Test One	Advanced Graph Theory	February 26, 2019
	MATH 656	
Name:	R. Hammack	Score:

Directions: Choose any four questions. Each of your four chosen questions is 25 points, for a total of 100 points. If you do more than four questions, please clearly indicate which of the four you want to contribute toward your 100 points.

- 1. Say G is a simple graph with 19 edges, and $\delta(G) \geq 3$. Knowing nothing else about G, answer the following questions.
 - (a) What is the maximum number of vertices that G could have?
 - (b) What is the maximum number of vertices that G could have for which we can be 100% certain that G is non-planar?
- 2. Suppose D is an n-vertex simple digraph with no cycles. Prove that the vertices of G can be ordered as v_1, v_2, \ldots, v_n such that if $v_i v_j \in E(D)$, then i < j.
- 3. Let $n \in \mathbb{N}$. Prove that there is an *n*-vertex tournament in which every vertex is a king if and only if $n \notin \{2, 4\}$.
- 4. Prove that no tournament has exactly two kings.
- 5. Prove that every simple planar graph with at least four vertices has at least four vertices of degree less than 6.
- 6. Prove that if G is planar and every face in a plane embedding of G has even length, then G is bipartite.
- 7. Let G be the graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and $E(G) = \{v_i v_j : 1 \le |i-j| \le 3\}$. Prove that G is maximal planar.
- 8. Let G be the graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and $E(G) = \{v_i v_j : 1 \le |i j| \le 4\}$. Prove that $\nu(G) = n 4$. (You may use problem 7 even if you didn't do it.)

9. Suppose n is a fixed odd integer. Prove that in all drawings of K_n , the parity of the number of crossings is the same.

10. Suppose G has v vertices, e edges, and its girth is g. Prove that $\gamma(G) \ge \frac{e}{2}\left(1-\frac{2}{g}\right) - \frac{v}{2} + 1$.