
CHAPTER 11

Continuity and Limits of Compositions

The purpose of limits is that they give information about how a function
behaves near a “bad point” x = c that is not in its domain. Even if f (c)

is not defined, it may be that lim
x!c

f (x)= L, for some number L. In this event
we know that f (x) becomes ever closer to L as x approaches the forbidden c.
Most of our examples in the past several chapters have been of this type.

Of course not every value x = c is a “bad point.” It could be that f (c) is
defined, and, moreover, lim

x!c
f (x)= f (c). If this is the case for every c in the

domain of f (x), then we say that f is continuous. Issues concerning whether
or not f is continuous are called issues of continuity. Exact definitions
appear below, but first some general remarks about continuity.

In a first course in calculus it is easy to overlook the huge importance
of continuity. And happily, we can (in a first course) almost ignore it. But
the theoretical foundation of calculus rests on continuity. In this text and
beyond this text are countless theorems having the form

If f is continuous, then something significant is true.

Thus continuity is a property that allows us to draw certain important con-
clusions about a function. If we deal exclusively with continuous functions,
then all will be good. From a practical point of view this means that in a
first calculus course we need only to understand what continuity is and to
recognize which functions possess it. That is this chapter’s goal.

11.1 Definitions and Examples
The above discussion motivates our main definition.

Definition 11.1 A function f (x) is continuous at x = c if lim
x!c

f (x)= f (c).
Note that this means all of the following three conditions must be met:

1. f (c) is defined,
2. lim

x!c
f (x) exists,

3. lim
x!c

f (x)= f (c).
If one or more of these conditions fail, then f (x) is discontinuous at c.
In such a case we sometimes say that f has a discontinuity at c.
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To illustrate this definition, five functions f (x) are graphed below. On
the far left, lim

x!c
f (x) exists, but f (c) is not defined. Thus condition 1 fails, so

condition 3 also fails by default, so f (x) is not continuous at x = c. In the
second drawing, lim

x!c
f (x) exists and f (c) is defined, but lim

x!c
f (x) 6= f (c). Thus

condition 3 fails, so f (x) is not continuous at x = c.

c c c c c

1,3 fail 3 fails 2,3 fail 1,2,3 fail 1,2,3 all hold
| {z }

f (x) is discontinuous at x = c

f (x) is continuous at x = c

In the third and fourth drawings lim
x!c

f (x) doesn’t exist, so condition 2 fails,
so condition 3 also fails (by default) and f (x) is not continuous at c. Only on
the far right do all three conditions hold, so f (x) is continuous at x = c.

Intuitively, f (x) being continuous at x = c means that its graph does not
have a “break” at x = c. You can trace its graph through x = c without lifting
your pencil.

For example, the function on the
right is discontinuous at x = °3, x = 1
and x = 2.5. But it is continuous at any
other x = c between °5 and 5. You can
trace the graph from left to right with a
pencil, lifting only when x is °3,1 or 2.5.

x

y
y= f (x)

°4 °3 °2 °1 1 2 3 4 5
°1

1

2

Most functions we deal with are continuous at most values of x. For
instance, the facts on page 130 state that if p(x) is a polynomial, then
lim
x!c

p(x)= p(c) for any number c. According to Definition 11.1, this means
any polynomial is continuous at any number x = c. This is consistent with
our experience with the graphs of polynomials, which are smooth, unbroken
curves.

In addition, Chapter 10 showed lim
x!c

sin(x)= sin(c) and lim
x!c

cos(x)= cos(c)
for any number c, meaning sin(x) and cos(x) are continuous at any number c.
Again, this matches our experience with their graphs, which are continuous
unbroken curves. Similarly, our experience with the functions sin°1(x),
cos°1(x), tan°1(x), ex, bx, ln(x) and logb(x) suggest that these functions are
continuous at any number x = c in their domains.
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11.2 Limits of Compositions
One practical application of continuity is that it yields a condition under
which we can compute a limit of a composition, like lim

x!c
f
°
g(x)

¢
. The following

theorem gives the conditions under which the limit can brought into the
outside function f , as lim

x!c
f
°
g(x)

¢
= f

≥
lim
x!c

g(x)
¥
.

Theorem 11.1 If lim
x!c

g(x)= L and f is continuous at L, then

lim
x!c

f
°
g(x)

¢
= f

≥
lim
x!c

g(x)
¥
= f (L).

This formalizes what should be intuitively obvious: If f has no “jump”
at L, and g(x) approaches L, then f

°
g(x)

¢
will approach f (L). But continuity

is essential. This chapter’s Exercise 27 asks for an example of an f that is
not continuous at L and for which lim

x!c
f
°
g(x)

¢
6= f

≥
lim
x!c

g(x)
¥
.

Example 11.1 Find lim
x!º

cos
µ
º2 ° x2

x°º

∂
.

Because the function cos is continuous at any number L, Theorem 11.1 says

lim
x!º

cos
µ
º2 ° x2

x°º

∂
= cos

µ
lim
x!º

º2 ° x2

x°º

∂

= cos
µ
lim
x!º

(º° x)(º+ x)
x°º

∂

= cos
≥
lim
x!º

°(º+ x)
¥

= cos(°2º)= 1.

Example 11.2 Find lim
x!1

ex2°2.

Because ex is continuous at any number L, Theorem 11.1 guarantees that
lim
x!1

ex2°2 = e
lim
x!1

(x2°2) = e12°2 = e°1 = 1
e
.

Example 11.3 Find lim
x!0

cos°1
µ
ln

µ
sin(x)

x

∂∂
.

The limit goes first inside the continuous function cos°1 and then inside the
continuous function ln.

lim
x!0

cos°1
µ
ln

µ
sin(x)

x

∂∂
=cos°1

µ
lim
x!0

ln
µ

sin(x)
x

∂∂

=cos°1
µ
ln

µ
lim
x!0

sin(x)
x

∂∂
= cos°1 °

ln(1)
¢
= cos°1(0)= º

2
.
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11.3 Continuity on Intervals
Typically a function will be continuous at most points x = c. Discontinuities
are anomalies. The function sin(x), for example, is continuous at every
number x = c in its domain (°1,1). In fact, the vast majority of the functions
we deal with routinely are continuous on their domains.

Take the function f on the right.
It is discontinuous at x=1 and x=°1,
which are not in its domain. At
any other number x = c we have
lim
x!c

f (x)= f (c), so f is continuous at c.
As f is continuous at every x except
±1, we say f is continuous on the in-
tervals (°1,°1), (°1,1) and (1,1).

f (x)= x2 °4
x2 °1

x

y

°1 1

In general we say a function f is continuous on an open interval (a,b)
if it is continuous at every c in (a,b), that is, if lim

x!c
f (x)= f (c) when a < c < b.

Informally this means that f has no “jumps” on (a,b).
Now think about what it means for a function to be continuous on a

closed interval [a,b]. Intuitively this means that it has no “jumps” on [a,b].
Thus we would consider the function
on the right to be continuous on [a,b].
Even though it is discontinuous at
the endpoints a and b, the discon-
tinuities disappear if we erase the
parts of the graph outside of [a,b].

y= f (x)

x

y

a b

We can formulate this precisely with right- and left-hand limits. Saying
that f is continuous on the closed interval [a,b] means that for any number c
in [a,b] we have lim

x!c
f (x)= f (c), as x remains in [a,b] as it approaches c. But

if x is in [a,b], then it can approach a only from the right, and b only from
the left. Thus we require lim

x!a+
f (x)= f (a) and lim

x!b°
f (x)= f (b).

Let’s record these ideas of this page in a definition.

Definition 11.2 (Continuity on intervals)
• A function f is continuous on (a,b) if lim

x!c
f (x)= f (c) when a < c < b.

• f is continuous on [a,b] if it is continuous on (a,b), and lim
x!a+

f (x)= f (a)

and lim
x!b°

f (x)= f (b).

• f is continuous on [a,b) if it is continuous on (a,b), and lim
x!a+

f (x)= f (a).

• f is continuous on (a,b] if it is continuous on (a,b), and lim
x!b°

f (x)= f (b).
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As an example, consider the function
f (x)=

p
1° x2. Its graph is the upper half of

the unit circle. According to Definition 11.2
this function is continuous on the closed in-
terval [°1,1], as follows.

f (x)=
p

1° x2

x

y

°1 1

First let’s check that it is continuous on the open interval (°1,1). If c is
in this interval then limit laws give

lim
x!c

f (x)= lim
x!c

p
1° x2 =

p
1° c2 = f (c).

That is, lim
x!c

f (x)= f (c), so f is continuous on (°1,1). Concerning the end-
points, neither lim

x!°1
f (x) nor lim

x!1
f (x) exist because f (x) is undefined when x

is to the left of °1 or to the right of 1. But we do have lim
x!°1+

f (x)= 0= f (°1)

and lim
x!1°

f (x)= 0= f (1). Thus
p

1° x2 is continuous on [°1,1].

Our next example is f (x)=
p

x+1, whose
graph is the graph of y = p

x shifted one
unit left. Note that f (x) is continuous on
its domain [°1,1) because it is continuous
on (°1,1), and lim

x!°1+
f (x)= 0= f (°1).

f (x)=
p

x+1
x

y

°1

Our final example concerns the function tan(x). This function has in-
finitely many discontinuities, at º

2 +kº for any integer k. But if c is not one
of these numbers, then lim

x!c
tan(x)= tan(c). Thus tan(x) is continuous on each

of the intervals
°
°º

2 +kº, º
2 +kº

¢
.

x

y= tan(x)

°5º
2 °3º

2
°º

2
º
2

3º
2

5º
2

In general the domain of a function is an interval or a collection of
intervals. Each example on this page features a function that is continuous
on its domain. In fact, almost all of the functions we deal with in calculus
are continuous on their domains, as the next section explains.
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11.4 Building Continuous Functions
In using calculus it is often important that the functions we deal with
are continuous. Fortunately most are. The next theorem gives a list of
basic functions that are continuous on their domains. (In this theorem k
is a constant real number, and is interpreted as the constant function
f (x)= k whose graph is a horizontal line crossing the y-axis at k. Similarly
x represents the identity function f (x) = x whose graph is a straight line
with slope 1 and y-intercept 0. Also a is a positive constant.)

Theorem 11.2 Basic Continuous Functions
The following functions are continuous on their domains:

k x |x| ax ln(x) loga(x)
sin(x) cos(x) tan(x) csc(x) sec(x) cot(x)

sin°1(x) cos°1(x) tan°1(x) csc°1(x) sec°1(x) cot°1(x)

Two continuous functions f (x) and g(x) can be combined by various
algebraic operations and the result is continuous. For example, if they are
both continuous at c, then their product f (x) · g(x) is continuous at c because
a limit law gives

lim
x!c

f (x) · g(x)=
≥
lim
x!c

f (x)
¥
·
≥
lim
x!c

g(x)
¥
= f (c)g(c).

Here is a summary of ways that continuous functions can be combined to
yield new continuous functions.

Theorem 11.3 Building Continuous Functions
If f (x) and g(x) are continuous on their domains, then so are the following.

f (x)+ g(x) f (x)° g(x) k · f (x)

f (x) · g(x)
f (x)
g(x)

ØØ f (x)
ØØ

f
°
g(x)

¢ °
f (x)

¢n n
p

f (x)

The main point of this theorem is that if a function is built up by com-
bining continuous functions with the stated operations, then it itself is
continuous. For example,

h(x)= cos(x)+ x2

sin(x)
+5

p
x

is continuous on its domain because it’s built up by combining the continuous
functions x, sin(x) and cos(x) with operations listed above.
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11.5 The Intermediate Value Theorem
Though the theorem we now discuss is not the most important result in a
calculus course, it is a good example of a theorem having form “If f (x) is
continuous, then something significant is true,” promised on page 156.

Theorem 11.4 Intermediate Value Theorem
If f (x) is continuous on a closed interval [a,b], and
y0 is any number between f (a) and f (b), then there
is a number c in [a,b] for which f (c)= y0.

That is, a continuous function on [a,b], starting at
height f (a) and ending at height f (b), attains every
height y0 between f (a) and f (b).

y= f (x)

f (b)

f (a)

y0

ba c

The intermediate value theorem says something
very intuitive about a function that is continuous
on [a,b], namely that it must take on every value
between f (a) and f (b). Notice that continuity is an
essential ingredient. If f (x) were not continuous,
then there might be heights y0 between f (a) and f (b)
that don’t equal any f (c), as shown on the right.

y= f (x)

f (b)

f (a)

y0

ba

One application of Theorem 11.4 is to equations
of form f (x) = 0. If there are numbers a and b for
which one of f (a) and f (b) is positive and the other
is negative, and f (x) is continuous on [a,b], then we
know the equation f (x) = 0 has a solution c in [a,b].
This is because y0 = 0 is between f (a) and f (b), so
Theorem 11.4 guarantees a c in [a,b] with f (c)= 0.

y= f (x)

f (b)

f (a)

b
a

c

Example 11.4 Show that the equation cos(x)= 2x has at least one solution.

This equation can’t be solved with standard algebraic techniques because x
cannot be isolated. (And writing it as cos(x)°2x = 0, we notice that it is
impossible to factor.) This problem is asking us just to show that there
exists a solution, not what number that solution is. To answer the question,
notice that the function f (x) = cos(x)°2x is continuous because it is built
from continuous functions cos(x) and x by operations listed in Theorem 11.3.
Notice that f (0)= cos(0)+2 ·0= 1 is positive but f (º)= cos(º)°2º=°1°2º is
negative, so the number 0 is between f (0) and f (º). The intermediate value
theorem guarantees a number c in [0,º] for which f (c) = 0. This means
cos(c)°2c = 0, so c is a solution to cos(x)= 2x.
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Exercises for Chapter 11

1. Find: lim
x!º/2

ln
°
sin(x)

¢
2. Find: lim

x!
p

3
tan°1(x)

3. Find: lim
x!0

tan°1
µ

sin(x)
x

∂
4. Find: lim

x!º/2
ecos(x)

5. Find: lim
x!º/2

23cos(2x)
6. Find: lim

x!1
ln

µ
x2 °1
2x°2

∂

7. Find: lim
x!º

cos
≥ x
3

¥
8. Find: lim

x!°1+
sin°1(x)

9. Find: lim
x!0

sin
µ
ºx+ x2

4x

∂
10. Find: lim

x!4
log2

µ
x2 °16
x°4

∂

11. State the intervals on which the function y= x+1
x2 °4x+3

is continuous.

12. State the intervals on which the function y=
p

x+5
ex °1

is continuous.

13. State the intervals on which the function y=
p

x2 °5 is continuous.

14. State the intervals on which the function y= sin(x)
x

is continuous.

15. Draw the graph of a function that meets all five of the following conditions.

1. f (x) is continuous everywhere except at x = 1 and x = 2.
2. f (3)= 1 3. lim

x!1
f (x) =°1

4. lim
x!2°

f (x) = 1 5. lim
x!2+

f (x) = 2

16. Draw the graph of a function that meets all five of the following conditions.

1. f (x) is continuous everywhere except at x =°1 and x = 1.
2. f (3)= 2 3. lim

x!°1
f (x) = 2

4. lim
x!1°

f (x) = 1 5. lim
x!1+

f (x) =°1

17. Find the value a such that f is
continuous on (°1,1):

f (x)=
Ω

3x°2 if x < 2
5x+a if x ∏ 2

18. Find the value a such that f is
continuous on (°1,1):

f (x)=
Ω

x2 °2 if x < 3
ax if x ∏ 3

19. Find the value a such that f is
continuous on (°1,1):

f (x)=
Ω

x2 +2 if x < 3
ax if x ∏ 3

20. Find the value a such that f is
continuous on (°1,1):

f (x)=

8
<

:

sin(3x°3)
x°1

if x 6= 1

a if x = 1
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21. Answer the questions about the function f (x) graphed below.

(a) At which values c is f (x)
not continuous at x = c?

(b) f
°
f (1)

¢
=

(c) lim
x!1

f
°
f (x)

¢
=

(d) f
°
f (°1)

¢
=

(e) lim
x!°1

f
°
f (x)

¢
=

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3 y= f (x)

22. Answer the questions about the function f (x) graphed below.
(a) At which values c is f (x)

not continuous at x = c?

(b) lim
x!2

f
µ

x2 °4
x°2

∂
=

(c) lim
x!°1

°
f (x)

¢2 °4
f (x)°2

=

(d) lim
x!3

f ± f (x)=

(e) lim
x!3

5 f (x)
1+ f (x)

=

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3 y= f (x)

23. Answer these questions about the functions f and g graphed below.
(a) f (3)=
(b) lim

x!2
g(x)=

(c) f
µ

lim
x!2

g(x)
∂
=

(d) lim
x!2

f
°
g(x)

¢
=

(e) lim
x!3

f (x)
g(x°1)

=

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3
y= f (x)

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3

y= g(x)

24. Answer these questions about the functions f and g graphed below.

(a) lim
x!1

f (x)g(x)=

(b) lim
x!1

f
°
g(x)

¢
=

(c) lim
x!°2

f
°
g(x)

¢
=

(d) lim
x!2

g
°
f (x)

¢
=

(e) lim
x!°1

g
°
f (°2x)

¢
=

(f) lim
x!2

f
°
f (x)

¢
=

x
°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

x
°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= g(x)
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25. Answer these questions about the functions f and g graphed below.

(a) lim
x!1

f (x)g(x)=

(b) lim
x!0

f
°
g(x)

¢
=

(c) lim
x!2

f
°
g(x)

¢
=

(d) lim
x!2

g
°
f (x)

¢
=

(e) lim
x!°1

g
°
f (x)

¢
=

(f) lim
x!2

f
°
f (x)

¢
=

x
°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

x
°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= g(x)

26. Answer these questions about the functions f and g graphed below.

(a) lim
x!1

g(x)=

(b) f (3)=

(c) f
µ

lim
x!1

g(x)
∂
=

(d) lim
x!1

f
°
g(x)

¢
=

(e) lim
x!3

f (x)g(x)=

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3

y= f (x)

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3

y= g(x)

27. Show that Theorem 11.1 requires continuity: Find functions f and g for which
lim
x!c

g(x)=L, f is not continuous at L, and lim
x!c

f
°
g(x)

¢
6= f

≥
lim
x!c

g(x)
¥
. Hint: you will

find several such examples in the exercises above.

28. Use the intermediate theorem to show that the equation x3+ x+sin(x)= 11 has a
solution.

29. Use the intermediate theorem to show that the equation ex = 7°x has a solution.
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11.6 Exercise Solutions for Chapter 11

1. lim
x!º/2

ln
°
sin(x)

¢
= ln

µ
lim

x!º/2
sin(x)

∂
= ln(1)= 0

3. lim
x!0

tan°1
µ

sin(x)
x

∂
= tan°1

µ
lim
x!0

sin(x)
x

∂
= tan°1(1)= º

4

5. lim
x!º/2

23cos(2x) = 23cos(2·º/2) = 23cos(º) = 2°3 = 1
8

7. lim
x!º

cos
≥ x
3

¥
= cos

≥
lim
x!º

x
3

¥
= cos(º/3)= 1

2

9. lim
x!0

sin
µ
ºx+ x2

4x

∂
= sin

µ
lim
x!0

ºx+ x2

4x

∂
= sin

µ
lim
x!0

x(º+ x)
4x

∂
= sin

µ
lim
x!0

º+ x
4

∂
= sin(º/4)=

p
2

2

11. State the intervals on which the function y= x+1
x2 °4x+3

is continuous.

This is a rational function, so it will be continuous on its domain. Given that
y= x+1

(x°1)(x°3)
, its domain is all real numbers except 1 and 3. Therefore this

function is continuous on (°1,1)[ (1,3)[ (3,1).

13. State the intervals on which the function y=
p

x2 °5 is continuous.

By Theorem 11.3, this function is continuous on its domain, which is (°1,°
p

5][
[
p

5,1).

15. Draw the graph of a function that meets all five of the following conditions.
1. f (x) is continuous everywhere

except at x = 1 and x = 2.

2. f (3)= 1

3. lim
x!1

f (x) =°1

4. lim
x!2°

f (x) = 1

5. lim
x!2+

f (x) = 2

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3

y= f (x)

17. Find the value a such that f is continuous on (°1,1): f (x)=
Ω

3x°2 if x < 2
5x+a if x ∏ 2

This function is a polynomial f (x)= 3x°2 on (°1,2), so it is continuous on that
interval. The function is f (x)= 5x+a on (2,1), so it is continuous on that interval.
Thus the only possible location for a discontinuity is at x = 2. In order for f to be
continuous at x = 2, we must have lim

x!2
f (x)= f (2). Now, f (2)= 5 ·2+a = 10+a, so

we require lim
x!2

f (x)= 10+a. In particular, 10+a = lim
x!2°

f (x)= lim
x!2°

(3x°2)= 4. This
gives a =°6.
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19. Find the value a such that f is continuous on (°1,1): f (x)=
Ω

x2 +2 if x < 3
ax if x ∏ 3

This function is a polynomial f (x)= x2 +2 on (°1,3), so it is continuous on that
interval. The function is f (x)= ax on (3,1), so it is continuous on that interval.
Thus the only possible location for a discontinuity is at x = 3. In order for f to be
continuous at x = 3, we must have lim

x!3
f (x)= f (3). Now, f (3)= a ·3, so we require

lim
x!3

f (x)= 3a. In particular, 3a = lim
x!3°

f (x)= lim
x!3°

(x2 +2)= 11. This gives a = 11
3 .

21. Answer the questions about the function f (x) graphed below.
(a) At which values c is f (x)

not continuous at x=c?
Answer: °2 and 1

(b) f
°
f (1)

¢
= f (°1)= 3

(c) lim
x!1

f
°
f (x)

¢
= 1

(d) f
°
f (°1)

¢
= f (3)= 2

(e) lim
x!°1

f
°
f (x)

¢
= 2

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3 y= f (x)

23. Answer these questions about the functions f and g graphed below.
(a) f (3)= 1
(b) lim

x!2
g(x)= 3

(c) f
µ

lim
x!2

g(x)
∂
= f (3)= 1

(d) lim
x!2

f
°
g(x)

¢
=°2

(e) lim
x!3

f (x)
g(x°1)

= °2
3

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3

y= f (x)

x
°4 °3 °2 °1 1 2 3 4

y

°3

°2

°1

1

2

3

y= g(x)

25. Answer these questions about the functions f and g graphed below.

(a) lim
x!1

f (x)g(x)= 0

(b) lim
x!0

f
°
g(x)

¢
=°2

(c) lim
x!2

f
°
g(x)

¢
=°1

(d) lim
x!2

g
°
f (x)

¢
= 3

(e) lim
x!°1

g
°
f (x)

¢
= 3

(f) lim
x!2

f
°
f (x)

¢
= 0

x
°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= f (x)

x
°4 °3 °2 °1 1 2 3 4

y

°4

°3

°2

°1

1

2

3

4

y= g(x)

27. Show that Theorem 11.1 requires continuity: Find functions f and g for which
lim
x!c

g(x)=L, f is not continuous at L, and lim
x!c

f
°
g(x)

¢
6= f

≥
lim
x!c

g(x)
¥
.

Answer: In Exercise 23 above, we saw functions f and g for which lim
x!2

g(x)=3,

f is not continuous at 3, and lim
x!2

f
°
g(x)

¢
6= f

µ
lim
x!2

g(x)
∂
.
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29. Use the intermediate theorem to show that the equation ex = 7°x has a solution.

This amounts to showing that ex + x°7 = 0 has a solution. Let f (x) = ex + x°7,
which is continuous on (°1,1). We need to show that f (x) = 0 has a solution.
Notice that f (0) = e0 +0°7 = °6 is negative but f (7) = e7 +7°7 = e7 is positive.
Since f is continuous on [0,7] and f (0)< 0< f (7), the intermediate value theorem
guarantees a number 0 < c < 7 for which f (c) = 0. Therefore c is a solution for
ex + x°7= 0.


