
CHAPTER 5

Exponential and Logarithmic Functions

W� have examined power functions like f (x) = x

2. Interchanging x

and 2 yields a di�erent function f (x) = 2

x. This new function is
radically di�erent from a power function and has vastly di�erent properties.
It is called an exponential function. Exponential functions have many
applications and play a big role in this course. Working with them requires
understanding the basic laws of exponents. This chapter reviews these
laws before recalling exponential functions. Then it explores inverses of
exponential functions, which are called logarithms.

Recall that in an expression such as a

n in which a is raised to the power
of n, the number a is called the base and n is the exponent.

5.1 Review of Exponents
We start at the beginning. For a number a and a positive integer n,

a

n = a ·a ·a · · ·a| {z }
n times

.

For example, 2

5 = 2 ·2 ·2 ·2 ·2= 32. This would be too elementary to mention
except that every significant exponent property flows from it. For example,

(ab)

n = (ab) · (ab) · (ab) · · · (ab)| {z }
n times

= a ·a ·a · · ·a| {z }
n times

·b ·b ·b · · ·b| {z }
n times

= a

n

b

n

,

that is, (ab)

n = a

n

b

n. Also,
°

a

b

¢
n = a

b

· a

b

· · · a

b

= a

n

b

n

. And a

m

a

n = a

m+n because

a

m

a

n = a ·a ·a · · ·a| {z }
m times

· a ·a ·a · · ·a| {z }
n times

= a

m+n

.

Assuming for the moment that m > n, we also get

a

m

a

n

=

m timesz }| {
a ·a ·a ·a ·a · · ·a

a ·a ·a · · ·a| {z }
n times

= a ·a · · · ·a| {z }
m°n times

= a

m°n
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because the a’s on the bottom cancel with n of the a’s on top, leaving m°n

a’s on top. Also notice that (a

n

)

m = a

nm because

(a

n

)

m =
m timesz }| {

(a ·a ·a · · ·a| {z }
n times

) · (a ·a ·a · · ·a| {z }
n times

) · · · (a ·a ·a · · ·a| {z }
n times

)= a

nm

.

We have just verified the following fundamental Laws of exponents.

Basic Laws of Exponents
a

1 = a (ab)

n = a

n

b

n

≥
a

b

¥
n

= a

n

b

n

a

m

a

n = a

m+n

a

m

a

n

= a

m°n

(a

n

)

m = a

mn

So far we have assumed n is a positive integer because in performing
a

n = a·a · · ·a we cannot multiply a times itself a negative or fractional number
of times. But there is a way to understand these rules when n is zero,
negative or fractional. Trusting the above property a

m°n = a

m

a

n

yields

a

0 = a

1°1 = a

1

a

1

= 1, (provided a 6= 0)

a

°n = a

0°n = a

0

a

n

= 1

a

n

.

Notice 0

0 is undefined because above we have 0

0 = 0

1

0

1

= 0

0

, which is undefined.
But we can find a

n when n is 0 (and a 6= 0) or negative, as in 2

°3 = 1

2

3

= 1

8

. In
essence we just multiplied 2 times itself °3 times! Also note a

°1 = 1

a

.
What about fractional powers, like a

1/n? If we believe (a

n

)

m = a

nm, then
≥
a

1

n

¥
n

= a

1

n

·n = a

1 = a.

Thus
°
a

1/n

¢
n = a, meaning a

1/n = n

p
a. So 16

1/4 = 4

p
16 = 2 and 2

1/2 =
p

2. Fur-
ther, a

m

n = a

1

n

m =
≥
a

1

n

¥
m

= n

p
a

m. In summary:

a

0 = 1 (if a 6= 0) a

°n = 1

a

n

a

°1 = 1

a

a

1

n = n

p
a a

m

n = n

p
a

m = n

p
a

m

The boxed equations hold for any rational values of m and n, positive or
negative. We will use these frequently, and without further comment.
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Example 5.1 Knowing the rules of exponents in the boxes above means we
can evaluate many expressions without a calculator. For example, suppose
we are confronted with 16

°1.5. What number is this? We reckon

16

°1.5 = 16

°3/2 = 1

16

3/2

= 1

p
16

3

= 1

4

3

= 1

64

.

For another example, 8

°1.5 = 8

°3/2 = 1

8

3/2

= 1

p
8

3

= 1

(2

p
2)

3

= 1

2

3

p
2

3

= 1

16

p
2

.

Also, (°8)

5/3 = 3

p
°8

5 = (°2)

5 = (°2)(°2)(°2)(°2)(°2)=°32.
But if we attempt (°8)

5/2, we run into a problem because (°8)

5/2 =
p
°8

5, andp
°8 is not defined (or at least it is not a real number). In this case we simply

say that (°8)

5/2 is not defined.
It is important to be able to work problems such as these fluently, by

hand or in your head. Over-reliance on calculators leads weak algebra skills,
which will defeat you later in the course. If your algebra is rusty it is good
practice to write everything out, without skipping steps. Algebra skills
grow quickly through usage.

We have now seen how to evaluate a

p provided that p is a positive or
negative integer or rational number (i.e., fraction of two integers). But
not every power p falls into this category. For example, if p = º, then it
is impossible to write p = m

n

, as a fraction of two integers. How would we
make sense of something like 2

º? One approach involves approximations.
As ºº 3.14, we have 2

º º 2

3.14 = 2

314

100 = 100

p
2

314. We could, at least in theory,
arrive at very good approximations of 2

º with better approximations of º. We
will drop this issue for now, because we will find a perfect way to understand
a

x for any x once we have developed the necessary calculus. For now you
should be content knowing that a

x has a value for any x, provided that a is
a positive number.

Exercises for Section 5.1
Work the following exponents with pencil and paper alone. Then compare your
answer to a calculator’s to verify that the calculator is working properly.
1. 25

1/2 2. 4

1/2 3. 1

4

1/2 4. 27

1/3 5. (°27)

1/3 6. (27)

°1/3 7. (°27)

4/3

8. 2

°1 9. 2

°2 10. 2

°3 11. 1

2

°1 12. 1

2

°2 13. 1

2

°3 14. 1

4

°1/2

15.
p

2

6 16.
°

4

9

¢°1/2

17.
≥p

3

2

¥°4

18.
p

3

100

p
3

94 19.
µ°

2

3

¢ 3

2

∂
2

20.
≥

3

9

3

7

¥
3

21.
µp

2

p
2

∂p
2
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5.2 Exponential Functions
An exponential function is one of form f (x) = a

x, where a is a positive
constant, called the base of the exponential function. For example f (x)= 2

x

and f (x)= 3

x are exponential functions, as is f (x)= 1

2

x.
If we let a = 1 in f (x)= a

x we get f (x)= 1

x = 1, which is, in fact, a linear
function. For this reason we agree that the base of an exponential function
is never 1. To repeat, an exponential function has form f (x)= a

x, where a

is a positive constant unequal to 1. We require a to be positive because we
saw that in Example 5.1 that a

x may not be defined if a is negative.
Let’s graph the exponential function

f (x) = 2

x. Below is a table with some
sample x and f (x) values. The resulting
graph is on the right.

x °3 °2 °1 0 1 2 3

f (x)= 2

x

1

8

1

4

1

2

1 2 4 8

Notice that f (x)= 2

x is positive for any x,
but gets closer to zero the as x moves
in the negative direction. But as 2

x > 0

for any x, the graph never touches the
x-axis. x

y

°3 °2 °1 1 2 3

1

2

3

4

5

6

7

8

f (x)= 2

x

The function f (x) = 2

x grows very rapidly as x moves in the positive
direction. Because f (x) = 2

x is defined for all real numbers the domain of
f (x) is R. The graph suggests that the range is all positive real numbers,
that is, the range is the interval (0,1).

Let’s look at the exponential function
f (x)= 1

2

x. Here is its table and graph.

x °3 °2 °1 0 1 2 3

f (x)= 1

2

x 8 4 2 1 1

2

1

4

1

8

Unlike y= 2

x, this function decreases as
x increases. In fact, f (x) = 1

2

x = 1

x

2

x

= 1

2

x

.
As x increases towards infinity the de-
nominator 2

x becomes ever bigger, so the
fraction f (x) = 1

2

x

gets closer and closer
to zero. But no matter how big x gets,
we still have f (x)= 1

2

x

> 0.
x

y

°3 °2 °1 1 2 3

1

2

3

4

5

6

7

8

f (x)= 1

2

x
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Figure 5.1 shows some additional exponential functions. It underscores
the fact that the domain of any exponential function is R = (°1,1). The
range is (0,1). The y-intercept of any exponential function is 1.

x

y

f (x)= 10

x

f (x)= 3

x

f (x)= 2

x

f (x)= 1.25

x

f (x)= 1.5

x

f (x)= 1

x

f (x)= 1

2

x

0

2

3

10

Figure 5.1. Some exponential functions. Each exponential function
f (x) = a

x has y-intercept f (0) = a

0 = 1. If a > 1, then f (x) = a

x increases
as x increases. If 0< a < 1, then f (x)= a

x decreases as x increases.

Exercises for Section 5.2

1. Add the graphs of exponential functions f (x)=
°

1

10

¢
x and f (x)=

°
1

3

¢
x to Figure 5.1.

2. Add graphs of f (x)=
°

1

1.5

¢
x = (0.

¯

6)

x and f (x)=
°

1

1.25

¢
x = 0.8

x to Figure 5.1.
3. Use graph shifting techniques from Section 2.4 to draw the graph of y= 2

x°3 °4.
4. Use graph shifting techniques from Section 2.4 to draw the graph of y=°2

x+2.
5. Its graph shows that the exponential function f (x)= 2

x is one-to-one. Use ideas
from Section 4.2 to draw the graph of f

°1.
6. Consider the inverse of f (x)= 2

x. Find f

°1

(8), f

°1

(4), f

°1

(2), f

°1

(1), and f

°1

°
1

2

¢
.
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5.3 Logarithmic Functions
Now we apply the ideas of Chapter ?? to explore inverses of exponential
functions. Such inverses are called logarithmic functions, or just logarithms.

x

y

1

x

f (x)= a

x

y

An exponential function f (x)= a

x is one-to-one and thus has an inverse.
As illustrated above, this inverse sends any number x to the number y for
which f (y)= x, that is, for which a

y = x. In other words,

f

°1

(x)=
√

the number y

for which a

y = x

!

.

From this it seems that a better name for f

°1 might be a

⇤, for then

a

⇤
(x)=

√
the number y

for which a

y = x

!

.

The idea is that a

⇤
(x) is the number y that goes in the box so that a

y = x.
Using a

⇤ as the name of f

°1 thus puts the meaning of f

°1 into its name. We
therefore will use the symbol a

⇤ instead of f

°1 for the inverse of f (x)= a

x.
For example, the inverse of f (x)= 2

x is a function called 2

⇤, where

2

⇤
(x)=

√
the number y

for which 2

y = x

!

.

Consider 2

⇤
(8). Putting 3 in the box gives 2

3 = 8, so 2

⇤
(8)= 3. Similarly

2

⇤
(16)= 4 because 2

4 = 16,

2

⇤
(4)= 2 because 2

2 = 4,

2

⇤
(2)= 1 because 2

1 = 2,

2

⇤
(0.5)=°1 because 2

°1 = 1

2

= 0.5.
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In the same spirit the inverse of f (x)= 10

x is a function called 10

⇤, and

10

⇤
(x)=

√
the number y

for which 10

y = x

!

.

Therefore we have

10

⇤
(1000)= 3 because 10

3 = 1000,

10

⇤
(10)= 1 because 10

1 = 10,

10

⇤
(0.1)=°1 because 10

°1 = 1

10

= 0.1.

Given a power 10

p of 10 we have 10

⇤
(

10

p

)

= p. For example,

10

⇤
(

100

)

= 10

⇤ °
10

2

¢
= 2,

10

⇤ °p
10

¢
= 10

⇤ °
10

1/2

¢
= 1

2

.

But doing, say, 10

⇤
(15) is not so easy because 15 is not an obvious power of

10. We will revisit this at the end of the section.
In general, the inverse of f (x)= a

x is a function called a

⇤, pronounced “a
box,” and defined as

a

⇤
(x)=

√
the number y

for which a

y = x

!

.

You can always compute a

⇤ of a power of a in your head because a

⇤
(a

p

)= p.
The notation a

⇤ is nice because it reminds us of the meaning of the
function. But this book is probably the only place that you will ever see the
symbol a

⇤. Every other textbook—in fact all of the civilized world—uses
the symbol log

a

instead of a

⇤, and calls it the logarithm to base a.

Definition 5.1 Suppose a > 0 and a 6= 1. The logarithm to base a is
the function

log

a

(x)= a

⇤
(x)=

√
number y for
which a

y = x

!

.

The function log

a

is pronounced “log base a.” It is the inverse of f (x)= a

x.

Here are some examples.

log

2

(8)= 2

⇤
(8)= 3 log

5

(125)= 5

⇤
(125)= 3

log

2

(4)= 2

⇤
(4)= 2 log

5

(25) = 5

⇤
(25)= 2

log

2

(2)= 2

⇤
(2)= 1 log

5

(5) = 5

⇤
(5)= 1

log

2

(1)= 2

⇤
(1)= 0 log

5

(1) = 5

⇤
(1)= 0
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To repeat, log

a

and a

⇤ are di�erent names for the same function. We will
bow to convention and use log

a

, mostly. But we will revert to a

⇤ whenever
it makes the discussion clearer.

Understanding the graphs of logarithm functions is important. Because
log

a

is the inverse of f (x)= a

x, its graph is the graph of y= a

x reflected across
the line y= x, as illustrated in Figure 5.2.

y= ln(x)

x

y

y= f (x)= a

x

y= f

°1

(x)= a

⇤
(x)= log

a

(x)

°3 °2 °1 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 5.2. The exponential function y = a

x and its inverse y = log

a

(x).
Notice log

a

(x) is negative if 0< x < 1, Also log

a

(x) tends to °1 as x gets closer
to 0.

Take note that the domain of log

a

is all positive numbers (0,1) because
this is the range of a

x. Likewise the range of log

a

is the domain of a

x, which
is R. Also, because log

a

(1)= a

⇤
(1)= 0, the x-intercept of y= log

a

(x) is 1.
The logarithm function log

10

to base 10 occurs frequently enough that it
is abbreviated as log and called the common logarithm.

Definition 5.2 The common logarithm is the function log defined as

log(x) = log

10

(x) = 10

⇤
(x).

Most calculators have a log button for the common logarithm. Test
this on your calculator by confirming that log(1000) = 3 and log(0.1) = °1.
The button will also tell you that log(15) = 1.17609125 · · · . In other words
10

⇤
(15) = 1.17609125 · · · , which means 10

1.17609125··· = 15, a fact with which
your calculator will concur.

One final point. Convention allows for log

a

x in the place of log

a

(x), that
is, the parentheses may be dropped. We will tend to use them.
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Exercises for Section 5.3

1. log

3

(81)= 2. log

3

°
1

9

¢
= 3. log

3

(

p
3)= 4. log

3

≥
1p
3

¥
= 5. log

3

(1)=

6. log(1000)= 7. log(

3

p
10)= 8. log(

3

p
100)= 9. log(0.01)= 10. log(1)=

11. log

4

(4)= 12. log

4

(2)= 13. log

4

(

p
2)= 14. log

4

(16)= 15. log

4

(8)=

16. Simplify log

2

(2

sin(x)

). 17. Simplify 10

log(5).

18. Draw the graphs of y= 10

x and its inverse y= log(x).
19. Draw the graphs of y= 3

x and its inverse y= log

3

(x).

5.4 Logarithm Laws
The function log

a

, also called a

⇤, is the inverse of the exponential function
f (x) = a

x. Consequently (as this section will show) the laws of exponents
outlined in Section 5.1 come through as corresponding laws of log

a

.
To start, for any x it is obvious that a

⇤
(a

x

)= x because x is what must go
into the box so that a to that power equals a

x. So we have

a

⇤
(

a

x

)

= x,

log

a

(

a

x

)

= x.

(5.1)

This simply reflects the fact that f

°1

°
f (x)

¢
= x for the function f (x)= a

x.
Next consider the expression a

a

⇤
(x). Here a is being raised to the power

a

⇤
(x), which is literally the power a must be raised to to give x. Therefore

a

a

⇤
(x) = x,

a

log

b

(x) = x

(5.2)

for any x in the domain of a

⇤. This is just saying f

°
f

°1

(x)

¢
= x.

The x in Equations (5.1) and (5.2) can be any appropriate quantity or
expression. It is reasonable to think of these equations as saying

a

⇤
≥
a

¥
= and a

a

⇤
( ) = ,

where the gray rectangle can represent an arbitrary expression. For exam-
ples, a

⇤
≥
a

x+y

2+3

¥
= x+ y

2 +3 and a

a

⇤
°

sin(µ)

¢
= sin(µ).



82 Exponential and Logarithmic Functions

Now we will verify a very fundamental formula for log

a

(xy). Notice

a

⇤
(xy) = a

⇤
≥
a

a

⇤
(x)

a

a

⇤
(y)

¥
(using x = a

a

⇤
(x) and y= a

a

⇤
(y))

= a

⇤
≥
a

a

⇤
(x)+a

⇤
(y)

¥
(because a

c

a

d = a

c+d)
= a

⇤
(x)+a

⇤
(y) (using a

⇤
≥
a

¥
= )

We have therefore established

a

⇤
(xy) = a

⇤
(x) + a

⇤
(y),

log

a

(xy) = log

a

(x)+ log

a

(y).

(5.3)

By the same reasoning you can also show a

⇤
≥

x

y

¥
= a

⇤
(x)°a

⇤
(y), that is,

a

⇤
≥

x

y

¥
= a

⇤
(x) ° a

⇤
(y),

log

a

≥
x

y

¥
= log

a

(x)° log

a

(y).

(5.4)

Applying a

⇤
(1)= 0 to this yields a

⇤
≥

1

y

¥
= a

⇤
(1)°a

⇤
(y)=°a

⇤
(y), so

a

⇤
≥

1

y

¥
= °a

⇤
(y),

log

a

≥
1

y

¥
= ° log

a

(y).

(5.5)

Here is a summary of what we have established so far.

Logarithm Laws

log

a

(a

x

)= x log

a

(1)= 0 log

a

(xy)= log

a

(x)+ log

a

(y) log

a

(x

y

)= y log

a

(x)

a

log

a

(x) = x log

a

(a)= 1 log

a

µ
x

y

∂
= log

a

(x)° log

a

(y) log

a

µ
1

y

∂
=° log

a

(y)

The one law in this list that we have not yet verified is log

a

(x

y

)= y log

a

(x).
This is an especially useful rule because it says that taking log

a

of x

y converts
the exponent y to a product. Because products tend to be simpler than
exponents, this property is tremendously useful in many situations. To
verify it, just notice that

a

⇤
(x

y

) = a

⇤
≥°

a

a

⇤
(x)

¢
y

¥
(because x = a

a

⇤
(x))

= a

⇤
≥
a

ya

⇤
(x)

¥
(because

°
a

b

¢
y = a

yb)
= ya

⇤
(x) (using a

⇤
≥
a

¥
= )
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Therefore a

⇤
(x

y

)= ya

⇤
(x), or log

a

(x

y

)= y log

a

(x), as listed above.
By the above laws, certain expressions involving logarithms can be

transformed into simpler expressions.

Example 5.2 Write log

2

(5)+ 1

2

log

2

(x+1)° log

2

(5x) as an expression with a
single logarithm.

To solve this we use the laws of logarithms, and work as follows.

log

2

(5)+ 1

2

log

2

(x+1)° log

2

(5x) = log

2

(5)+ log

2

≥
(x+1)

1/2

¥
° log

2

(5x)

= log

2

(5)+ log

2

≥p
x+1

¥
° log

2

(5x)

= log

2

≥
5

p
x+1

¥
° log

2

(5x)

= log

2

√
5

p
x+1

5x

!

= log

2

√p
x+1

x

!

Example 5.3 Break the expression log

s
xsin(x)

10

x

into simpler logarithms.

Recall that log is the common logarithm log

10

. Using the laws of logarithms,

log

s
xsin(x)

10

x

= log

√µ
xsin(x)

10

x

∂
1/2

!

= 1

2

log

µ
xsin(x)

10

x

∂

= 1

2

°
log(xsin(x))° log(10

x

)

¢

= 1

2

°
log(xsin(x))° x

¢

= 1

2

°
log(x)+ log(sin(x))° x

¢

= log(x)

2

+
log

°
sin(x)

¢

2

° x

2

.

The final answer is somewhat subjective. What do we mean by “simpler”
logarithms? An alternate answer would be log(

p
x)+ log

°p
sin(x)

¢
° x

2

.
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Example 5.4 Simplify log

2

(28x)° log

2

(7x).
To solve this we use the laws of logarithms to get

log

2

(28x)° log

2

(7x) = log

2

µ
28x

7x

∂

= log

2

(4)

= 2.

Now work a few practice problems.

Exercises for Section 5.4

1. Write as a single logarithm: 5log

2

(x

3 +1)+ log

2

(x)° log

2

(3)

2. Write as a single logarithm: log

2

(sin(x))+ 1

2

log

2

(4x)°3log

2

(3)

3. Write as a single logarithm: 2+ log(5)+2log(7)

4. Write as a single logarithm: log(2x)+ log(5x)

5. Break into simpler logarithms: log

2

s
x

3

x+1

6. Break into simpler logarithms: log

2

°
(x+5)

4

x

7

cos(x)

¢

7. Break into simpler logarithms: log

°p
x(x+3)

6

¢

8. Break into simpler logarithms: log

3

µ
3

5

3

p
x

∂

9. Simplify: log

°
10x

10

¢

10. Simplify: log(2)+ log(5)

11. Simplify: log(2)+ log(2x)+ log(25x)

12. Simplify: log

2

(2)° log

2

(5x)+ log

2

(20x)

13. Find the inverse of the function f (x)= 7°2

x

3+4

14. Find the inverse of the function f (x)= 4log

2

(x)+3

15. Find the inverse of the function g(µ)= 2

5

µ
+1

16. Find the inverse of the function g(z)= 2

1/z

17. Use graph shifting to sketch the graph of y=° log

2

(x)+1.
18. Use graph shifting to sketch the graph of y= log(x+4).
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5.5 The Natural Exponential and Logarithm Functions
Calculus involves two very significant constants. One of them is º, which is
essential to the trigonometric functions. The other is a mysterious number
e = 2.718281829459 · · · that arises from exponential functions. Like º, the
number e is irrational – it is not a fraction of integers and its digits do
not repeat. But unlike º (the ratio of circumference to diameter of a circle)
it is di�cult to justify the importance of e without first developing some
calculus. This will come in due time. Eventually we will find formulas for e.
For now we merely remark that e will turn out to be very significant. The
exponential function e

x is called the natural exponential function.
The natural exponential function
is the function f (x)= e

x.
The natural exponential function

y = e

x is graphed on the right. Be-
cause 2< e < 3, this graph lies between
the graphs of the exponential functions
y = 2

x and y = 3

x, whose graphs are
sketched in gray.

The natural exponential function
shares features of other exponential
functions. It grows very rapidly as x

moves in the positive direction. Taking
x in the negative direction, e

x becomes
closer and closer to 0. Its domain of
f (x)= e

x is R and the range is (0,1). x

y

y= 2

x

y= e

x

y= 3

x

°3 °2 °1 1 2 3

1

2

3

4

5

6

7

8

Later we will (for the most part) forsake all other exponential functions
and treat the natural exponential function as if it is the only exponential
function. There are good reasons for doing this, as we will see.

Section 5.3 tells us the inverse of f (x)= e

x is f

°1

(x)= log

e

(x). This loga-
rithm occurs so often that it is called the natural logarithm and is abbrevi-
ated as ln(x). Whenever you see ln(x) it means log

e

(x).

Definition 5.3 The function f (x) = e

x is called the natural exponen-
tial function. Its inverse is called the natural logarithm and is de-
noted as ln(x), that is, ln(x)= log

e

(x).

Figure 5.3 shows the graph of both e

x and ln(x). Because they are inverses
of one another, the graph of one is the reflection of the other’s graph across
the line y = x. Take note that the positive real numbers constitute the
domain of ln(x). Its range if R.
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y= ln(x)

x

y

y= e

x

y= ln(x)

°3 °2 °1 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 5.3. The natural exponential function e

x and its inverse ln(x)

Never forget the meaning of ln. It is log

e

, which we also call e

⇤. Its
meaning is simply

ln(x)= e

⇤
(x)=

√
power y for
which e

y = x

!

. (5.6)

For example, ln(1)= e

⇤
(1)= 0 because e

0 = 1. Also ln(e)= e

⇤
(e)= 1 because

putting 1 in the box gives e. In general ln(e

x

)= e

⇤
(e

x

)= x, so

ln

µ
1

e

∂
= ln

°
e

°1

¢
= e

⇤
(e

°1

) = °1,

ln(

p
e) = ln

°
e

1/2

¢
= e

⇤
(e

1/2

) = 1

2

,

ln

√
1

p
e

3

!

= ln

°
e

°3/2

¢
= e

⇤
(e

°3/2

) = °3

2

,

ln(e

x

) = e

⇤
(

e

x

)

= x.

This last equation ln(e

x

)= x is simply f

°1

°
f (x)

¢
= x for the case f (x)= e

x.
Of course we can’t always work out ln(x) mentally, as was done above.

If confronted with, say, ln(9) we might think of it as e

⇤
(9) but we’re stuck

because no obvious number goes in the box to give 9. The best we can do is
guess that because e º 2.7 is close to 3 and 3

2 = 9, then ln(9) must be close
to 2. Fortunately, a good calculator has a ln button. Using it, we find
ln(9)º 2.1972.
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Although the e

⇤ notation may be a helpful nemonic device, we will not
use it extensively, and you will probably drop it yourself once you have
become fluent in logarithms. (Perhaps that has already happened.)

Please be aware that it is common (particularly in other texts) to drop
the parentheses and write ln(x) simply as ln x. For clarity this text will
mostly retain the parentheses, we will certainly drop them occasionally.

Because ln= log

e

, all standard logarithm properties apply to it.

Natural Logarithm Laws

ln(e

x

)= x ln(1)= 0 ln(xy)= ln(x)+ ln(y) ln(x

r

)= r ln(x)

e

ln(x) = x ln(e)= 1 ln

µ
x

y

∂
= ln(x)° ln(y) ln

µ
1

y

∂
=° ln(y)

Example 5.5 Simplify ln(25)+2ln

≥
e

5

¥
.

By natural log laws this is ln(5

2

)+2

°
ln(e)° ln(5)

¢
= 2ln(5)+2ln(e)°2ln(5) =

2ln(e)= 2 ·1= 2.
The law ln(x

r

) = r ln(x) is extremely useful because it means taking ln

of x

r converts the exponent r to a product. Consequently ln can be used to
solve an equation for a quantity that appears as an exponent.
Example 5.6 Solve the equation 5

x+7 = 2

x.
In other words we want to find the value of x that makes this true. Since x

occurs as an exponent, we take ln of both sides and simplify with log laws.

ln

°
5

x+7

¢
= ln

°
2

x

¢

(x+7) · ln(5) = x · ln(2)

x ln(5)+7ln(5) = x ln(2)

x ln(5)° x ln(2) = °7ln(5)

x

°
ln(5)° ln(2)

¢
= °7ln(5)

x = °7ln(5)

ln(5)° ln(2)

x º °12.2952955815,

where we have used a calculator in the final step.
In doing this problem we could have used a logarithm to any base, not

just ln= log

e

. Most calculators have a log button for the common logarithm
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log

10

. With log the steps above gives the same solution

x = °7log(5)

log(5)° log(2)

º°12.2952955815.

The next two examples will lead to a significant formula called the
change of base formula.
Example 5.7 Suppose b is positive. Solve the equation b

y = x for y.
The variable y is an exponent, so we take ln of both sides and simplify.

ln

°
b

y

¢
= ln(x)

y ln(b) = ln(x)

y = ln(x)

ln(b)

Therefore, in terms of x and b, the quantity y is the number ln(x)

ln(b)

.

Example 5.7 would have been quicker if we had used log

b

instead of ln.
Lets’s do the same problem again with this alternative approach.

Example 5.8 Suppose b is positive. Solve the equation b

y = x for y.
The variable y is an exponent, so we take log

b

of both sides and simplify.

log

b

°
b

y

¢
= log

b

(x)

y = log

b

(x)

Therefore, in terms of x and b, the quanitty y is the number log

b

(x).
Examples 5.7 and 5.8 say the solution of b

y = x can be expressed either as
ln(x)

ln(b)

or log

b

(x). The first solution may be preferable, as your calculator has
no log

b

button. But what is significant is that these two methods arrive at
the same solution, which is to say log

b

(x)= ln(x)

ln(b)

. To summarize:

Fact 5.1 (Change of Base Formula)

log

b

(x)= ln(x)

ln(b)

The change of base formula says that a logarithm log

b

(x) to any base b

can be expressed entirely in terms of the natural logarithm ln.



The Natural Exponential and Logarithm Functions 89

Example 5.9 By the change of base formula, log

2

(5)= ln(5)

ln(2)

º 1.6094379

0.6931471

=

2.3219280. This seems about right because log

2

(5)= 2

⇤
(5) is the number y

for which 2

y = 5. Now, 2

2 = 4 < 5 < 8 = 2

3, so y should be between 2 and 3.
This example shows in fact y= 2.3219280 to seven decimal places.

Exercises for Section 5.5
Simplify the following expressions.

1. ln

µ
1

e

∂
2. 2ln(7e)° ln(49) 3. e

p
2 · e°

p
2

4. 2ln(6)° ln(4)° ln(9) 5. e

ln(3)°ln(2) 6. e

5ln(3)

Use the techniques of this section to solve the following equations.
7. 2

x+3 = 3

x 8. 10

4x°2 = 11 9. e

4x°2 = 3e

2 10. e

x

2°2+1 = 1

11. e

sin(x) = e 12. 2

sin(x) = 2

cos(x) 13. 10

x = 17 14. ln(x

2 +5x+7)= 0

Use the change of base formula to express the following logarithms in terms of ln.
15. log

2

(5) 16. log

3

(5) 17. log

4

(5) 18. log

5

(5)

19. log(8) 20. log(9) 21. log(10) 22. log(99)

23. log

3

(8) 24. log

3

(9) 25. log

3

(10) 26. log

3

(29)
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5.6 The Significance of e

What is this mysterious number e º 2.71828182 and why is it important? In
this section we will first define e by giving a formula for it. Then we explore
one reason why the number e is significant.

The number e comes from the value of the expression
°

1

n

+1

¢
n, where

n is a positive integer. Consider the table below. The left column lists
integers 1,2,3, . . ., increasing in value and getting quite large. The right
column gives the corresponding value of

°
1

n

+1

¢
n. For example, in the first

line we have n = 1 and
°

1

n

+1

¢
n =

°
1

1

+1

¢
1 = 2. The second line has n = 2 and

°
1

2

+1

¢
2 = 1.5

2 = 2.25. The later lines—done with a calculator—are accurate
to 15 decimal places if an exact value is not possible.

n

µ
1

n

+1

∂
n

1 2

2 2.25

3 2.370270370370370

4 2.44140625

5 2.48832

10 2.5937424601

100 2.704813829421526

1000 2.716923932235892

10000 2.718145926825225

100000 2.718268237174495

1000000 2.718280469319337

10000000 2.718281692544966

100000000 2.718281814867636

# #
1 e

Notice how as n increases, the number
°

1

n

+1

¢
n increases too, but slowly.

As n increases to 1, the number
°

1

n

+1

¢
n appears to stabilize at some value

around 2.718281828. This is e. The number e is the value that
°

1

n

+1

¢
n

approaches as n gets bigger and bigger.
This is an example of what is called a limit, a topic that we will explore

in Part 2 of this text. But for now it su�ces to say that for very large values
of n, the quantity

°
1

n

+1

¢
n is very close to e. For example, putting in n = 10

16

gives e to 15 decimal places:

e º 2.718281828459045 · · · .

If you want more accuracy, use a larger n.
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So why is e significant? For us, the reason is this: We know that any
exponential function y = a

x has y-intercept (0,a

0

) = (0,1), and the graph
of y = a

x has a tangent line at this point (0,1). The function y = e

x is the

only exponential function for which this tangent has slope 1. Figure 5.4
illustrates this. The line y= x+1 (with slope 1) is tangent to y= e

x at (0,1).

x

y

y= x+1

0

(0,1)

y= e

x

Figure 5.4. The tangent to y= e

x at (0,1) is the line y= x+1, with slope 1.

There is a simple reason for this. Pick an integer n and consider the
exponential function f (x) =

≥°
1

n

+1

¢
n

¥
x

, that is, the exponential function
whose base is the number

°
1

n

+1

¢
n. For large n this base is close to e, so

we can regard f (x) as being an approximation of e

x. Let g(x) = x+ 1 be
the linear function whose graph is the tangent line in Figure 5.4. Since
f (0) = 1 = g(0) and f

°
1

n

¢
= 1

n

+1 = g

°
1

n

¢
(check this!), the graphs of f and g

intersect twice, once at x = 0 but also again at x = 1

n

. (See Figure 5.5.) In
particular, the line g(x)= x+1 is not tangent to the graph of the exponential
function y=

≥°
1

n

+1

¢
n

¥
x

. But, as we will develop on the next page, it is almost
tangent if n is a large number.

x

y

y= g(x)= x+1

0

(0,1)

y= f (x)=
≥°

1

n

+1

¢
n

¥
x

1

n

1

n

+1

Figure 5.5. The graphs of y= x+1 and y=
≥°

1

n

+1

¢
n

¥
x

cross at x=0 and x= 1

n

.
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For example, consider the case n = 1,
for which

≥°
1

n

+1

¢
n

¥
x

=
≥°

1

1

+1

¢
1

¥
x

= 2

x,
which is graphed on the right. This
exponential function crosses the line
y= x+1 at x=0 and x = 1

n

= 1

1

= 1. The
line y= x+1 is definitely not tangent
to the exponential function 2

x.

Next consider the case n = 2, for
which

≥°
1

n

+1

¢
n

¥
x

=
≥°

1

2

+1

¢
2

¥
x

= 2.25

x,
which is graphed on the right. This
exponential function crosses the line
y = x+1 at x=0 and x = 1

n

= 1

2

. The
intersection points are closer than
they were for n = 1, but y= x+1 is not
tangent to the graph of y= 2.25

x.

Now consider the case n = 3, for
which

≥°
1

n

+1

¢
n

¥
x

=
≥°

1

3

+1

¢
3

¥
x

. This ex-
ponential function crosses the line
y= x+1 at x=0 and x = 1

3

. The line is
still not a tangent, but it is closer to
being tangent than is was before.

In general, y =
≥°

1

n

+1

¢
n

¥
x

crosses
the line y = x+1 at x = 0 and x = 1

n

.
These two intersection points are
very close together for large n. Thus
when n is large, the line y = x+1 is
almost—but not quite—tangent to
y=

≥°
1

n

+1

¢
n

¥
x

.

From this line of reasoning, we
see that the larger and larger n is,
the closer and closer the line y= x+1

is to being tangent to y =
≥°

1

n

+1

¢
n

¥
x

.
Because

°
1

n

+1

¢
n approaches e as n

goes to 1, we conclude that the line
y = x+ 1 is tangent to the graph of
y= e

x.

x

y

y= x+1

0

1

y=
≥°

1

1

+1

¢
1

¥
x

= 2

x

1

1

1

1

+1

x

y

y= x+1

0

1

y=
≥°

1

2

+1

¢
2

¥
x

= 2.25

x

1

2

1

2

+1

x

y

y= x+1

0

1

y=
≥°

1

3

+1

¢
3

¥
x

1

3

1

3

+1

x

y

y= x+1

0

1

y=
≥°

1

n

+1

¢
n

¥
x

1

n

x

y

y= x+1

0

1

y= e

x
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In conclusion, the line y= x+1 is the tangent line to the graph of y= e

x

at (0,1). This line has slope 1. Let us summarize this.

Fact 5.2 The tangent line to the graph of y= e

x at (0,1) has slope 1.

x

y

m = 1

0

(0,1)

y= e

x

We will return to this fundamental fact in Chapter 19, where its full
significance will emerge. It will be a key ingredient to an important formula.
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5.7 Solutions for Chapter 5

Exercises for Section 5.1
1. 25

1/2 =
p

25= 5 3. 1

4

1/2 =
q

1

4

=
p

1p
4

= 1

2

5. (°27)

1/3 = 3

p
°27=°3 7. (°27)

4/3 = 3

p
°27

4 = (°3)

4 = 81

9. 2

°2 = 1

2

2

= 1

4

11. 1

2

°1 = 2

13. 1

2

°3 = 1

(1/2)

3

= 8 15.
p

2

6 =
°
2

1/2

¢
6 = 2

3 = 8

17.
√p

3

2

!°4

= 1

p
3

4

3

4

= 4

9

19.
µ°

2

3

¢ 3

2

∂
2

=
°

2

3

¢
3 = 8

27

21.
µp

2

p
2

∂p
2

=
p

2

p
2

p
2 =

p
2

2 = 2

Solutions for Section 5.2

1. Add the graphs of exponential functions f (x)=
°

1

10

¢
x and f (x)=

°
1

3

¢
x to Figure 5.1.

x

y

f (x)= 10

x

f (x)=
°

1

10

¢
x

f (x)=
°

1

3

¢
x

f (x)= 3

x

f (x)= 2

x

f (x)= 1.25

x

f (x)= 1.5

x

f (x)= 1

x

f (x)= 1

2

x

0

2

3

10

3. Use graph shifting techniques
to draw the graph of y= 2

x°3 °4.

y= 2

x

y=2

x°3

y=2

x°3°4

5. Draw the graph of the inverse of
f (x)= 2

x.

y= f (x)

y= f

°1

(x)
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Solutions for Section 5.3
1. log

3

(81)= 3

⇤
(3

4

)= 4 3. log

3

(

p
3)= 3

⇤
(3

1/2

)= 1

2

5. log

3

(1)= 3

⇤
(1)= 0 7. log(

3

p
10)= 10

⇤
(10

1/3

)= 1

3

9. log(0.01)= 10

⇤
(10

°2

)=°2 11. log

4

(4)= 4

⇤
(4)= 1

13. log

4

(

p
2)= 1

4

15. log

4

8=4

⇤
(64

1

2

)=4

⇤°
(4

3

)

1

2

¢
=4

⇤°
4

3

2

¢
= 3

2

17. 10

log(5) = 5.

19. Draw the graph of y= 3

x

and its inverse y= log

3

(x).

See right.

x

y y= 3

x

y= log

3

(x)

°3 °2 °1 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Solutions for Section 5.4

1. 5log

2

(x

3 +1)+ log

2

(x)° log

2

(3) = log

2

°
(x

3 +1)

5

¢
+ log

2

≥
x

3

¥
= log

2

µ
x(x

3 +1)

5

3

∂

3. 2+ log(5)+2log(7) = log(100)+ log(5)+2log(7)

= log(100)+ log(5)+ log(7

2

) = log(500 ·72

) = log(24500)

5. log

2

s
x

3

x+1

= log

2

µ
x

3

x+1

∂ 1

2

= 1

2

log

2

µ
x

3

x+1

∂
= 1

2

≥
log

2

°
x

3

¢
° log

2

(x+1)

¥

= 3

2

log

2

(x)° 1

2

log

2

(x+1)

7. log

°p
x(x+3)

6

¢
= log

°p
x

¢
+ log

°
(x+3)

6

¢
= log

≥
x

1/2

¥
+ log

°
(x+3)

6

¢

= 1

2

log(x)+6log(x+3)

9. log

°
10x

10

¢
= log(10)+ log

°
x

10

¢
= 1+10log(x)

11. log(2)+ log(2x)+ log(25x)= log(2 ·2x ·25x)= log(100x

2

)= log(100)+ log(x

2

)=
2+2log(x)
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13. Find the inverse of f (x)= 7°2

x

3+4

y = 7°2

x

3+4

x = 7°2

y

3+4

7° x = 2

y

3+4

log

2

(7° x) = log

2

≥
2

y

3+4

¥

log

2

(7° x) = y

3 +4

log

2

(7° x)°4 = y

3

3

q
log

2

(7° x)°4 = y

f

°1

(x) = 3

q
log

2

(7° x)°4

15. Find the inverse of g(µ)= 2

5

µ
+1

y = 2

5

µ
+1

µ = 2

5

y

+1

µ°1 = 2

5

y

2

µ°1

= 5

y

log

5

µ
2

µ°1

∂
= log

5

°
5

y

¢

log

5

µ
2

µ°1

∂
= y

g

°1

(µ) = log

5

µ
2

µ°1

∂

17. Use graph shifting to sketch the graph of y=° log

2

(x)+1.

x

y

y= log

2

(x)

y=° log

2

(x)

y=° log

2

(x)+1

°3 °2 °1 1 2 3 4 5 6 7

1

2

3

4

Exercises for Section 5.5

1. ln

µ
1

e

∂
= e

⇤
(e

°1

)=°1 3. e

p
2 · e°

p
2 = e

p
2

e

p
2

= 1

5. e

ln(3)°ln(2) = e

ln(3)

e

ln(2)

= 3

2

7. Solve 2

x+3 = 3

x

2

x+3 = 3

x

ln

°
2

x+3

¢
= ln

°
3

x

¢

(x+3)ln

(

2

)

= x ln

(

3

)

x ln(2)+3ln(2) = x ln(3)

x ln(2)° x ln(3) = °3ln(2)

x(ln(2)° ln(3)) = °3ln(2)

x = °3ln(2)

ln(2)° ln(3)

9. Solve e

4x°2 = 3e

2

e

4x°2 = 3e

2

ln

°
e

4x°2

¢
= ln

°
3e

2

¢

4x°2 = ln(3)+ ln

°
e

2

¢

4x°2 = ln(3)+2

4x = ln(3)+4

x = ln(3)+4

4
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11. Solve e

sin(x) = e

e

sin(x) = e

ln

≥
e

sin(x)

¥
= ln(e)

sin(x) = 1

x = º

2

+kº (k an integer)

13. Solve 10

x = 17

10

x = 17

log(10

x

) = log(17)

x log(10) = log(17)

x = log(17)

15. log

2

(5)= ln(5)

ln(2)

17. log

4

(5)= ln(5)

ln(4)

19. log(8)= ln(8)

ln(10)

21. log(10)= ln(10)

ln(10)

= 1 23. log

3

(8)= ln(8)

ln(3)

25. log

3

(10)= ln(10)

ln(3)


