
Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (10 points) Use a **limit definition** of the derivative to find the derivative of $f(x) = \frac{1}{x+1}$.

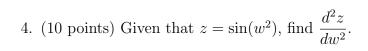
- 2. (12 points) The graph of a function f(x) is sketched below.
 - (a) Using the same coordinate axis, sketch a graph of the derivative f'(x).
 - (b) Suppose $g(x) = (f(x))^4$. Find g'(1).

3. (48 points) Find the derivatives of these functions. You do **not** need to simplify your answers.

(a)
$$f(x) = 5x^7 + 3x - \sqrt{2}$$

(b)
$$f(x) = \sin(x) + \sec(x)$$

(c)
$$f(x) = \sin(x)\sec(x)$$


(d)
$$f(x) = \sin(\sec(x))$$

(e)
$$f(x) = \sec(\sin(x))$$

(f)
$$f(x) = \frac{\tan(x)}{x^2 + e^x}$$

(g)
$$f(x) = \sqrt{e^x + x}$$

(h)
$$y = \cos\left(e^{x^2+x}\right)$$

6. (10 points) Find all x for which the tangent to the graph of
$$f(x) = e^{x^3 - 27x}$$
 at $(x, f(x))$ is horizontal.