
CHAPTER 28

Logarithmic Di�erentiation

We now have an impressive array of rules and techniques for finding
derivatives of functions. But you don’t have to look far for functions

to which no rules apply. Consider the problem of di�erentiating

f (x)= xx.

If this had the form g(x)= xa (that is, x to a constant power), then we’d use
the power rule: g0(x)= axa°1. And if it were a constant to a variable power,
h(x) = ax, then we’d know that h0(x) = ln(a)ax. But xx has neither of these
forms. There’s simply no rule for di�erentiating xx.

This chapter develops a technique—called logarithmic di�erentiation—
that transforms functions like xx into forms to which existing rules apply.

The new technique is really nothing more than combining logarithm
properties with implicit di�erentiation. So let’s start with a review of
relevant logarithm properties. Here are four that will be especially useful.

• ln
°
ab

¢
= ln(a)+ ln(b)

• ln
≥a

b

¥
= ln(a)° ln(b)

• ln
≥
ab

¥
= b ln(a)

• ln
µ

1
b

∂
= ° ln(b)

Actually, we’ll need the following easily-checked and more robust ver-
sions of these rules, which can handle negative values of a and b.

• ln
ØØab

ØØ = ln
ØØa

ØØ+ ln
ØØb

ØØ

• ln
ØØØ
a
b

ØØØ = ln
ØØa

ØØ° ln
ØØb

ØØ

• ln
ØØbaØØ = a ln

ØØb
ØØ

• ln
ØØØØ
1
b

ØØØØ = ° ln
ØØb

ØØ

And we’ll need our derivative rules for the natural logarithm.

• d
dx

h
ln

ØØx
ØØ
i
= 1

x
• d
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h
ln

ØØg(x)
ØØ
i
= 1

g(x)
g0(x)
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To motivate and explain logarithmic di�erentiation, let’s return to our
original dilemma:

Question: If y= xx what is dy
dx ?

Since no rules apply, consider the following approach. Begin with the
functional relationship

y = xx

Take the natural log of both sides (first taking the absolute value to guard
against potentially negative values, which are not in the domain of ln).

ln
ØØy

ØØ = ln
ØØxxØØ

Next apply to this the property ln
ØØabØØ= b ln

ØØa
ØØ.

ln
ØØy

ØØ = x ln
ØØx

ØØ

The exponent has disappeared! Our normal derivative rules apply to either
side of this equation. We can now di�erentiate each side. But remember that
y is a function of x (in fact, y= xx) so we have to use implicit di�erentiation.

d
dx

h
ln

ØØy
ØØ
i

= d
dx

h
x ln

ØØx
ØØ
i

1
y

d y
dx

= 1 · ln
ØØx

ØØ+ x
1
x

1
y

d y
dx

= ln
ØØx

ØØ+1

The derivative dy
dx that we seek has just come into the picture. We can solve

for it by multiplying both sides of this equation by y.

d y
dx

= y
°
ln

ØØx
ØØ+1

¢

Finally, remember that y= xx, so our derivative is

d y
dx

= xx °
ln

ØØx
ØØ+1

¢
.

Answer: The derivative of y= xx is d y
dx = xx °

ln
ØØx

ØØ+1
¢
.
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Let’s analyze what just happened. We had a function y = f (x) that no
derivative rules applied to. We took ln of both sides and simplified. Then
we di�erentiated implicitly and solved for the derivative. This highly useful
procedure is called logarithmic di�erentiation. Here is a summary.

Logarithmic Di�erentiation

To di�erentiate a complex or problematic function f (x):
1. Write as y= f (x)

2. Take ln of both sides: ln
ØØy

ØØ= ln
ØØ f (x)

ØØ

3. Simplify using log properties
4. Di�erentiate implicitly
5. Solve for d y

dx

Example 28.1 Di�erentiate the function
p

ex(x+1)cos(x).

Actually we could do this the usual way, with the chain rule and the product
rule. But the product rule would involve three functions, not just two. It
would be a mess. Look at how logarithmic di�erentiation tames the process.

y =
p

ex(x+1)cos(x)

y =
°
ex(x+1)cos(x)

¢1/2 (convert to a power)

ln
ØØy

ØØ = ln
ØØØ
°
ex(x+1)cos(x)

¢1/2
ØØØ (take ln of both sides)

ln
ØØy

ØØ = 1
2

ln
ØØex(x+1)cos(x)

ØØ (simplify)

ln
ØØy

ØØ = 1
2

°
ln

ØØexØØ+ ln
ØØx+1

ØØ+ ln
ØØcos(x)

ØØ¢

ln
ØØy

ØØ = 1
2

°
x+ ln

ØØx+1
ØØ+ ln

ØØcos(x)
ØØ¢

d
dx

h
ln

ØØy
ØØ
i

= d
dx

∑
1
2

°
x+ ln

ØØx+1
ØØ+ ln

ØØcos(x)
ØØ¢

∏
(di�erentiate)

1
y

d y
dx

= 1
2

µ
d
dx

£
x
§
+ d

dx

h
ln

ØØx+1
ØØ
i
+ d

dx

h
ln

ØØcos(x)
ØØ
i∂

1
y

d y
dx

= 1
2

µ
1+ 1

x+1
° sin(x)

cos(x)

∂

d y
dx

= y
2

µ
1+ 1

x+1
° sin(x)

cos(x)

∂
(multiply by y)

d y
dx

=
p

ex(x+1)cos(x)
2

µ
1+ 1

x+1
° sin(x)

cos(x)

∂
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We’ll finish the chapter by tying up one lose end that has quietly dogged
us since Chapter 17. There, when we proved the product rule d

dx
£
xn§

= nxn°1,
we did so only for positive integer values of n. We said at the time that the
product rule holds for all real values of n, and that we would eventually
prove this fact. Ever since then we’ve been freely using the power rule with
powers that are not positive integers.

It’s time to prove that d
dx

£
xn§

= nxn°1 holds for any real value of n. We
can do this with logarithmic di�erentiation. Suppose that n is an arbitrary
real number. We ask:

What is the derivative of y= xn ? (We want to show it really is nxn°1.)

Let’s apply logarithmic di�erentiation to this.

y = xn

ln
ØØy

ØØ = ln
ØØxnØØ (take ln of both sides)

ln
ØØy

ØØ = n ln
ØØx

ØØ (simplify)
d
dx

h
ln

ØØy
ØØ
i

= d
dx

h
n ln

ØØx
ØØ
i

(di�erentiate)
1
y

d y
dx

= n
1
x

d y
dx

= n
y
x

(solve for d y
dx )

d y
dx

= n
xn

x1 (y= xn)
d y
dx

= nxn°1

Therefore d
dx

£
xn§

= nxn°1 holds for any real value of n. We now have full
license to use the power rule.

Example 28.2 d
dx

h
xº

i
= ºxº°1

Logarithmic di�erentiation is not a major technique, but it is occasionally
useful. Working a few exercises may give you a greater appreciation of
specialized tool.



326 Logarithmic Di�erentiation

Exercises for Chapter 28
Use logarithmic di�erentiation to find derivatives of the following functions.
1. y= (5x+3)x 2. f (x)=p

xsin4(x) ln(x)

3. y= x5x+3 4. f (x)= ex sin(x)
x3 ln(x)

5. f (x)= xcos(x) 6. f (x)= xsin(x)

7. f (x)=
°
cos(x)

¢x 8. f (x)=
°
sin(x)

¢x

9. y= (x2 +1)x 10. y= (x3 + x)x

11. y= xln(x) 12. y= x2 cos(x)sin(x)

13. y=p
x sin(x)cos(x) 14. y=

q
ex tan(x)

°
x2 + x

¢

Exercise Solutions for Chapter 28
1. Di�erentiate y= (5x+3)x.

ln |y| = ln
ØØ(5x+3)xØØ

ln |y| = x ln
ØØ5x+3

ØØ

Dx

h
ln |y|

i
= Dx

h
x ln

ØØ5x+3
ØØ
i

y0

y
= 1· ln

ØØ5x+3
ØØ+ x· 5

5x+3

y0 = y
µ
ln

ØØ5x+3
ØØ+ 5x

5x+3

∂

y0 = (5x+3)x
µ
ln

ØØ5x+3
ØØ+ 5x

5x+3

∂

3. Di�erentiate y= x5x+3.

ln |y| = ln
ØØx5x+3ØØ

ln |y| = (5x+3)ln
ØØx

ØØ

Dx

h
ln |y|

i
= Dx

h
(5x+3)ln

ØØx
ØØ
i

y0

y
= 5· ln

ØØx
ØØ+ (5x+3)·1

x

y0 = y
µ
5ln

ØØx
ØØ+ 5x+3

x

∂

y0 = x5x+3
µ
5ln

ØØx
ØØ+ 5x+3

x

∂

5. Di�erentiate f (x)= xcos(x).

y = xcos(x)

ln
ØØy

ØØ = ln
ØØØxcos(x)

ØØØ

ln
ØØy

ØØ = cos(x) ln |x|
d
dx

h
ln

ØØy
ØØ
i

= d
dx

h
cos(x) ln |x|

i

1
y

d y
dx

= °sin(x) ln |x|+cos(x)
1
x

d y
dx

= y
µ
°sin(x) ln |x|+cos(x)

1
x

∂

d y
dx

= xcos(x)
µ
sin(x) ln

ØØØØ
1
x

ØØØØ+cos(x)
1
x

∂

7. Di�erentiate f (x)=
°
cos(x)

¢x.

y =
°
cos(x)

¢x

ln
ØØy

ØØ = ln
ØØ°cos(x)

¢xØØ

ln
ØØy

ØØ = x ln
ØØcos(x)

ØØ

d
dx

h
ln

ØØy
ØØ
i

= d
dx

h
x ln

ØØcos(x)
ØØ
i

1
y

d y
dx

= 1 · ln
ØØcos(x)

ØØ+ x
°sin(x)
cos(x)

d y
dx

= y
°
ln

ØØcos(x)
ØØ° xtan(x)

¢

d y
dx

=
°
cos(x)

¢x °
ln

ØØcos(x)
ØØ° xtan(x)

¢
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9. Di�erentiate y= (x2 +1)x.

y = (x2 +1)x

ln
ØØy

ØØ = ln
ØØ(x2 +1)xØØ

ln
ØØy

ØØ = x ln
ØØx2 +1

ØØ

d
dx

h
ln

ØØy
ØØ
i

= d
dx

h
x ln

ØØx2 +1
ØØ
i

1
y

d y
dx

= 1 · ln
ØØx2 +1

ØØ+ x
2x

x2 +1
d y
dx

= y
µ
ln

ØØx2 +1
ØØ+ 2x2

x2 +1

∂

d y
dx

= (x2 +1)x
µ
ln

ØØx2 +1
ØØ+ 2x2

x2 +1

∂

11. Di�erentiate y= xln(x).
Note: Since ln(x) appears here, we may assume x is in the domain of ln, so x > 0.
Therefore ln |x| = ln(x), and we will make this replacement below.

y = xln(x)

ln
ØØy

ØØ = ln
ØØØxln(x)

ØØØ

ln
ØØy

ØØ = ln(x) ln |x|
ln

ØØy
ØØ = ln(x) ln(x)

d
dx

h
ln

ØØy
ØØ
i

= d
dx

h
ln(x) ln(x)

i

1
y

d y
dx

= 1
x

ln(x)+ ln(x)
1
x

d y
dx

= y2ln(x)
1
x

d y
dx

= 2ln(x)xln(x)

x

13. Di�erentiate y=p
x sin(x)cos(x).

ln |y| = ln
ØØpx sin(x)cos(x)

ØØ

ln |y| = ln
ØØx1/2 sin(x)cos(x)

ØØ

ln |y| = ln
ØØx1/2ØØ+ ln |sin(x)|+ ln |cos(x)|

ln |y| = 1
2

ln
ØØx

ØØ+ ln |sin(x)|+ ln |cos(x)|

Dx

h
ln |y|

i
= Dx

h1
2

ln
ØØx

ØØ+ ln |sin(x)|+ ln |cos(x)|
i

y0

y
= 1

2
·1
x
+ cos(x)

sin(x)
° sin(x)

cos(x)



328 Logarithmic Di�erentiation

y0 = y
µ

1
2x

+cot(x)° tan(x)
∂

y0 =
p

x sin(x)cos(x)
µ

1
2x

+cot(x)° tan(x)
∂

y0 =
p

x sin(x)cos(x)
2x

+cos2(x)°sin2(x)

y0 = sin(x)cos(x)
2
p

x
+cos2(x)°sin2(x)


