
CHAPTER 34

Optimization Problems

In this chapter we will apply the ideas from Chapter 33 to solve real-
world problems. The kinds of problems that we are concerned with

here are called optimization problems. In an optimization problem the goal
is to maximize some desirable quantity, or to minimize some undesirable
quantity. For instance, if you are involved in some enterprise that incurs a
monetary cost, then you want to execute a plan that minimizes the cost. In
another instance you may want to maximize the e�ect of some medication.
In certain situations this kind of problem can be solved with the methods
that we have developed for finding global extrema.

Example 34.1 Imagine that you need to design a square concrete-lined
pool having a box-like shape and a volume of 500 cubic feet.

y

x

x

In order to minimize costs you want the (concrete-lined) surface area to be
as small as possible. What dimensions x and y result in a volume of 500
cubic feet, but with the smallest possible surface area?

Solution Our strategy will be to create a function A(x) that gives the
total surface area of the pool in terms of its length (and width) x. Then we
will use what we’ve learned about finding global extrema to find the x that
gives a global minimum for A(x).
The area of the square bottom is x2 square feet, and the area of each side is
xy square feet. There are four sides, so the total surface area is

A = x2 +4xy square feet.
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Unfortunately this is not a function of x, because it contains the variable y.
To overcome this, we will seek a way to express y in terms of x.
The volume of the box is length£width£ height, which is x2 y cubic feet. And
since the volume is required to be 500 cubic feet, this results in the equation

500= x2 y.

Such an equation is sometimes called a constraint. It allows us to solve for
y in terms of x. Indeed, dividing both sides by x2 yields y= 500

x2 . Inserting
this into the above formula A = x2+4xy, we now have the pool’s surface area
expressed as the function

A(x) = x2 +4x
500
x2 = x2 + 2000

x
.

We want to find the global maximum of this function on the interval (0,1)
(since x is a length, it must be positive). To do this we first find the critical
points. The derivative A0(x)= 2x° 2000

x2 is undefined at x = 0 but this is not a
critical point because it’s not in the domain of A. So to find all the critical
points we must solve the equation A0(x)= 0.

2x° 2000
x2 = 0

2x = 2000
x2

2x3 = 2000

x3 = 1000

x = 3p1000 = 10

So there is only one critical point x = 10. Notice that A00(x) = 2+ 4000
x3 and

so A00(10) = 6 > 0. By the second derivative test A(x) has a local minimum
at x = 10. Because this is the only local extremum on (0,1), it is a global
minimum. Therefore surface area of the pool is at a minimum when x = 10.
For this value, our constraint gives y= 500

102 = 5.

Answer: To minimize surface area, the pool should be 10£10£5 feet.
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Example 34.2 A cylindrical can with a bottom but no top is to be con-
structed using 100 square inches of metal. What should its radius and
height be in order for the can to have the greatest possible volume?

h

x

Solution Denote the radius and height as x and h. In this problem we
want to maximize volume. Our strategy is to find a function V (x) giving the
volume of the can in terms of the radius x. Then we can find which x yields
a global maximum for volume V (x). (Once x is found, we will then seek h.)
The volume of the cylinder is V =ºx2h (area of base, times height). But this
contains both x and h. We want V to be a function of x alone, and not h.
To overcome this problem, let’s look for a constraint. The one piece of
information we have not used yet is that the surface area of the can is
to be 100 square inches. The surface area of the circular bottom is ºx2

square inches. The surface area of the cylinder is 2ºxh square inches (the
circumference of the circular base times the height). Thus the total area is

100=ºx2 +2ºxh.

This constraint allows us to isolate h. Indeed, h = 100°ºx2

2ºx = 50
ºx °

x
2 .

With this, our volume formula V =ºx2h becomes V =ºx2 ° 50
ºx °

x
2
¢
= 50x° º

2 x3.
So the volume of the can is given by the function V (x)= 50x° º

2 x3. We seek
the x that yields a global maximum of V (x) on (0,1). To do this we first
find the critical points of V by examining the derivative V 0(x) = 50° 3

2ºx2.
Setting this equal to zero and solving,

50° 3
2
ºx2 = 0

3ºx2 = 100

x =

s
100
3º

= 10
p

3º
.

As V 00(x)=°3ºx < 0 the second derivative test guarantees a local maximum
of V (x) at x = 10p

3º
. Since this is the only extremum, it is a global maximum.

Answer: Use dimensions x = 10p
3º

and h = 50
º10/

p
3º

° 10/
p

3º
2 .
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Example 34.3 You need to build a shed with an open front and square
base (as illustrated), and containing a volume of 10,000 cubic feet.
The cost of materials are:
Roof: $10 per square foot;
Floor: $5 per square foot.
Walls: $8 per square foot;
Find the dimensions x and y that will
minimize the total cost of materials. x

y
x

Solution In this problem the goal is to minimize cost of material. Our
strategy is to create a function C(x) that gives the total cost of materials if
the base of the shed is x feet. Then we can use methods from the previous
chapter to find an x that gives a global minimum for cost C(x).

We begin building C by taking an inventory of the various costs.
Cost of roof: (x2 square feet)£($10 per square foot)= . . . . . . . . . . . . . . $10x2

Cost of floor: (x2 square feet)£($5 per square foot)= . . . . . . . . . . . . . . . . $5x2

Cost of walls: (3 walls)£(xy square feet)£($8 per square foot)= . . . $24xy

Total: $ 15x2 +24xy

So the total cost of materials is 15x2+24xy dollars. Our strategy is to create
a function C(x) giving total cost of materials. But putting C(x)= 15x2 +24xy
is not quite right because C is supposed to be a function of just one variable x.
Here there are two variables x and y.

But remember that the volume of the shed is required to be 10,000 cubic feet.
And since the volume of a box is length £ width £ height, we get x2 y= 10,000.
Hence y= 10,000/x2, Inserting this into C(x)= 15x2 +24xy gives

C(x) = 15x2 +24x
10,000

x2

C(x) = 15x2 + 240,000
x

Here x must be positive because it is length. So to solve the problem, we
need to find the x that gives a global minimum of C(x) on the interval (0,1).

From here on our solution fits the familiar pattern of finding the global
minimum of a function. The derivative is

C0(x) = 30x° 240,000
x2
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To find the critical points we solve C0(x)= 0.

30x° 240,000
x2 = 0

30x = 240,000
x2

30x3 = 240,000

x3 = 8000

x = 3p8000 = 20

Therefore there is only one critical point, x = 20. This divides the domain
(0,1) of C into two intervals (0,20) and (20,1). Take the test point x = 1
in (0,20) and note that C0(1) = 30° 24,000/12 < 0, so C0(x) is negative on
(0,20). And for a very large test point in (20,1), like x = 1000, we have
C0(1000)= 30 ·1000°24,000/10002 > 0, so C0(x) is positive on (20,1).

20
C0(x)°°°°°° ++++++

C(x)

So the cost function C(x) decreases before 20, and increases thereafter. Con-
sequently we have a global minimum of cost if x = 20. Above we determined
that y= 10000/x2, so for x = 20 we get y= 10000/202 = 10000/400= 25.
Answer: To minimize cost, use the dimensions x = 20 and y= 25.

Exercises for Chapter 34

Building

Fenced area

x

y

1. Suppose you have 160 feet of fencing material to enclose
a rectangular region. One side of the rectangle will
border a building, so no fencing is required for that side.
Find the dimensions x and y that maximize the fenced
area.

x

y

brick

ch
ai

n
lin

k

2. A total area of 2000 square feet is to be enclosed by two
pens, as illustrated. The outside walls will be made of
brick, and the inner dividing wall is chain link. The
brick wall costs $10 per foot, and the chain link costs
$5 per foot. Find the dimensions x and y that minimize
the cost of construction.

x

y
3. Suppose you have 120 feet of fencing material to enclose

two rectangular pens, as shown. Find the dimensions
x and y that maximize the total enclosed area.
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4. An open-top box is made from a 12 by 12 inch piece of cardboard by cutting a
square from each corner, and folding up. What should x be to maximize the
volume of the box?

12

12

x

x

x x

x

x y

x

5. A metal box with two square ends and an open top
is to contain a volume of 36 cubic inches. What di-
mensions x and y will minimize the total area of the
metal surface?

6. USPS rules say the length plus girth of a package
cannot exceed 108 inches. (Girth = 2·width+2·height,
as illustrated.) You must mail a package whose
width and height are equal, and with the greatest
possible volume. Find the dimensions of the pack-
age.

x

x

y7. A cardboard box with a square base and open top is to
have a volume of 4 cubic meters. Find the dimensions
that result in a box that uses the least cardboard.

brick

wood

w
oo

d w
ood

x

8. A rectangular region of 600 square meters needs to
be enclosed by a fence. The south side of the region
will be bounded by a brick wall, and the fencing on
the remaining three sides will be made of wood. The
brick wall is $10 per meter, and the wood wall costs
$5 per meter. Find the length x of the brick wall that
results in the lowest cost of materials.

x
x

y
9. A tank with a square base is to be constructed to

hold 10,000 cubic feet of water. The metal top costs
$6 per square foot, and the concrete sides and bottom
cost $4 per square foot. What dimensions x and y
yield the lowest cost of materials?

x
y

8

10. United Airlines restricts the size of carry-on pack-
ages. The policy states that the sum of the length,
width, and height of a package cannot exceed 48
inches. What is the largest volume that an 8-inch
high carry-on box can have?
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x
x

y
11. A box-shaped storage bin with a square base is to be

constructed. The material for the top costs $3 per
square foot, the material for the bottom costs $5 per
square foot, and the material for the sides costs $2
per square foot. Find the dimensions of the bin of
maximum volume that can be constructed for $2400.

N

x

y

10

10

12. You are designing a 10-foot-high box-shaped green-
house of dimensions x£ y£10 (feet). It is required to
have a volume of 10,000 cubic feet. The floor is to be
made of concrete, and the north-facing wall is to be
made of brick. The other three walls and the roof are
to be made of glass. The concrete costs $5 per square
foot, the brick costs $8 per square foot, and the glass
costs $2 per square foot. Find the dimensions x and
y that minimize the cost of materials.

13. The strength of a rectangular beam is directly proportional to the product of its
width and the square of its height. Find the dimension of the strongest beam
that can be cut from a cylindrical log of diameter 10 inches.

h

w

14. Find the point on the line y= 2x+3 that is closest to the point (5,4).
15. Find two numbers x and y whose sum is 25 and for which x2 +3y is minimized.

16. A cylindrical can with no top is to be constructed using 50 square
inches of metal. What radius and height will produce a can with
the greatest volume? (Note: although the can has no top, it does
have a bottom.)

17. You are designing a cylindrical can which has a bottom but no lid.
The can must have a volume of of 1000 cubic centimeters. What
should the height and radius of the can be to minimize its surface
area?

18. You are designing a cylindrical can (with both a top and a bottom)
that must have a volume of of 1000 cubic centimeters. What should
the height and radius of the can be to minimize its surface area?
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19. You are designing a window consisting of a rectangle with a
half-circle on top, as illustrated. The client can only a�ord 1
meter of window framing material. The framing material runs
around the outside of the window and between the rectangular
and semicircular regions. What should the diameter of the
half-circle be to maximize the area of the window?

20. You are designing a window consisting of a rectangle with a
half-circle on top, as illustrated. The client can only a�ord 1
meter of window framing material which will run along the
very outside portion of the window; no framing material is
required between the rectangular and semicircular regions.
What should the diameter of the half-circle be to maximize
the area of the window?

10

y

x21. A 10-foot-high shed with flat roof and
three walls is to be constructed, as
illustrated. It is required that the
shed have 800 square feet of floor
space. Materials for the roof cost $2
per square foot. Materials for the
walls cost $1 per square foot. The floor
cost $3 per square foot.
What dimensions x and y will minimize the total cost of materials?

22. An island is 2 miles from the nearest point A on a straight shoreline. Point A
is 6 miles from a power plant. A utility company plans to lay electrical cable
underwater from the island to the shore, and then along the shore to the power
station. (As shown by the dashed line, below.) It costs $2,000 per mile to lay
the cable underwater, and $1,000 per mile to run it along the shore. At what
point X should the underwater cable meet the shore to minimize the cost of the
project?

island

A power
plant

X

water

land

shoreline

2 miles

8
>>>>>><

>>>>>>:
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Exercise Solutions for Chapter 34

Building

Fenced area

x

y

1. You have 160 feet of fencing material to enclose a rect-
angular region. One side of the rectangle will border a
building, so no fencing is required for that side. Find
the dimensions x and y that maximize the fenced area.

Solution In this problem the total length of the fence is x+2y= 160. Thus we
have the constraint y= 1

2 (160° x).
We want to maximize area A = xy. Since y = 1

2 (160° x), the enclosed area is a
function A(x) = xy = x · 1

2 (160° x) = 80x° 1
2 x2. Because x is the length, it must

be positive and it cannot exceed the total available amount of 160 feet of fence.
Thus in this problem 0< x < 160.
Therefore we want to find the x that gives a global maximum of A(x)= 80x° 1

2 x2

on the interval (0,160).

0 80 160
A0(x)= 80° x++++++ °°°°°°

A(x)
The derivative is A0(x)= 80° x. To find
the critical points, we solve A0(x) = 0,
that is, 80° x = 0, and this has one so-
lution x = 80. Thus the critical point is
x = 80.
Notice that A0(x) is positive on (0,80) and negative on (80,160). Therefore A(x)
has a local maximum at 80, and since 80 is the only critical point, this must be
a global maximum. Recall that y= 1

2 (160° x), so when x = 80, y= 40.
Answer Greatest area is obtained by using x = 80 and y= 40.

x

y
3. Suppose you have 120 feet of fencing material to enclose

two rectangular pens, as shown. Find the dimensions
x and y that maximize the total enclosed area.

Solution The total length of fencing used is 120= 2x+3y, so 3y= 120°2x, and
this yields the constraint y= 40° 2

3 x.
We seek to maximize the enclosed area A = xy = x

°
40° 2

3 x
¢
= 40x° 2

3 x2. Notice
that x must be positive, and it cannot exceed 120/2= 60 feet.
Thus we seek the x that gives the global maximum of A(x)= 40x° 2

3 x2 on (0,60).

0 30 60
A0(x)= 40° 4

3 x++++++ °°°°°°

A(x)
The derivative is A0(x)= 40° 4

3 x. To find
the critical points, we solve A0(x) = 0,
that is, 40° 4

3 x = 0, which has one so-
lution x = 30. Thus the critical point is
x = 30.
Notice that A0(x) is positive on (0,30) and negative on (30,60). Therefore A(x) has
a local maximum at 30, and since 30 is the only critical point, this must be a
global maximum. Recall that y= 40° 2

3 x, so when x = 30, y= 40° 2
3 ·30= 20.

Answer: Greatest area is obtained by using x = 30 and y= 20.
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5. A box with two square ends and an open top is to contain a volume of 36 cubic
inches. What dimensions x and y will minimize the total area of the surface?

x y

x

Solution The volume of the box must be 36= x · y · x = x2 y, which means y= 36
x2 .

The front and back sides each contribute x2 square inches to the surface area.
The right and left sides each contribute xy= x 36

x2 = 36
x square inches. The bottom

also has an area of xy= x 36
x2 = 36

x square inches. Therefore the total surface area
of the box is S(x)= 2x2 +3 · 36

x = 2x2 + 108
x square inches. Here x must be positive,

but otherwise there are no restrictions on it. (As long as y= 36
x2 , the volume will

be 36 cubic inches.)

Therefore we seek the x that yields a global maximum of S(x)= 2x2+ 108
x on (0,1).

The derivative is S0(x)= 4x° 108
x2 , which is defined for all x in (0,1). So to find the

critical points, we solve S0(x)= 0.

4x° 108
x2 = 0

4x = 108
x2

x3 = 27
x = 3p27 = 3

Thus there is only one critical point x = 3. This divides the domain into two
intervals (0,3) and (3,1), Taking a test point of x = 1 in (0,3), we get S0(1)< 0, so
S0(x) is negative on (0,3). Taking a test point of x = 10 in (3,1), we get S0(10)> 0,
so S0(x) is positive on (3,1).

0 3
S0(x)= 4x° 108

x2°°°°°° ++++++

S(x)

By the first derivative test, S(x) has a local minimum at x = 3. Since 3 is the only
critical point, this is a global minimum. As y= 36

x2 , we get y= 36
32 = 4 when x = 3.

Answer: For smallest possible surface area, use the dimensions x = 3 and y= 4.
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x
x

y7. A cardboard box with a square base and open top is to
have a volume of 4 cubic meters. Find the dimensions
that result in a box that uses the least cardboard.
Solution We need to minimize the box’s surface area, which is x2+4xy square
meters. Since the volume is to be 4 cubic meters, we get the equation 4= xxy= x2 y,
so y= 4

x2 . With this, the surface area becomes x2+4x 4
x2 = x2+ 16

x . Hence we have
to find the x that produces a global minimum of S(x) = x2 + 16

x on (0,1). Since
S0(x)= 2x° 16

x2 , we can find the critical points by solving 2x° 16
x2 = 0. Multiplying

both sides by x2 gives 2x3 °16 = 0, or x3 = 8. Hence there is only one critical
point on the interval, namely x = 2. Because S00(x)= 2+ 32

x3 , and S00(2)= 6> 0, the
function S(x) has a local minimum at x = 2. Therefore surface area (cardboard)
is minimized for x = 2 and y= 4

22 = 1.
Answer: For smallest possible surface area, use the dimensions x = 2 and y= 1.

x
x

y
9. A tank with a square base is to hold 10,000 cubic

feet of water. The metal top costs $6 per square foot,
and the concrete sides and bottom cost $4 per square
foot. What dimensions x and y yield the lowest cost?
Solution The cost of the top is 6x2 dollars. The cost of the bottom is 4x2 dollars.
The cost of each of the four sides is 4xy dollars. So the total cost of materials is

6x2 +4x2 +4 ·4xy = 10x2 +16xy dollars.

This expression contains both an x and a y, so it is not a function of a single
variable. To overcome this, notice that the tank’s volume is x · x · y= 10,000 cubic
feet. Therefore, y= 10,000/x2 , and the above cost of materials becomes

10x2 +16x
10,000

x2 = 10x2 + 160,000
x

dollars.

So we want to minimize the cost C(x)= 10x2 + 160,000
x

on the interval (0,1). First
let’s find the critical points.

20x° 160,000
x2 = 0 (solve C0(x)= 0)

20x3 °160,000 = 0 (multiply both sides by x2)
x3 = 8000

x = 3p8000= 20

There is only one critical point, x = 20. As C00(x)= 20+320,000/x3, we get C00(20)> 0,
and the second derivative test implies that C(x) has a local minimum at x = 20.
As 20 is the only critical point on the interval, we conclude that this is a a global
minimum. For x = 20 we get y= 10,000/202 = 25 (see boxed equation above).
Answer: For lowest cost, use the dimensions x = 20 and y= 25.
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x
x

y
11. A box-shaped storage bin with a square base is to be

constructed. The material for the top costs $3 per
square foot, the material for the bottom costs $5 per
square foot, and the material for the sides costs $2
per square foot. Find the dimensions of the bin of
maximum volume that can be constructed for $2400.
Solution Let the dimensions of the bin be x (length), x (width) and y (height).
We need to find the dimensions that maximize volume V = xxy= x2 y. This is not
a function of a single variable, so we need to express y in terms of x.
To do this, we seek a constraint. The cost of the top is 3x2 dollars, and the cost of
the bottom is 5x2 dollars. The cost of each side is 2xy dollars. Therefore the total
cost of materials is 3x2 +5x2 +4 ·2xy= 8x2 +8xy dollars. There is $2400 to spend,
which yields 8x2 +8xy= 2400. Solving this for y gives y= 2400°8x2

8x = 300°x2

x .

Volume is now V = x2 y= x2 300°x2

x = 300x°x3. Thus we need to find the x that gives
a global maximum of V (x)= 300x°x3 on the interval (0,1). Since V 0(x)= 300°3x2,
we can see that there is only one critical point on the interval, namely x = 10.
Now, V 00(x)=°6x, and V 0(10)=°6 ·10< 0, so there is a local maximum at x = 10.
As this is the only critical point, we infer that V (x) has a global maximum at
x = 10. For this x value, the boxed equation above yields y= 300°102

10 = 20.
Answer For maximum volume, use the dimensions x = 10 and y= 20,

13. The strength of a rectangular beam is directly proportional to the product of its
width and the square of its height. Find the dimension of the strongest beam
that can be cut from a cylindrical log of diameter 10 inches.

h

w

10h

w
Solution A cross section is shown above. By the Pythagorean theorem, the
height h and width w satisfy w2 +h2 = 102, so h =

p
100°w2 .

The problem states that the strength of the beam is directly proportional to
wh2 = w

p
100°w22 = w(100°w2)= 100w°w3. Thus to find the dimensions of the

strongest beam we need to maximize S(w) = 100w°w3 on the interval (0,10).
(The interval is (0,10) because w must be positive but cannot exceed the diameter
of the beam.) To find the critical point, we solve S0(w)= 0, which is 100°3w2 = 0.
Then w2 = 100

3 , so w =
q

100
3 = 10p

3
is the critical point. We will use the second
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derivative test to see if this yields a maximum. Since S00(w) = °6w, we get
S00

≥
10p

3

¥
=°6 10p

3
< 0. Thus by the second derivative test S(w) has a local maximum

at w = 10p
3
, and since S has only one critical point on the interval, this must be

a global maximum. Therefore, strength is maximized if w = 10p
3

inches. By the

boxed equation above, h =
r

100°
≥

10p
3

¥2
=

q
200
3 = 10

q
2
3 .

Answer Strength is maximized for w = 10p
3

and h = 10
q

2
3 .

15. Find two numbers x and y whose sum is 25 and for which x2 +3y is minimized.
Solution We need to minimize x2 + 3y subject to the constraint x+ y = 25.
Because x+ y= 25 implies y= 25°x, the quantity we want to minimize is x2+3y=
x2+3(25°x)= x2+75°3x. Thus we need to find an x that gives a global minimum of
f (x)= x2+75°3x on the interval (°1,1) (because x could be any number). Since
f 0(x)= 2x°3, the only critical point is x = 3/2. Now, f 00(x)= 2, so f 00(3/2)= 2> 0. By
the second derivative test, f has a local minimum at x = 3/2. Since 3/2 is the only
critical point, this is a global minimum.

Answer The quantity x2 +3y is minimized when x = 3/2 and y= 25°3/2= 47/2.

17. You are designing a cylindrical can which has a bottom but no lid. The can must
have a volume of of 1000 cubic centimeters. What should the height and radius
of the can be to minimize its surface area?

h

r

Solution Call the height of the can h and its radius r. The volume of a
cylinder of height h and radius r is V =ºr2h, so for this can we have 1000=ºr2h.
Consequently we get the constraint h = 1000

ºr2 .
The surface area of the circular bottom is ºr2. The surface area
of the cylindrical side is the circumference of the bottom times
the height h, that is, 2ºrh. Consequently the total surface area
is ºr2 +2ºrh. Inserting the constraint h = 1000

ºr2 , the surface area
is a function of r:

S(r) = ºr2 +2ºr
1000
ºr2 = ºr2 + 2000

r
.

The radius r must be positive, meaning r must be in (0,1). So we
need to find the r (and h) that produce a global minimum of S(r)
on (0,1). Note that S0(r) = 2ºr° 2000

r2 is defined for all r in (0,1). So to find all
critical points we solve the equation S0(r)= 0:

2ºr° 2000
r2 = 0

2ºr3 °2000 = 0

r3 = 1000
º

r = 10
3pº
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Thus there is only one critical point r = 10
3pº . The second derivative is S00(r) =

2º+ 4000
r3 , which is positive for all r in (0,1). The second derivative test therefore

guarantees a local minimum at the critical point 10
3pº . Since this is the only

critical point, there must be a global minimum there. Thus to minimize surface
area we must use the dimensions r = 10

3pº and (by the constraint) h = 1000

º

µ
10
3pº

∂2 = 10
3pº .

Answer: To minimize the can’s surface area, both r and h should be 10
3pº cm.

xy

19. You are designing a window consisting of a rectangle with a
half-circle on top, as illustrated. The client (for some reason)
can only a�ord 1 meter of window framing material. The fram-
ing material runs around the outside of the window and be-
tween the rectangular and semicircular regions. What should
the diameter of the half-circle be to maximize the area of the
window?
Solution Denote the diameter by x and the height of the rectangle by y. In
this problem we want to maximize the total area. The area of the rectangle is xy
(length £ width), and the area of the semicircle is 1

2º
° x

2
¢2 = º

8 x2 (half the area of
a circle of radius x

2 ). Thus our goal is to maximize total area xy+ º
8 x2. This has

two variables, and we need to express it as a function of one variable, so let’s
look for a constraint that expresses one variable in terms of the other.

The length of the arch is 1
2ºx (half the circumference of a circle of diameter x). The

perimeter of the rectangle is 2x+2y. Thus the total length of the framing material
is 1

2ºx+2x+2y. This has to be one meter so 1 = 1
2ºx+2x+2y. Consequently

y= 1
2
°
1° 1

2ºx°2x
¢
= 1

2 °
°
1+ º

4
¢
x.

Thus the total area of the window is xy+ º
8 x2 = x

° 1
2 °

°
1+ º

4
¢
x
¢
+ º

8 x2 = 1
2 x°

°
1+ º

8
¢
x2.

This is a function A(x)= 1
2 x°

°
1+ º

8
¢
x2, which we seek to maximize.

The derivative is A0(x)= 1
2 °

°
2+ º

4
¢
x. To find the critical points we solve

1
2
°

≥
2+ º

4

¥
x = 0

2° (8+º)x = 0
(8+º)x = 2

x = 2
8+º

Thus A has only one critical point x = 2
8+º . Since A00(x)=

°
2+ º

4
¢
< 0 for all x, the

second derivative test says A has a local maximum at x = 2
8+º . Since there is

only one critical point, this is a global maximum.

Answer: To maximize area, the diameter should be = 2
8+º º 0.179 meters.
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x21. A 10-foot-high shed with flat roof and
three walls is to be constructed, as
illustrated. It is required that the
shed have 800 square feet of floor
space. Materials for the roof cost $2
per square foot. Materials for the
walls cost $1 per square foot. The floor
cost $3 per square foot.
What dimensions x and y will minimize the total cost of materials?

Solution The roof costs 2xy dollars, and the floor costs 3xy dollars. The two
side walls cost 1 ·10y dollars each, and the back wall costs 1 ·10x dollars. Thus
the total cost of materials is 2xy+3xy+10y+10y+10x = 5xy+20y+10x dollars.
This is not a function of a single variable, so we seek a constraint. The floor is
required to have an area of 800 square feet, which means xy= 800, or y= 800/x.
Substituting this into the above formula for cost gives the cost of materials as

C(x)= 5x
800

x
+20

800
x

+10x = 4000+ 16000
x

+10x.

The domain of this function is (0,1) because x must be positive, but otherwise
can have any value so long as y= 800/x. Thus we need to find the x that produces
a global minimum of C(x) on (0,1). To find any critical points, we solve C0(x)= 0.

°16000
x2 +10= 0

10= 16000
x2

x2 = 1600
x = 40

As C00(x) = 32000/x3, we get C00(40) > 0, the second derivative test says C has a
local minimum at x = 40 . But there is only one critical point, so this is a global
minimum. The constraint y= 800/x produces y= 800/40= 20.
Answer: For least cost, use x = 40 and y= 20.


