VCU

MATH 200

CALCULUS I

R. Hammack

Test 2

March 23, 2016

Name: Richard

Score:

Directions. Answer the questions in the provided space. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Please put all phones away.

1. (20 points) Warmup: short answer.

(a) If
$$f(x) = \tan(x) + \ln(x)$$
, then $f'(x) = \int \frac{2}{x} (x) + \frac{1}{x}$

(b) If
$$f(x) = \sin^{-1}(x) + e^x$$
, then $f'(x) = \frac{1}{1 - x^2} + e^x$

(c) If
$$f(x) = \sqrt[3]{x^5}$$
, then $f'(x) = \frac{5}{3} \chi^{\frac{5}{3}} = \frac{5}{3} \chi^{\frac{2}{3}} = \frac{5}{3} \chi^{\frac{2}{3}}$

(d) If
$$f(x) = \frac{1}{2}\sin(x) + e$$
, then $f'(x) = \begin{bmatrix} \frac{1}{2}\cos(x) \\ -x \end{bmatrix}$

(e) If
$$f(x) = e^{-x}$$
, then $f'(x) = \begin{bmatrix} -x \\ -x \end{bmatrix}$

(f) If
$$f(x) = e^{-x}$$
, then $f'(\ln(2)) = -e^{-\ln(2)} = -\frac{1}{e^{\ln(2)}} = -\frac{1}{e^{\ln(2)}}$
(g) $\lim_{h\to 0} \frac{e^{x+h} - e^x}{h} = e^{-x}$ (definition of $\frac{d}{dx} [e^x]$)

(h)
$$\frac{d}{dx} \left[\tan^{-1}(\pi x) \right] = \frac{1}{1 + (\pi x)^2} \pi = \frac{\pi}{1 + \pi^2 x^2}$$

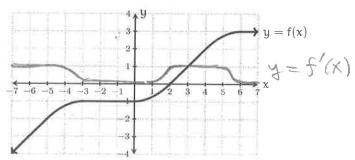
(i)
$$\frac{d}{dx} \left[\ln \left(\cos(x) \right) \right] = \frac{-\sin(x)}{\cos(x)} = \left[-\tan(x) \right]$$
(j)
$$\frac{d}{dx} \left[\frac{1}{x^2 + 3x} \right] = \frac{d}{dx} \left[\left(x^2 + 3x \right)^{-1} \right] = -\left(x^2 + 3x \right)^{-2} \left(2x + 3 \right)$$

$$= \left[-\frac{2x + 3}{x^2 + 3x} \right]^2$$

2. (5 points) Find the equation of the tangent line to the graph of $y = \sin(x)$ at the point where $x = \pi$.

Slope at
$$x$$
 is $y' = \cos(x)$
Thus $m = \cos(\pi) = -1$
Point on tangent is $(\pi, \sin(\pi)) = (\pi, 0)$
Point—slope form:
 $y-0 = -1(x-\pi)$
 $y = -x + \pi$

3. (5 points) Information about a function f(x) and its derivative is given in the table below.


χ	0	1	2	3	4	5
f(x)	0	-3	-2	3	10	25
f'(x)	-1	-7	-5	5	20	30

Suppose $h(x) = (f(x))^3$. Find h'(2). Show your work.

$$f_1(x) = 3(f(x))^2 f_1(x)$$

$$f_1(2) = 3(f(2))^2 f_2(2) = 3 \cdot (-2)^2 (-5) = |-60|$$

4. (5 points) A function f(x) is graphed below. Using the same coordinate axis, sketch the graph of the derivative f'(x).

5. (20 points) Find the following derivatives.

(a)
$$\frac{d}{dx} \left[\ln \left(1 + \frac{1}{x} \right) \right] = \frac{0 - \frac{1}{x^2}}{1 + \frac{1}{x^2}}$$

(a)
$$\frac{d}{dx} \left[\ln \left(1 + \frac{1}{x} \right) \right] = \frac{O - \frac{1}{x^2}}{1 + \frac{1}{x}} = \frac{\frac{1}{x^2}}{\frac{x+1}{x}}$$

$$= \frac{1}{x} \frac{x+1}{x}$$

$$= \frac{1}{x(x+1)}$$

$$= \frac{1}{x(x+1)}$$
(b) $\frac{d}{dx} \left[\tan(x^5) + \tan^5(x) \right] =$

$$= \sec^2(x^5) \frac{d}{dx} \left[x^5 \right] + 5 + \tan^4(x) \frac{d}{dx} \left[+ \tan(x) \right]$$

$$= \left[\sec^{2}(x^{5}) 5 x^{4} + 5 \tan^{4}(x) \sec^{2}(x) \right]$$
(c) $\frac{d}{dx} \left[\sec(e^{x^{3}+x}) \right] = \left[\sec(e^{x^{3}+x}) + \tan(e^{x^{3}+x}) e^{x^{3}+x} \right]$

$$\left[\sec(e^{x^{3}+x}) + \tan(e^{x^{3}+x}) e^{x^{3}+x} \right]$$

(c)
$$\frac{d}{dx} \left[\sec \left(e^{x^3 + x} \right) \right] =$$

$$\left[\sec \left(e^{x^3 + x} \right) + \tan \left(e^{x^3 + x} \right) e^{x^3 + x} \left(3x^2 + 1 \right) \right] =$$

$$\left[\left(\frac{d}{dx} \left[\frac{x^3 \ln(x)}{x^3 + 1} \right] \right] =$$

$$\left[\left(\frac{2}{x^3 + x} \right) + \left(\frac{2}{x^3 + x} \right) +$$

$$\frac{(d) \frac{d}{dx} \left[\frac{x \ln(x)}{x^3 + 1} \right] =}{\left(3x^2 \ln(x) + x^3 \frac{1}{x} \right) (x^3 + 1) - x^3 \ln(x) 3x^2}$$

$$= \frac{(3x^2 \ln(x) + x^2)(x^3 + 1) - 3x^5 \ln(x)}{(x^3 + 1)^2}$$

6 (10 points) Find the derivative of $y = x^{\ln(x)}$.

$$ln(y) = ln(x ln(x))$$

$$ln(y) = ln(x) ln(x)$$

$$d[ln(y)] = d[ln(x) ln(x)]$$

$$\frac{y'}{y} = \frac{1}{x} \ln(x) + \ln(x) \frac{1}{x}$$

$$y' = y \left(\frac{\ln(x)}{x} + \frac{\ln(x)}{x} \right)$$

$$y' = \chi^{\ln(x)} 2 \frac{\ln(x)}{\chi}$$

7 (10 points) Consider $f(x) = 2x^3 - 3x^2 - 12x + 4$. Find all x for which the tangent to y = f(x) at the point (x, f(x)) is horizontal.

tangent to
$$y = f(x)$$
 at the point $(x, f(x))$ is horizontal.

$$f'(x) = 6x^2 - 6x - 12 = 0$$

Mecuns Slope
$$6(x^2 - x - 2) = 0$$

$$6(x+1)(x-2) = 6$$

Answer
$$X=-1$$
 and $X=2$

8. (15 points) An object moves on a straight line in such a way that its distance from its starting point at time t seconds is $s(t) = 4\sqrt{t}^5$ feet. What is its velocity is when its acceleration is 30 feet per second per second?

$$(\pm - s(\pm) = 4\sqrt{\pm}^5 \rightarrow vel = s'(\pm)$$

Velocity:
$$V(t) = S(t) = 4\frac{5}{2}t^{\frac{3}{2}} = 10\sqrt{t}^{3}$$

acceleration
$$a(t) = V(t) = 10 \frac{3}{2} t^{\frac{3}{2}-1} = 15 \sqrt{t}$$

$$a(t) = 30$$

$$t = 4 \text{ Sec}$$

- **9.** (10 points) This question concerns the equation $x\sqrt[3]{y}^2 + y = 12$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.

$$\frac{d}{dx} \left[xy^{\frac{2}{3}} + y \right] = \frac{d}{dx} \left[12 \right]$$

$$(1) y^{\frac{2}{3}} + \chi^{\frac{2}{3}} y^{\frac{1}{3}} y' + y' = 0$$

$$\frac{2 xy}{3 y^{\frac{1}{3}}} + y' = -y^{\frac{2}{3}}$$

$$y' \left(\frac{2x}{3 \sqrt[3]{y}} + 1 \right) = -\sqrt[3]{y}^{2}$$

$$y' = -\sqrt[3]{y}$$

$$y' = -\sqrt[3]{y}$$

$$y' = -\sqrt[3]{y}$$

$$y' = -\sqrt[3]{y}$$

(b) Use your answer from part (a) to find the slope of the tangent line to the graph of $x\sqrt[3]{y^2} + y = 12$ at the point (1,8).

$$y' = \frac{-3\sqrt{8}^{2}}{2 \cdot 1} + 1$$

$$= \frac{-2}{2} + 1 - \frac{4}{8}$$

$$= -\frac{24}{8} = -3$$