Higher Derivatives

Consider a function, say $f(x) = x^5 + x^4 + x^3 + x^2 + x + 1$. Take its derivative. $f'(x) = 5x^4 + 4x^3 + 3x^2 + 2x + 1$

The derivative is a function too, and we can take *its* derivative. We call this the *second derivative* of f, and denote it as f''. The derivative of the second derivative is called the *third derivative* of f, and so on.

$f''(x) = 20x^3 + 12x^2 + 6x + 2$	(2nd derivative)
$f^{\prime\prime\prime}(x) = 60x^2 + 24x + 6$	(3rd derivative)
$f^{(4)}(x) = 120x + 24$	(4th derivative)
$f^{(5)}(x) = 120$	(5th derivative)
$f^{(6)}(x) = 0$	(6th derivative)
$f^{(7)}(x) = 0$	(7th derivative)
	:

By convention, the fourth derivative is denoted $f^{(4)}$ instead of f''''. The fifth derivative is denoted $f^{(5)}$ instead of f''''', and so on. The derivatives of the derivatives of a function are called it's **higher derivatives**.

In the example above the higher derivatives are eventually all zero, but that needn't always be the case. Consider $g(x) = x^{-1}$.

$g(x) = x^{-1}$	
$g'(x) = -x^{-2}$	(1st derivative)
$g^{\prime\prime}(x) = 2x^{-3}$	(2nd derivative)
$g'''(x) = -6x^{-4}$	(3rd derivative)
$g^{(4)}(x) = 24x^{-5}$	(4th derivative)
$g^{(5)}(x) = -120x^{-6}$	(5th derivative)

The derivatives of g get more and more complex the higher you go.

The higher derivatives of sin(x) repeat every fourth derivative:

$y = \sin(x)$	
$y' = \cos(x)$	(1st derivative)
$y'' = -\sin(x)$	(2nd derivative)
$y^{\prime\prime\prime} = -\cos(x)$	(3rd derivative)
$y^{(4)} = \sin(x)$	(4th derivative)
$y^{(5)} = \cos(x)$	(5th derivative)
$y^{(6)} = -\sin(x)$	(6th derivative)
$y^{(7)} = -\cos(x)$	(7th derivative)

The higher derivatives of e^x are all the same:

$y = e^x$	
$y' = e^x$	(1st derivative)
$y'' = e^x$	(2nd derivative)
$y^{\prime\prime\prime} = e^x$	(3rd derivative)

As suggested above, the *n*th derivative of a function y = f(x) can be denoted $y^{(n)}$ instead of $f^{(n)}(x)$.

There are other variations on notation. For example, the third derivative of a function y = f(x) is $\frac{d}{dx} \left[\frac{d}{dx} \left[\frac{d}{dx} [y] \right] \right]$, which suggests the notation

$$\frac{d}{dx}\left[\frac{d}{dx}\left[\frac{d}{dx}[y]\right]\right] = \frac{d^3y}{dx^3}.$$

In this way, the *n*th derivative of y = f(x) is sometimes denoted as $\frac{d^n y}{dx^n}$. Here are some different notations for higher derivatives of a function y = f(x).

1st derivative:
$$f'(x)$$
 y' $D_x[f(x)]$ $\frac{dy}{dx}$ $\frac{d}{dx}[y]$ $\frac{d}{dx}[f(x)]$
2nd derivative: $f''(x)$ y'' $D_x^2[f(x)]$ $\frac{d^2y}{dx^2}$ $\frac{d^2}{dx^2}[y]$ $\frac{d^2}{dx^2}[f(x)]$
3rd derivative: $f'''(x)$ y''' $D_x^3[f(x)]$ $\frac{d^3y}{dx^3}$ $\frac{d^3}{dx^3}[y]$ $\frac{d^3}{dx^3}[f(x)]$
4th derivative: $f^{(4)}(x)$ $y^{(4)}$ $D_x^4[f(x)]$ $\frac{d^4y}{dx^4}$ $\frac{d^4}{dx^4}[y]$ $\frac{d^4}{dx^4}[f(x)]$
 \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots

Obviously these notations are sensitive to the variables at play. For example, the higher derivatives of a function z = g(w) are denoted as follows.

1st derivative:

$$g'(w)$$
 z'
 $D_w[g(w)]$
 $\frac{dz}{dw}$
 $\frac{d}{dw}[z]$
 $\frac{d}{dw}[f(w)]$

 2nd derivative:
 $g''(w)$
 z''
 $D_w^2[g(w)]$
 $\frac{d^2z}{dw^2}$
 $\frac{d^2}{dw^2}[z]$
 $\frac{d^2}{dw^2}[f(w)]$

 3rd derivative:
 $g'''(w)$
 z'''
 $D_w^3[g(w)]$
 $\frac{d^3z}{dw^3}$
 $\frac{d^3}{dw^3}[z]$
 $\frac{d^3}{dw^3}[f(w)]$

 4th derivative:
 $g^{(4)}(w)$
 $z^{(4)}$
 $D_w^4[g(w)]$
 $\frac{d^4z}{dw^4}$
 $\frac{d^4}{dw^4}[z]$
 $\frac{d^4}{dw^4}[f(w)]$

Example 22.1 Find the first four derivatives of $y = xe^x$. The function xe^x is a product, so we use the product rule for its derivative.

$$\frac{dy}{dx} = 1 \cdot e^x + x e^x = (1+x)e^x$$

This is also a product, so again we use the product rule for its derivative.

$$\frac{d^2y}{dx^2} = 1 \cdot e^x + (1+x)e^x = (2+x)e^x$$

Once again we have a product, so we continue with the product rule.

$$\frac{d^3y}{dx^3} = 1 \cdot e^x + (2+x)e^x = (3+x)e^x$$
$$\frac{d^4y}{dx^4} = 1 \cdot e^x + (3+x)e^x = (4+x)e^x$$

This pattern suggests that the *n*th derivative of xe^x is $\frac{d^n y}{dx^n} = (n+x)e^x$.

Exercises for Chapter 22

Find the first, second, third and fourth derivatives of these functions.

1. $3x^8 - x^3$ 2. $e^x \cos(x)$ 3. $\sin(x) + \cos(x)$ 4. $x \sin(x)$ 5. \sqrt{x} 6. $\tan(x)$ 7. x^2e^x 8. $xe^x - x$

Exercise Solutions for Chapter 22

1.
$$y = 3x^8 - x^3$$

 $y' = 24x^7 - 3x^2$
 $y'' = 168x^6 - 6x$
 $y''' = 1008x^5 - 6$
 $y''(4) = 5040x^4$
3. $y = \sin(x) + \cos(x)$
 $y' = \sin(x) + \cos(x)$
5. $y = \sqrt{x} = x^{1/2}$
 $y' = -\frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$
 $y'' = -\frac{1}{4}x^{-3/2} = -\frac{1}{4\sqrt{x^3}}$
 $y''' = -\cos(x) + \sin(x)$
 $y''' = \frac{3}{8}x^{-5/2} = \frac{3}{8\sqrt{x^5}}$

7.
$$y = x^2 e^x$$

y'	=	$2xe^x + x^2e^x$	=	$(2x+x^2)e^x$
<i>y</i> ″	=	$(2+2x)e^x + (2x+x^2)e^x$	=	$(2+4x+x^2)e^x$
<i>y'''</i>	=	$(4+2x)e^x + (2+4x+x^2)e^x$	=	$(6+6x+x^2)e^x$
$y^{(4)}$	=	$(6+2x)e^x + (6+6x+x^2)e^x$	=	$(12+8x+x^2)e^x$