is bipartite.
7. Let G be the graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{v_{i} v_{j}: 1 \leq|i-j| \leq 3\right\}$. Prove that G is maximal planar.
8. Let G be the graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{v_{i} v_{j}: 1 \leq|i-j| \leq 4\right\}$. Prove that $\nu(G)=n-4$. (You may use problem 7 even if you didn't do it.)
9. Suppose n is a fixed odd integer. Prove that in all drawings of K_{n}, the parity of the number of crossings is the same.
10. Suppose G has v vertices, e edges, and its girth is g. Prove that $\gamma(G) \geq \frac{e}{2}\left(1-\frac{2}{g}\right)-\frac{v}{2}+1$.
