VCU

MATH 200

CALCULUS I

R. Hammack

Test 2

March 23, 2016

Name:	

Score

Directions. Answer the questions in the provided space. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Please put all phones away.

1. (20 points) Warmup: short answer.

(a) If
$$f(x) = \tan(x) + \ln(x)$$
, then $f'(x) =$

(b) If
$$f(x) = \sin^{-1}(x) + e^x$$
, then $f'(x) =$

(c) If
$$f(x) = \sqrt[3]{x}^5$$
, then $f'(x) =$

(d) If
$$f(x) = \frac{1}{2}\sin(x) + e$$
, then $f'(x) =$

(e) If
$$f(x) = e^{-x}$$
, then $f'(x) =$

(f) If
$$f(x) = e^{-x}$$
, then $f'(\ln(2)) =$

(g)
$$\lim_{h\to 0} \frac{e^{x+h} - e^x}{h} =$$

(h)
$$\frac{d}{dx} [\tan^{-1}(\pi x)] =$$

(i)
$$\frac{d}{dx} \left[\ln \left(\cos(x) \right) \right] =$$

(j)
$$\frac{d}{dx} \left[\frac{1}{x^2 + 3x} \right] =$$

2. (5 points) Find the equation of the tangent line to the graph of $y = \sin(x)$ at the point where $x = \pi$.

3. (5 points) Information about a function f(x) and its derivative is given in the table below.

χ	0	1	2	3	4	5
f(x)	0	-3	-2	3	10	25
f'(x)	-1	-7	-5	5	20	30

Suppose $h(x) = (f(x))^3$. Find h'(2). Show your work.

4. (5 points) A function f(x) is graphed below. Using the same coordinate axis, sketch the graph of the derivative f'(x).

5. (20 points) Find the following derivatives.

(a)
$$\frac{d}{dx} \left[\ln \left(1 + \frac{1}{x} \right) \right] =$$

(b)
$$\frac{d}{dx} \left[\tan(x^5) + \tan^5(x) \right] =$$

(c)
$$\frac{d}{dx} \left[\sec \left(e^{x^3 + x} \right) \right] =$$

(d)
$$\frac{d}{dx} \left[\frac{x^3 \ln(x)}{x^3 + 1} \right] =$$

6 (10 points) Find the derivative of $y = x^{\ln(x)}$.

7 (10 points) Consider $f(x) = 2x^3 - 3x^2 - 12x + 4$. Find all x for which the tangent to y = f(x) at the point (x, f(x)) is horizontal.

8. (15 points) An object moves on a straight line in such a way that its distance from its starting point at time t seconds is $s(t) = 4\sqrt{t}^5$ feet. What is its velocity is when its acceleration is 30 feet per second per second?

- **9.** (10 points) This question concerns the equation $x\sqrt[3]{y}^2 + y = 12$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Use your answer from part (a) to find the slope of the tangent line to the graph of $x\sqrt[3]{y^2} + y = 12$ at the point (1,8).