	0 1 0
NT.	Richard
Name: _	Mortwen

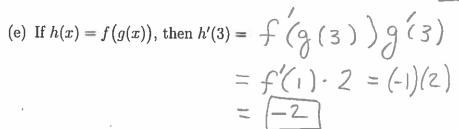
Test 2

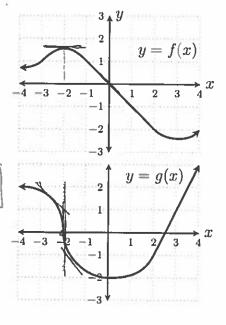
MATH 200, SECTION 3 June 4, 2021

Directions: Closed book, closed notes, no calculators.

Put all phones, etc., away.

You will need only a pencil or pen.


1. (15 points) Answer the questions about the functions graphed below.


(a)
$$f'(-2) = \bigcirc$$

(b)
$$f'(0) = \sqrt{-1}$$

(c)
$$\lim_{x \to -2} g'(x) =$$

(d) If
$$h(x) = f(x)g(x)$$
, then $h'(0) = f(0)g(0) + f(0)g(0)$
= $(-1)(-2) + 0 \cdot 0 = 2$

2. (8 points) Find the derivatives of the following functions.

(a)
$$f(x) = x^4 - 3x + \pi^2$$
 $f'(x) = \frac{1}{2} 4 \times \frac{3}{2} - 3$

(b)
$$f(x) = \sin^{-1}(x)$$

$$f(x) = \sqrt{1-x^2}$$

(c)
$$f(x) = e^{-x}$$

$$f(x) = -e^{-x}$$

(d)
$$f(x) = \sin(\pi x)$$

$$f(x) = \cos(\pi x) \cdot \pi$$

3. (10 points) Find the equation of the tangent line to the graph of $y = \tan(x)$ at the point where $x = \pi/4$.

Slope:
$$m = f'(\pi/4) = \sec^2(\pi/4) = \frac{1}{\cos^2(\pi/4)} = \frac{1}{(\sqrt{2})^2} = \frac{1}{2}$$

$$y - 1 = 2(x - T_4)$$

$$y = 2x - \frac{\pi}{2} + 1$$

(30 points) Find the derivatives.

(a)
$$\frac{d}{dx} \left[\sqrt{x^4 + x^2 + 1} \right] = \frac{d}{dx} \left[\left(x + x^2 + 1 \right)^2 \right] = \frac{1}{2} \left(x + x^2 + 1 \right) \left(x + x^2 + 1 \right)$$

(b)
$$\frac{d}{dx}\left[x^{2}\cos(x^{2})\right] = 2\mathcal{X}\cos(\chi^{2}) + \chi^{2}\frac{d}{dx}\left[\cos(\chi^{2})\right]$$
$$= 2\mathcal{X}\cos(\chi^{2}) + \chi^{2}\left(-\sin(\chi^{2})2\mathcal{X}\right)$$
$$= 2\mathcal{X}\cos(\chi^{2}) - 2\mathcal{X}\sin(\chi^{2})$$
$$= 2\mathcal{X}\cos(\chi^{2}) - 2\mathcal{X}\sin(\chi^{2})$$

(c)
$$\frac{d}{dx} \left[\frac{e^x}{x} \right] = \frac{e^{\chi} \chi - e^{\chi}}{\chi^2} = \frac{e^{\chi} (\chi - 1)}{\chi^2}$$

(d)
$$\frac{d}{dx} \left[\frac{1}{\sqrt{3x+1}} \right] = \frac{d}{dx} \left[(3x+1)^{\frac{1}{2}} \right] = -\frac{1}{2} \left(3x+1 \right)^{\frac{1}{2}}$$

$$= -\frac{3}{2} \left(3x+1 \right)^{-\frac{3}{2}} = \frac{-3}{2\sqrt{3x+1}}$$

(e)
$$\frac{d}{dx} \left[\ln (\sec(e^x)) \right] = \frac{1}{\sec(e^x)} \frac{d}{dx} \left[\sec(e^x) \right]$$

$$= \frac{1}{\sec(e^x)} \sec(e^x) + \tan(e^x) e^x$$

$$= \frac{1}{\tan(e^x)} e^x$$

5. (7 points)
$$\lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \frac{1}{\times}$$

5. (7 points)
$$\lim_{h\to 0} \frac{\ln(x+h) - \ln(x)}{h} = \frac{1}{\times}$$
 (Definition of $\frac{d}{dx} \left[\ln(x) \right]$)

6. (10 points) Suppose
$$y = x \ln(x) - x$$
.

(a)
$$\frac{dy}{dx} = \left| \ln(x) + \chi \frac{1}{\chi} - 1 \right| = \left| \ln(x) + 1 - 1 \right| = \left| \ln(x) \right|$$

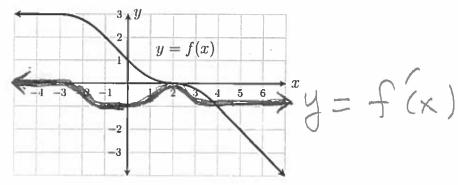
(b)
$$\frac{d^2y}{dx^2} = \frac{\partial}{\partial x} \left[\ln(x) \right] = \left[\frac{1}{x} \right]$$

(c)
$$\frac{d^3y}{dx^3} = \sqrt{\frac{1}{x}} \left[\frac{1}{x} \right] = \sqrt{\frac{1}{x^2}}$$

7. (10 points) Find all x for which the tangent to
$$f(x) = \frac{x^2 - 6x + 10}{x - 3}$$
 at $(x, f(x))$ has slope 0.

$$\frac{(2x-6)(x-3)-(x^{2}6x+10)(1)}{(x-3)^{2}}=0$$

$$(2x-6)(x-3)-(x^2-6x+10)=0$$


$$2x^2 - 12x + 18 - x^2 + 6x - 10 = 0$$

$$\chi^2 - 6\chi + 8 = 0$$

$$(x-2)(x-4)=0$$

Answer: at
$$x=2$$
 and $x=4$

8. (10 points) A function
$$f(x)$$
 is graphed below. Sketch the graph of its derivative $f'(x)$.

