
Graph Theory Solutions MATH 656 Hammack

6.3.21 Determine ν(K1,2,2,2). Use this to compute ν(K2,2,2,2).

First, notice that we can draw K2,2,2 on the plane, as shown below, left. Vertices of one partite
set are colored red, those of the second are colored black, and those of the third are colored
white. We can then draw K1,2,2,2 on the plane, with three crossings, by adding a new vertex
in the center (colored green) and connecting it to all six vertices of K2,2,2. (See the drawing

below, right.) From this we can tell that ν(K1,2,2,2) ≤ 3.

K2,2,2 on the plane K1,2,2,2 on the plane with three crossings

Now, K1,2,2,2 has v = 18 edges and e = 7 vertices. By Lemma 6.1.23, it is non-planar, as

18 = e > 3v − 6 = 15.

In fact, we can see from this that we must remove at least three edges from K1,2,2,2 before
getting a planar graph. Further, we can see from the drawing above (right) that we can get a
planar graph by removing precisely the three edges incident with the green vertex that cross
an edge. Therefore the maximum number of edges in a planar subgraph of K1,2,2,2 is k = 15.

By Lemma 6.3.13, ν(K1,2,2,2) ≥ m− k = 18− 15 = 3. Therefore ν(K1,2,2,2) = 3.

Now let’s consider ν(K2,2,2,2). Below is a picture of it obtained by adding a new green vertex
to the picture of K1,2,2,2 above, and connecting it to all the non-green vertices. Notice that

there are 6 crossings, so ν(K2,2,2,2) ≤ 6.

K2,2,2,2 on the plane with six crossings:

Now, K2,2,2,2 has v = 8 vertices and e = 24 edges. Again, we apply Lemma 6.1.23 to

24 = e > 3v − 6 = 18,

to see that least six edges must be removed from ν(K2,2,2,2) before obtaining a planar graph.
Indeed the drawing above shows that exactly six edges can be removed to get a planar graph:
the three dashed edges that cross, and the three edges from the inner green vertex that cross.
Hence the maximum number of edges in a planar subgraph of K2,2,2,2 is 24 − 6 = 18. By

Lemma 6.3.13, ν(K2,2,2,2) ≥ m− k = 24− 18 = 6. Consequently ν(K2,2,2,2) = 6.
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6.3.22 Prove that K3,2,2 has no planar subgraph with 15 edges. Deduce that ν(K3,2,2) ≥ 2.

Below is a drawing of K3,2,2 with the vertices in the partite set of size 3 colored black and
numbered 1, 2, 3. There are two types of edges: those that join two partite sets of size 2, and
those that join a partite set of size 2 to one of size 3.
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K3,2,2

If we delete an edge joining the partite sets of size 2 we are still left with a graph that has a
K3,3 subgraph, as indicated below.

x

Moreover, if we delete an edge joining a partite set of size 2 to the partite set of size 3 (say an
edge incident with x, above) we still are left a K3,3 subgraph.

Therefore deleting a single edge from K3,2,2 results in non-planar graph. As K3,2,2 has
m = 16 edges, we conclude that it has no planar subgraph with 15 edges. Therefore a
planar subgraph with a maximum number of edges has k < 15 edges. By Lemma 6.3.13,

ν(K3,2,2) ≥ m− k = 16− k ≥ 2. In fact, the drawing below shows K3,2,2 with exactly two

crossings, so ν(K3,2,2) = 2.

11

22

33

x

y

y′

x′

2



6.3.23 Let Mn be the graph obtained from the n-cycle by adding an edge from each vertex to its
opposite vertex (if n is even) or its two near-opposite vertices (if n is odd). Find ν(Mn).

Notice that M3 = K3, M4 = K4, M5 = K5 and M6 = K3,3. Thus M5 and M6 are non-planar.
Further, Mn is also non-planar for all n > 6 because Mn has K3,3 as a subgraph. Therefore
ν(Mn) = 0 for n ≤ 4 and ν(Mn) ≥ 1 whenever n > 4. In fact we will show that ν(Mn) = 1
for all n > 4 by drawing Mn with just one crossing.

The trick is to double the cycle Cn back on itself, so that pairs of opposite vertices are next
to each other, as shown below.
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Below are two pictures of M16. The standard view is on the left, with the diagonal edges shown
dotted. A drawing with just one crossing is on the right. We can carry out this construction
for any even n, so ν(Mn) = 1 when n is even and greater than five.
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Below are two pictures of M17. The standard view is on the left, with near-diagonal edges
shown dotted. A drawing with just one crossing is on the right. We can carry out this
construction for any odd n, so ν(Mn) = 1 when n is odd and greater than four.
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6.3.32 Construct a 3-regular simple non-bipartite graph on the torus with every face of even length.

The graph K4 meets the description, and here
it is on the torus with two faces, one a square
and the other an octagon.

square

octagon

6.3.33 Let n ≥ 9 be neither prime nor twice a prime. Construct a 6-regular n-vertex toroidal graph.

Given the conditions on n, we have n = ab
for integers a, b ≥ 3. Place an a × b square
grid on the torus, as shown, and then add the
indicated diagonals. The result is a 6-regular
n-vertex graph on the torus.

6.3.34 Construct regular embeddings of K4,4, K3,3 and K3,6 on the torus. (Regular means that all
faces have the same length.)

First, here is K4,4 embedded on the torus with 8 square faces. Vertices of one partite set are
colored black and those in the other partite set are colored white.

1 2 3

5 6 7 8

4

Next, below (left) is an embedding of K3,3 on the torus with three hexagon faces. Vertices of
one partite set are colored white and vertices of the other partite set are colored black.

1 2 3

Notice that each hexagon face of the embedding of K3,3 contains all six vertices. So to embed
K3,6 on the torus, we can take our embedding of K3,3 (on the left) and add a new white vertex
inside each of the three faces. Then we connect each new white vertex to the three black
vertices on the face that it is in. The result is and embedding of K3,6 with 9 square faces
(right).
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6.3.36 Find a lower bound on γ(K3,3,n). Use it to determine γ(K3,3,n) exactly for n ≤ 3.

Notice that K3,3,n has v = 6 + n vertices and e = 6n + 9 edges. Suppose K3,3,n is 2-cell
embedded in some surface Sγ . Using Lemma 6.3.24, we know that

e ≤ 3(v − 2 + 2γ)

6n+ 9 ≤ 3
(
(6 + n)− 2 + 2γ

)
3n− 3 ≤ 6γ
n− 1

2
≤ γ.

Therefore our lower bound is
n− 1

2
≤ γ(K3,3,n).

This yields 0 ≤ γ(K3,3,1), 1 ≤ γ(K3,3,2), and 1 ≤ γ(K3,3,1). Actually, this is not really all
that exciting, because we know that each of these graphs contains a K3,3 and is therefore
non-planar; hence its genus is at least 1. In what follows we will show that each has genus
exactly 1 by embedding it in the torus. First, consider K3,3,3, drawn below with partite sets
colored red, blue and green, respectively.

Below is the same graph K3,3,3 drawn on the torus with 18 triangular faces. Thus γ(K3,3,3) = 1.
SinceK3,3,2 andK3,3,1 are both non-planar, and both are subgraphs of the genus-1 graphK3,3,3,
it follows that γ(K3,3,2) = 1 and γ(K3,3,1) = 1 also.
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6.3.37 Prove that for every positive integer k, there exists a planar graph G for which γ(G2K2) ≥ k.

Given a positive integer n > 5, let G be the graph obtained from the cycle Cn−2 by adding two
new vertices and joining them to all the vertices of Cn−2. You can think of this as if Cn−2 is
on the x, y-plane, and the two additional vertices are above and below it, on the y-axis. Then
when we add the new edges we get a double cone. Clearly the graph G is planar (embedded
on a sphere) with 2(n − 2) triangular faces. Note that n(G) = n, and G is maximal planar,
with 3(n− 2) = 3n− 6 edges.

←− Cn−2 on x, y-plane

←− vertex on y-axis

←− vertex on y-axis

G

Take the product G2K2. This product is drawn below. Notice that G2K2 consists of two
copies of G, plus n(G) new edges joining corresponding pairs of vertices from the two copies
of G. Thus n(G2K2) = 2n and e(G2K2) = 2e(G) + n(G) = 2(3n− 6) + n = 7n− 12.

G2K2

Suppose that Gn2K2 is 2-cell embedded in some surface Sγ . We can get a lower bound on γ
as follows. By Lemma 6.3.24, we know that

e(G2K2) ≤ 3(n(G2K2)− 2 + 2γ).

Thus

7n− 12 ≤ 3(2n− 2 + 2γ)

n− 6 ≤ 2γ
n− 6

2
≤ γ.

Thus
n− 6

2
≤ γ(G2K2). Given any positive integer k, we can construct G as above, with n

big enough so that k <
n− 6

2
. Then k ≤ γ(G2K2).
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