VCU

MATH 200

CALCULUS I

R. Hammack

Test 2

March 20, 2015

Name:			

Score:

Directions. Answer the questions in the space provided. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used.

1. (20 points) Warmup: short answer.

(a)
$$\tan^{-1}(1) =$$

(b)
$$\cos^{-1}(-1/2) =$$

(c)
$$e^{1+\cos(\pi)} =$$

(d)
$$\ln(25) + 2\ln\left(\frac{e}{5}\right) =$$

(e) If
$$f(x) = \ln(x)$$
, then $f^{-1}(x) =$

(f) If
$$f(x) = \ln(x)$$
, then $f'(x) =$

(g)
$$\lim_{h\to 0} \frac{\ln(8+h) - \ln(8)}{h} =$$

(h)
$$\frac{d}{dx} \left[\sin(x^{10}) \right] =$$

(i)
$$\frac{d}{dx} \left[\frac{1}{x} + \tan(x) \right] =$$

(j)
$$\frac{d}{dx} [\tan^{-1}(x)] =$$

2. (5 points) Suppose f(x) is the number of gallons of fuel in a rocket when it is x miles above the Earth's surface. Explain, in non-mathematical terms, what the statement f'(20) = -8 means.

3. (5 points) Two functions f(x) and g(x) are graphed below. Let h(x) = f(x)g(x). Estimate h'(1). Show your work.

4. (5 points) A function f(x) is graphed below. Using the same coordinate axis, sketch the graph of the derivative f'(x).

5. (20 points) Find the following derivatives.

(a)
$$\frac{d}{dx} [\ln(\tan(x))] =$$

(b)
$$\frac{d}{dx} \left[\sqrt{\frac{x^2 + 5}{e^x}} \right] =$$

(c)
$$\frac{d}{dx} \left[\sqrt[3]{x} \sin(x) \right] =$$

(d)
$$\frac{d}{dx} [e^{1+e^{-x}}] =$$

7 (10 points) Use the limit definition of the derivative to find the derivative of the function $f(x) = x^2 + 1$.

8. (5 points) Simplify: $\tan(\cos^{-1}(x)) =$

9. (10 points) Suppose $f(x) = \frac{5}{x}$.

Find the **equation** of the line tangent to the graph of y = f(x) at the point (5, f(5)).

- 10. (10 points) This question concerns the equation $x^3 + y^3 = 4xy$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Use your answer from part (a) to find the slope of the tangent line to the graph of $x^3 + y^3 = 4xy$ at the point (2, 2).