The Derivative of e^{x}

This chapter's goal is to find a derivative rule for the natural exponential function. We ask: If $f(x)=e^{x}$, what is $f^{\prime}(x)$? We will answer this by working out the limit $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Actually, we already know a little about this from Chapter 5. In Section 5.6 we found that the tangent to the graph of $f(x)=e^{x}$ at the point $(0,1)$ has a slope of 1 . (Fact 5.2 on page 93). This fact is illustrated on the right. It tells us that

$$
\begin{aligned}
1=f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{0+h}-e^{0}}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h} .
\end{aligned}
$$

We will need this fact shortly. Note that it gives the value of a certain limit:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 . \tag{19.1}
\end{equation*}
$$

Now let's find the derivative of $f(x)=e^{x}$ using the limit definition of $f^{\prime}(x)$.

$$
\begin{align*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} & & \text { (definition of } \left.f^{\prime}(x)\right) \\
& =\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} & & \text { (using } \left.e^{x+h}=e^{x} e^{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} & & \text { (factor out } e^{x} \text {) } \\
& =\lim _{h \rightarrow 0} e^{x} \cdot \lim _{h \rightarrow 0} \frac{e^{h}-1}{h} & & \text { (limit law) } \\
& =e^{x} \cdot 1=e^{x} & & \text { (Equation 19.1) } \tag{Equation19.1}
\end{align*}
$$

We have just fount that if $f(x)=e^{x}$, then $f^{\prime}(x)=e^{x}$. In other words, e^{x} is its own derivative! This is our latest derivative rule.

Rule $6 D_{x}\left[e^{x}\right]=e^{x}$.
Geometrically, this new rule tells us that the tangent to the graph of $y=e^{x}$ at the point (x, e^{x}) has slope e^{x}. (See the diagram on the right.) The slope at the point (x, e^{x}) is as big as the point is high.

The fact that e^{x} is its own derivative is yet another indication of how special the natural exponential function e^{x} is, and why we place more importance on it than on other exponential functions a^{x}. The derivative of e^{x} is e^{x}. (As we will see, the derivative of, say, 2^{x} is not 2^{x}.)

You will often use this new rule in conjunction with other rules. For example, suppose we need to find the derivative of $x^{5}-3 e^{x}+1$. The answer comes from combining Rule 6 with rules $1-5$:

$$
\begin{aligned}
D_{x}\left[x^{5}-3 e^{x}+1\right] & =D_{x}\left[x^{5}\right]-D_{x}\left[3 e^{x}\right]+D_{x}[1] \\
& =5 x^{4}-3 D_{x}\left[e^{x}\right]+0 \\
& =5 x^{4}-3 e^{x}
\end{aligned}
$$

Of course you will typically skip steps and get the answer immediately.
Be careful not to apply Rule 6 blindly. Notice that, for instance, $D_{x}\left[e^{3}\right]=0$ because $e^{3} \approx 2.71828^{3}=20.08555$ is a constant, and the derivative of a constant is zero. (Some students mistakenly write $D_{x}\left[e^{3}\right]=e^{3}$, or, even worse, $D_{x}\left[e^{3}\right]=3 e^{2}$. These are wrong. The first is a misapplication of Rule 6 . The second is a misapplication of the power rule.)

Exercises for Chapter 19

Find the derivatives of the following functions in problems 1-6.

1. $f(x)=\sqrt{2} e^{x}+\sqrt{x}$
2. $f(x)=\frac{1}{x}-e^{x}+3$
3. $w=z+e^{2}$
4. $y=e^{5+x}$ Hint: $e^{a+b}=e^{a} e^{b}$.
5. $f(x)=6 x^{3}+e^{x}-4$
6. $f(x)=\frac{3}{x^{4}}+\frac{e^{x}}{3}$
7. Find the equation of the tangent line to $y=3 e^{x}$ at the point $\left(2,3 e^{2}\right)$.
8. For what x is the tangent to $y=e^{x}-x$ at $\left(x, e^{x}-x\right)$ horizontal?

Exercise Solutions for Chapter 19

1. $D_{x}\left[\sqrt{2} e^{x}+\sqrt{x}\right]=D_{x}\left[\sqrt{2} e^{x}\right]+D_{x}[\sqrt{x}]=\sqrt{2} D_{x}\left[e^{x}\right]+D_{x}\left[x^{1 / 2}\right]$

$$
=\sqrt{2} e^{x}+\frac{1}{2} x^{1 / 2-1}=\sqrt{2} e^{x}+\frac{1}{2} x^{-1 / 2}=\sqrt{2} e^{x}+\frac{1}{2 x^{1 / 2}}=\sqrt{2} e^{x}+\frac{1}{2 \sqrt{x}}
$$

3. $\frac{d}{d z}\left[z+e^{2}\right]=1+0=1$
4. $f^{\prime}(x)=18 x^{2}+e^{x}$
5. Find the equation of the tangent line to $y=3 e^{x}$ at the point $\left(2,3 e^{2}\right)$.

The slope of the tangent to $y=3 e^{x}$ at $\left(x, 3 e^{x}\right)$ is $\frac{d y}{d x}=3 e^{x}$. We are interested in the tangent line at $\left(2,3 e^{2}\right)$, and its slope is $\left.\frac{d y}{d x}\right|_{x=2}=3 e^{2}$. So its slope is $m=3 e^{2}$ and it passes through $\left(2,3 e^{2}\right)$. We can get its equation with the point-slope formula.

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
y-3 e^{2} & =3 e^{2}(x-2) \\
y & =3 e^{2} x-3 e^{2} \cdot 2+3 e^{2} \\
y & =3 e^{2} x-3 e^{2}
\end{aligned}
$$

Answer: The tangent line has equation $y=3 e^{2} x-3 e^{2}$.

