
CHAPTER 44

Integration by Substitution

Over the past five chapters we have seen that the process of finding
indefinite integrals (that is, the process of integration) is essential

in calculus. For this, we have so far relied on a relatively sparse list of
integration rules that come from reversing di�erentiation rules.

Here is a summary of our integration rules so far. The only di�erence
between this list and the one on page 424 is that here the variable x has
been replaced by u. (For a reason that will soon become apparent.)

Integration Rules
R

c du = cu+C

R
u

n

du = 1

n+1

u

n+1 +C

Z
1

u

du = ln |u|+C

R
e

u

du = e

u +C

R
b

u

du = 1

ln(b)

b

u +C

R
sin(u)du = °cos(u)+C

R
cos(u)du = sin(u)+C

R
sec

2

(u)du = tan(u)+C

R
csc

2

(u)du = °cot(u)+C

R
sec(u)tan(u)du = sec(u)+C

R
csc(u)cot(u)du = °csc(u)+C

Z
1

p
1°u

2

du = sin

°1

(u)+C

Z
1

1 + u

2

du = tan

°1

(u)+C

Z
1

u

p
u

2°1

du = sec

°1 |u|+C

Recall that each of these integration rules is verified by di�erentiating
the answer and checking that the derivative is the same as the integrand.

Z
f (u) du = F(u)+C

D

u

Keep the above list of integration rules in mind, for we will refer to it
many times in this chapter.
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The above list does not contain the reverse of every di�erentiation rule.
For instance, the reverse of the quotient rule D

u

h
f (u)

g(u)

i
= f

0
(u)g(u)° f (u)g

0
(u)°

g(u)

¢
2

is

Z
f

0
(u)g(u)° f (u)g

0
(u)

°
g(u)

¢
2

du = f (u)

g(u)

+C.

This “rule” is useless (and is not on our list) because we rarely if ever need
to find the integral of a function that has the precise form f

0
(u)g(u)° f (u)g

0
(u)°

g(u)

¢
2

.

But there is one di�erentiation rule whose reverse is extremely useful.
That rule is the chain rule. The reverse of the chain rule is an integration
rule called the substitution rule. That is this chapter’s topic.

44.1 The Substitution Rule
Provided F and g are di�erentiable, the chain rule (for di�erentiation) says

D

x

h
F

°
g(x)

¢i
= F

0°
g(x)

¢
·g0

(x).

If F

0
(x)= f (x), that is, if F is an antiderivative of f , then this becomes

D

x

h
F

°
g(x)

¢i
= f

°
g(x)

¢
·g0

(x).

In other words, if F is an antiderivative of f , then
Z

f

°
g(x)

¢
·g0

(x) dx = F

°
g(x)

¢
+C. (§)

This is almost our new rule, but first we are going to simplify it. Let
g(x)= u, so g

0
(x)= du

dx

. Multipling both sides of this by the di�erential dx,
g

0
(x)dx = du. Using these boxed equations, replace (or substitute) the g(x)

in Equation (§) with u, and the g

0
(x)dx with du:

Z
f

°
g(x)

¢
g

0
(x)dx = F

°
g(x)

¢
+C

Z
f (u)du = F(u)+C

Because g(x)= u, the right-hand sides of these equations are equal. Thus
left-hand sides are equal too. That is our new rule.

Substitution Rule If u = g(x), then
Z

f

°
g(x)

¢
g

0
(x)dx =

Z
f (u)du.

The substitution rule can convert a complicated integral to a simple one.
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Substitution Rule If u = g(x), then
Z

f

°
g(x)

¢
g

0
(x)dx =

Z
f (u)du.

| {z }
complicated

| {z }
simple

When faced with a complicated integral to which no integration rules
apply, the substitution rule—when applicable—lets us make a substitution
u = g(x) that converts the integral to a simpler form

R
f (u)du to which a

rule may apply. This is somewhat of an art, and occasionally involves some
guesswork and trial and error. (And it definitely requires some practice and
experience!) Following are some examples of the substitution rule.

Example 44.1 Find
Z

sin

°
x

2

¢
2x dx.

Solution This is does not match any of our familiar integration rules, but
the closest match is the rule

R
sin(u)du =°cos(u)+C. To make the present

problem more like this rule, we can make the substitution u = x

2. With this,
Z

sin

°
x

2

¢
2x dx =

Z
sin(u) 2x dx

But we still have the 2x dx where we want just du. (Remember, we are
aiming for

R
sin(u)du.) But also we chose u = x

2, and this means du

dx

= 2x.
From this we get du = 2x dx. Thus the above 2x dx actually equals du, and
the above turns into the simple integral

=
Z

sin(u)du = °cos(u)+C.

But since u = x

2, the u in °cos(u)+C is actually x

2. We have our answer.

Answer:
Z

sin

°
x

2

¢
2x dx = °cos

°
x

2

¢
+C.

To check this answer, notice that D

x

h
°cos

°
x

2

¢
+C

i
= °sin

°
x

2

¢
2x.

This example illustrates a general approach to using the substitution
rule to find an indefinite integral that does not match any known rule:
Think of an integration rule that most closely matches the problem. Then
make a substitution u = g(x) that moves the problem closer to that rule.
Once this choice is made, then du/dx = g

0
(x), so du = g

0
(x)dx. Look for a

g

0
(x)dx in the problem and replace it with du. If you now have something

that matches the rule you aimed for, then substitution has worked.

Example 44.2 Find
Z

sec

°
ln(x)

¢
tan

°
ln(x)

¢

x

dx.
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Solution This integral is similar to the rule
R

sec(u)tan(u)du = sec(x)+C.
To make it match this rule, use u = ln(x) so du

dx

= 1

x

, hence du = 1

x

dx . Then

Z
sec

°
ln(x)

¢
tan

°
ln(x)

¢

x

dx =
Z

sec

°
ln(x)

¢
tan

°
ln(x)

¢
1

x

dx

=
Z

sec(u)tan(u)du

= sec(u)+C

= sec

°
ln(x)

¢
+C

We can check the the answer we just got by di�erentiating it to see if we
get the integrand. By the chain rule,

D

x

h
sec

°
ln(x)

¢
+C

i
= sec

°
ln(x)

¢
tan

°
ln(x)

¢
1

x

+0 =
sec

°
ln(x)

¢
tan

°
ln(x)

¢

x

.

This is indeed the integrand, so our answer is correct. You can check all
the examples in this section the same way.

Example 44.3 Find
Z

e

p
x

2

p
x

dx.

Solution This integral is similar to the rule
R

e

u

du = e

u +C. To make it
match this rule, use u =p

x so du

dx

= 1

2

p
x

, hence du = 1

2

p
x

dx . Then

Z
e

p
x

2

p
x

dx =
Z

e

p
x

1

2

p
x

dx

=
Z

e

u

du = e

u +C = e

p
x +C.

Example 44.4 Find
Zp

e

x

e

x

dx.

Solution This is
Z°

e

x

¢
1/2

e

x

dx, which resembles
Z

u

1/2

du, to which the

power rule applies. So let u = e

x . Then du

dx

= e

x, hence du = e

x

dx . Then
Zp

e

x

e

x

dx =
Z°

e

x

¢
1/2

e

x

dx

=
Z

u

1/2

du = 1

1/2+1

u

1/2+1 +C = 2

3

p
u

3 +C = 2

3

p
e

x

3 +C.
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Example 44.5 Find
Z

3x

2 +8x°1

x

3 +4x

2 ° x+1

dx.

Solution Notice that the numerator of the integrand happens to be
the derivative of the denominator. Thus suggests u = x

3 +4x

2 ° x+1 , so
du

dx

= 3x

2 +8x°1, and hence du =
°
3x

2 +8x°1

¢
dx . Then

Z
3x

2 +8x°1

x

3 +4x

2 ° x+1

dx =
Z

1

x

3 +4x

2 ° x+1

°
3x

2 +8x°1

¢
dx =

Z
1

u

du

= ln |u|+C = ln

ØØ
x

3 +4x

2 ° x+1

ØØ+C.

The substitution rule applies only to integrals that have the exact formR
f

°
g(x)

¢
·g0

(x) dx, or those that can be put into this form algebraically. Once
the substitution u = g(x) is made, the integral has the simpler form

R
f (u)du.

After some practice, when confronted with an integral to which substitution
applies you may immediately see the answer without actually doing the
substitution. That is good.

But often the structure
R

f

°
g(x)

¢
·g0

(x) dx is not immediately apparent,
and you may have to do some intelligent guessing to come up with workable
substitution u = g(x). Sometimes further algebraic manipulation is needed
to attain a familiar form

R
f (u)du. We now work some examples of this type.

Example 44.6 Find
Z

sin

°
x

2

¢
x dx.

Solution This looks almost identical to Example 44.1. And as in that
example, the rule

R
sin(u)du =°cos(u)+C seems to be the closest match, so

try u = x

2 . From this du

dx

= 2x, so du = 2x dx . But here we have a problem.
We’d like to replace the x dx at the end of

R
sin

°
x

2

¢
x dx with du, but du 6= x dx.

The du = 2x dx that came from our choice u = x

2 doesn’t match the x dx in
the integral. To fix the problem, just divide du = 2x dx by 2 to get 1

2

du = x dx.
Now we know the x dx actually equals 1

2

du. Making these substitutions,
Z

sin

°
x

2

¢
x dx =

Z
sin(u)

1

2

du

= 1

2

Z
sin(u)du = °1

2

cos(u)+C = °1

2

sin

°
x

2

¢
+C.
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Example 44.7 Find
Z

sec

2

°p
x

¢
tan

2

°p
x

¢
p

x

dx.

Solution After some thought, you may hit upon this idea: u = tan

°p
x

¢
.

By the chain rule du

dx

= sec

2

(

p
x)

1

2

p
x

= sec

2

(

p
x)

2

p
x

. Solve this as 2du = sec

2

(

p
x)p

x

dx .
Now we have

Z
sec

2

°p
x

¢
tan

2

°p
x

¢
p

x

dx =
Z°

tan

°p
x

¢¢
2

sec

2

°p
x

¢
p

x

dx

=
Z

u

2

2du = 2

Z
u

2

du = 2

u

3

3

+C

=
2

°
tan

°p
x

¢¢
3

3

+C =
2 tan

3

°p
x

¢

3

+C

Example 44.8 Find
Z

cos(x) sin(x) dx.

Solution Choose u = cos(x) , so du

dx

=°sin(x). Solve this as °du = sin(x)dx

to get a match for the sin(x)dx that appears in the integral. Then
Z

cos(x) sin(x) dx =
Z

u(°du) = °
Z

u du = °u

2

2

+C = °cos

2

(x)

2

+C.

That is our answer, but here is another approach. Choose u = sin(x) , so
du

dx

= cos(x). Solve this as du = cos(x)dx . With these substitutions we get
Z

cos(x) sin(x) dx =
Z

sin(x) cos(x) dx =
Z

u du = u

2

2

+C = sin

2

(x)

2

+C.

So we got an answer in two di�erent ways. But the answers look di�erent. To
see why this is not a mistake, note sin

2

(x)+cos

2

(x)= 1, so sin

2

(x)= 1°cos

2

(x).
With this, our second answer is

sin

2

(x)

2

+C = 1°cos

2

(x)

2

+C = °cos

2

(x)

2

+ 1

2

+C.

So the two answer are di�erent: one is just the other plus 1/2. Since we
regard the constant as arbitrary, we just write it as C in both cases.

Next we’ll do two examples that are very simple; so simple that students
often make hasty mistakes when doing integrals of this type. We will use
substitution to solve them here, but after some practice you will do this
kind of problem mentally, getting the answer in one step.
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Example 44.9 Find
Z

e

°x

dx.

Solution This closely resembles the rule
R

e

u

du = e

u +C, so to convert to
that form we choose u =°x . Then du

dx

=°1, so dx =°du . Making these
substitutions,

Z
e

°x

dx =
Z

e

u

(°du)=°
Z

e

u

du =°e

u +C =°e

°x +C.

Example 44.10 Find
Z

cos(2x) dx.

Solution This closely resembles the rule
R

cos(u)du = sin(u)+C, so to
convert to that form we choose u = 2x . Then du

dx

= 2, so dx = 1

2

du . Then
Z

cos(2x) dx =
Z

cos(u)

1

2

du = 1

2

Z
cos(u)du = 1

2

sin(u)+C.

Example 44.11 Find
Z

x

p
x+1dx.

Solution Since this looks somewhat like
Rp

u du (which we can do with
the power rule for integration), put u = x+1 . Then du

dx

= 1, so du = dx .
Then Z

x

p
x+1dx =

Z
x(x+1)

1/2

dx =
Z

x u

1/2

du.

This looks fine, except that there is still an x in the picture, and it didn’t go
away with the substitution for du. To take care of this, notice because we
have made the substitution u = x+1, it follows that x = u°1. With this our
computation continues as

Z
x u

1/2

du =
Z

(u°1)u

1/2

du =
Z≥

(u ·u1/2 °u

1/2

¥
du

=
Z≥

u

3/2 °u

1/2

¥
du

= 1

3/2+1

u

3/2+1 + 1

1/2+1

u

1/2+1 +C

= 2

5

u

5/2 + 2

3

u

3/2 +C

= 2

5

p
u

5 + 2

3

p
u

3 +C

= 2

5

p
x+1

5 + 2

3

p
x+1

3 +C

It is important to practice some exercises before moving to the next
section.
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44.2 Substitution in Definite Integrals
Part 2 of the fundamental theorem of calculus states

Z
b

a

f (x)dx =
h
F(x)

i
b

a

,

where F(x) =
R

f (x)dx (with C = 0). So finding a definite integral involves
finding an indefinite integral. Sometimes the indefinite integral requires
substitution. This section explains the process.

To motivate the topic, we will do our next example two ways. The first
way is longer. The second, shorter solution highlights a preferred shortcut.

Example 44.12 Find
Z

1

0

°
x

2 +1

¢
5

2x dx.

Solution A Applying the fundamental theorem of calculus yields
Z

1

0

°
x

2 +1

¢
5

2x dx =
h
F(x)

i
1

0

(§)

Before going further, we need to compute F(x)=
R°

x

2 +1

¢
5

2x dx. For this, let
u = x

2 +1 , so du

dx

= 2x, and du = 2x dx . Then

F(x) =
Z°

x

2 +1

¢
5

2x dx =
Z

u

5

du = u

6

6

= (x

2 +1)

6

6

.

We now get an answer by inserting F(x)=
°
x

2 +1

¢
6

/6 into Equation (§), above.
Z

1

0

°
x

2 +1

¢
5

2x dx =
h

(x

2 +1)

6

6

i
1

0

= (1

2 +1)

6

6

° (0

2 +1)

6

6

= 63

6

= 21

2

.

Solution B This time we’ll do the substitutions in-line, rather than find-
ing F(x) separately, as above. As before, let u = x

2 +1 , so du = 2x dx . Then
Z

1

0

°
x

2 +1

¢
5

2x dx =
Z

x=1

x=0

u

5

du

We have almost totally switched from x to u. But the limits of integration
are still x-values. (In the original integral, x goes from 0 to 1.) We have em-
phasized this by writing them as x=0 and x=1. They must be converted to u.
Since u=x

2+1, x=0 gives u=0

2+1, and x=1 gives u=1

2+1. Our computation
continues:

=
Z

u=1

2+1

u=0

2+1

u

5

du =
Z

2

1

u

5

du =
∑

u

6

6

∏
2

1

= 2

6

6

° 1

6

6

= 63

6

= 21

2

.
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We have now found
R

1

0

°
x

2 +1

¢
5

2x dx in two di�erent ways, getting the same
answer both times.

The moral of this example is that if we need to do a substitution u = g(x)

in a definite integral, then it is quicker to do it in-line, as in Solution B.
However, in doing this we must remember to change the limits of integration
a and b to g(a) and g(b).

We summarize this discussion by pairing the previous section’s substitu-
tion rule (for indefinite integrals) with its companion for definite integrals.

Substitution Rule for Indefinite Integrals

If u = g(x), then
Z

f

°
g(x)

¢
g

0
(x)dx =

Z
f (u)du.

Substitution Rule for Definite Integrals

If u = g(x), then
Z

b

a

f

°
g(x)

¢
g

0
(x)dx =

Z
g(b)

g(a)

f (u)du.

Example 44.13 Find
Z

2

1

5

(

5x°1

)

2

dx.

Solution Let u = 5x°1 , so du

dx

= 5 and du = 5dx . Then
Z

2

1

5

(

5x°1

)

2

dx =
Z

2

1

(5x°1)

°2

5dx =
Z

5·2°1

5·1°1

u

°2

du =
Z

9

4

u

°2

du =
∑°1

u

∏
9

4

= 5

36

.

Example 44.14 Find
Z

0

°1

7

x

2 +2x+2

dx.

Solution Perhaps your first impulse is to put u = x

2 +2x+2, but then
du = (2x+1)dx is nowhere in sight. After some trial and error you may
notice that this integral is similar to

R
1

1+u

2

du = tan

°1

(u)+C. In fact,
Z

0

°1

7

x

2 +2x+2

dx = 7

Z
0

°1

1

1+ (x

2 +2x+1)

dx = 7

Z
0

°1

1

1+ (x+1)

2

dx

So let u = x+1 . Then du

dx

= 1, so du = dx . The computation continues as:

= 7

Z
0+1

°1+1

1

1+u

2

du = 7

h
tan

°1

(u)

i
1

0

= 7

≥º
4

°0

¥
= 7º

4

.
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Example 44.15 Find
Z

1

0

x+1

x

2 +2x+2

dx.

Solution Let u = x

2 +2x+2 . Then du

dx

= 2x+2, so 1

2

du = (x+1)dx . Then

Z
1

0

x+1

x

2 +2x+2

dx =
Z

1

0

1

x

2 +2x+2

(x+1)dx

=
Z

1

2+2·1+2

0

2+2·0+2

1

u

1

2

du = 1

2

Z
5

2

1

u

du = 1

2

h
ln |u|

i
5

2

= 1

2

°
ln(5)° ln(2)

¢
= 1

2

ln

µ
5

2

∂
= ln

r
5

2

.

Exercises for Chapter 44
Find the integrals.

1.
Z

6µ cos(3µ2

) dµ 2.
Z

e

2x

2

4x dx

3.
Z

4x

2x

2 °6

dx

4.
Z

12s

2

p
4s

3 +15 ds

5.
Z

3x

2 +2x+1

x

3 + x

2 + x

dx

6.
Z

4x

e

2x

2

dx

7.
Z

sec

2

(°1/x)

x

2

dx

8.
Z

1

p
x

°
1+2

p
x

¢
3

dx

9.
Z

sin

6

(x)cos(x) dx 10.
Z

1

x

2

s

2° 1

x

dx

11.
Z

2e

°x

dx 12.
Z

4sin(3x)dx

13.
Z

sin(2x)

cos

5

(2x)

dx

14.
Z

sin(x)e

cos(x)

dx

15.
Z

x

p
1° x

2

dx

16. x

2

cos

°
x

3

¢
dx

17.
Z

2sin(2x)

°
1°cos(2x)

¢
dx 18.

Z
6x

2 +6

°
x

4 +4x

¢
dx

19.
Z
ºsin

2

(ºx)cos(ºx)dx 20.
Z

cos(6x)

p
sin(6x)

dx
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21.
Z

cos

°
1/x

2

¢

x

3

dx

22.
Z

2x

9 ° e

x

x

10 °5e

x

dx

23.
Z

3

1

3x

2 +2x+1

x

3 + x

2 + x

dx

24.
Z

1

0

°
x

4 +1

¢p
x

5 °5x+4 dx

25.
Z

3

0

e

°5x

dx 26.
Z

2

1

x+1

°
x

2 +2x

¢
2

dx

27.
Z

1

0

x (x

2 +1)

5

dx 28.
Zº/6

°º/6

tan(2x)sec(2x) dx

29.
Z

1

2

cos

≥ºx

2

¥
dx 30.

Z
1

0

x

p
x

2 +1 dx

31.
Z

0

°1

y

1+ y

2

d y 32.
Z

3

0

dx

x+1

33.
Zº/2

0

sin

4

(3x)cos(3x)dx

34.
Z

1

0

5

°
5x+1

¢
2

dx

35.
Zp

º/4

0

sec

2

°
x

2

¢
x dx

36.
Z

1

°2

3

3x+7

dx

37. Find the area under the graph of sec

2

(2x) between 0 and º/8.

38. Find the area under the graph of xsin(x

2

) between 0 and
p
º/6.

39. Find
Z

sin(x)cos(x)dx using the substitution u = sin(x). Then find
Z

sin(x)cos(x)dx

using the substitution u = cos(x). Explain why it is not a contradiction that the
answers look di�erent.
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Exercise Solutions for Chapter 44

1. Let u = 3µ2, so du

dµ = 6µ and du = 6µdµ. Then
Z

6µ cos(3µ2

) dµ =
Z

cos(3µ2

)6µ dµ =
Z

cos(u)du = sin(u)+C = sin(3µ2

)+C

3. Let u = 2x

2 °6 so du

dx

= 4x and du = 4x dx. Then
Z

4x

2x

2 °6

dx =
Z

1

2x

2 °6

4x dx =
Z

1

u

du = ln |u|+C = ln |2x

2 °6|+C

5. Let u = x

3 + x

2 + x, so du

dx

= 3x

2 +2x+1, hence du =
°
3x

2 +2x+1

¢
dx. Then

Z
3x

2 +2x+1

x

3+x

2+x

dx =
Z

1

x

3+x

2+x

°
3x

2+2x+1

¢
dx =

Z
1

u

du = ln |u|+C = ln |x3 + x

2 + x|+C

7. Let u =°1/x so du

dx

= 1

x

2

, and du = 1

x

2

dx. Then
Z

sec

2

(°1/x)

x

2

dx =
Z

sec

2

(°1/x)

1

x

2

dx =
Z

sec

2

(u)du = tan(u)+C = tan(°1/x)+C

9. Let u = sin(x) so du

dx

= cos(x) and du = cos(x)dx Then
Z

sin

6

(x)cos(x) dx =
Z

u

6

du = u

7

7

+C = sin

7

(x)

7

+C

11. Let u =°x so du

dx

=°1 and °du = dx.
Then

R
2e

°x

dx = 2

R
e

°x

dx = 2

R
e

u

(°du)2=°2

R
e

u

du =°2e

u +C =°2e

°x +C

13. Let u = cos(2x) so du

dx

=°2sin(2x) and ° 1

2

du = sin(2x)dx. Then
Z

sin(2x)

cos

5

(2x)

dx =
Z

(

cos(2x)

)

°5

sin(2x)dx =
Z

u

°5

µ
°1

2

du

∂
= 1

2

Z
u

°5

du = 1

2

· u

°4

°4

+C

° 1

8u

4

+C =° 1

8cos

4

(2x)

+C

15. Let u = 1° x

2, so du

dx

=°2x, hence ° 1

2

du = x dx. Then
Z

x

p
1° x

2

dx =
Z°

1° x

2

¢
1/2

x dx =
Z

u

1/2

µ
°1

2

du

∂
=°1

2

Z
u

1/2

du =°1

2

2

3

u

3/2 +C

°
p

u

3

3

+C = °
p

1° x

2

3

3

+C

17. Let u = 1°cos(2x), so du = 2sin(2x)dx. Then
Z

2sin(2x)

°
1°cos(2x)

¢
dx =

Z°
1°cos(2x)

¢
2sin(2x)dx =

Z
u du = u

2

2

+C =
°
1°cos(2x)

¢
2

2

+C

19. Let u = sin(ºx) then du = cos(ºx)ºdx. Then
Z
ºsin

2

(ºx)cos(ºx)dx =
Z

sin

2

(ºx)ºcos(ºx)dx =
Z

u

2

du = u

3

3

+C = sin

3

(ºx)

3

+C
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21. Let u = 1/x

2, so du =° 2

x

3

dx and so ° 1

2

du = 1

x

3

dx. Then
Z

cos

°
1/x

2

¢

x

3

dx =
Z

cos

°
1/x

2

¢
1

x

3

dx =
Z

cos

(

u

)

°1

2

du =°1

2

Z
cos

(

u

)

du =°1

2

sin(u)+C =°1

2

sin

µ
1

x

2

∂
+C

23. Let u = x

3 + x

2 + x, so du

dx

= 3x

2 +2x+1, hence du =
°
3x

2 +2x+1

¢
dx. Then

Z
3

1

3x

2 +2x+1

x

3 + x

2 + x

dx =
Z

3

1

1

x

3 + x

2 + x

°
3x

2 +2x+1

¢
dx =

Z
3

3+3

2+3

1

3+1

2+1

1

u

du =
Z

39

3

1

u

du

=
h

ln |u|
i

39

3

= ln |39|° ln |3| = ln

µ
39

3

∂
= ln(13)

25. Let u =°5x so du

dx

=°5 and ° 1

5

du = dx. Then
Z

3

0

e

°5x

dx =
Z°5·3

°5·0
e

u

µ
°1

5

du

∂
=°1

5

Z°15

0

e

u

du =°1

5

h
e

u

i°15

0

=°1

5

°
e

°15 ° e

0

¢
= 1

5

° 1

5e

15

27. Let u = x

2 +1, so du

dx

= 2x and 1

2

du = x dx. Then
Z

1

0

x(x

2+1)

5

dx =
Z

1

0

(x

2+1)

5

x dx =
Z

1

2+1

0

2+1

u

5

1

2

du = 1

2

Z
2

1

u

5

du = 1

2

∑
u

6

6

∏
2

1

= 1

2

µ
2

6

6

°1

6

6

∂
= 21

4

29.
Z

1

2

cos

≥ºx

2

¥
dx =

∑
2

º
sin

≥ºx

2

¥∏1

2

= 2

º
sin

≥º
2

¥
° 2

º
sin

(

º
)

= 2

º
·1° 2

º
·0= 2

º

31. Let u = 1+ y

2. Then du = 2yd y, so 1

2

du = yd y and
Z

0

°1

y

1+ y

2

d y=
Z

0

°1

1

1+ y

2

yd y

=
Z

1+0

2

1+(°1)

2

1

u

1

2

du = 1

2

Z
1

2

1

u

du = 1

2

h
ln |u|

i
2

1

= 1

2

≥
ln |2|° ln |1|

¥
= 1

2

ln(2)

33. Let u = sin(3x). Then du = cos(3x)3dx, so 1

3

du = cos(3x)dx and
Zº/2

0

sin

4

(3x)cos(3x)dx =
Z

sin(3·º/2)

sin(3·0)

u

4

1

3

du = 1

3

Z°1

0

u

4

du = 1

3

∑
u

5

5

∏°1

0

=° 1

15

35. Let u = x

2. Then du = 2x dx, so 1

2

du = x dx and
Zp

º/4

0

sec

2

°
x

2

¢
x dx =

Zp
º/4

2

0

2

sec

2

(u)

1

2

du = 1

2

Zº/4

0

sec

2

(u)du = 1

2

h
tan(u)

iº/4

0

= 1

2

≥
tan(º/4)° tan(0)

¥
= 1

2

.

37. Find the area under the graph of sec

2

(2x) between 0 and º/8.

The answer will be
Zº/8

0

sec

2

(2x)dx. Let u = 2x, so du = 2dx and 1

2

du = dx. Then
Zº/8

0

sec

2

(2x)dx =
Z

2·º/8

2·0
sec

2

(u)

1

2

du = 1

2

Zº/4

0

sec

2

(u)du = 1

2

≥
tan(º/4)° tan(0)

¥
= 1

2

.

39. If u = sin(x), then du = cos(x)dx, so
Z

sin(x)cos(x)dx =
Z

u du = u

2

2

+C = sin

2

(x)

2

+C.

If u = cos(x), then °du = sin(x)dx, so
Z

sin(x)cos(x)dx =°
Z

u du =°u

2

2

+C =°cos

2

(x)

2

+C.
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These two answers look di�erent, but this is not a contradiction. Add a constant of
1/2 to the second answer and you get 1

2

° cos

2

(x)

2

+C = 1°cos

2

(x)

2

+C = sin

2

(x)

2

+C.
So the first answer is just 1/2 plus the second answer, and the 1/2 gets absorbed
into the C.


