VCU

MATH 200

CALCULUS I

R. Hammack

Test 1

February 17, 2016

Name:			

Score: _____

Directions. Answer the questions in the provided space. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Please put all phones away.

1. (20 points) Warmup: short answer.

(a)
$$(-27)^{2/3} =$$

(b)
$$\sin\left(\frac{11\pi}{6}\right) =$$

(c)
$$\log_5(5) =$$

(d)
$$\ln\left(\frac{1}{\sqrt{e}}\right) =$$

(e)
$$\ln (\sin(\pi/2)) =$$

(f)
$$\lim_{x\to 0} \frac{\sin(x)}{x} =$$

(g)
$$\lim_{x\to\pi} \frac{\sin(x)}{x} =$$

(h)
$$\lim_{x\to\infty} \frac{\sin(x)}{x} =$$

(i)
$$\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$$

(j)
$$\lim_{x\to\pi}\cos(x) =$$

2. (10 points) For the functions f(x) and g(x) graphed below, find

(a)
$$\lim_{x \to 3} \sqrt{5 f(x) + g(x)} =$$

(b)
$$\lim_{x\to 1} f(g(x)) =$$

3. (5 points) Sketch the graph of $y = \cos^{-1}(x)$.

4. (20 points) Find the following limits.

(a)
$$\lim_{x\to 2} \frac{x^3-4x}{x^2+x-6}$$

(b)
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$$

(c)
$$\lim_{h\to 0} \frac{\frac{1}{(4+h)^2} - \frac{1}{16}}{h}$$

(d)
$$\lim_{x \to \infty} \tan^{-1} \left(\frac{x^2 + 3x - 1}{x^2 - 2} \right)$$

- **5.** (15 points) Sketch the graph of a function that meets all of the following criteria.
 - (a) The domain of f(x) is all real numbers except x = 0
 - (b) f(x) is continuous at all real numbers except x = -5 and x = 0
 - (c) f(-3) = 0 and f(2) = 1
 - (d) $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to -\infty} f(x) = 1$
 - (e) $\lim_{x\to 0^+} f(x) = \infty$, and $\lim_{x\to 0^-} f(x) = -\hat{\infty}$

6. (5 points) Simplify: $tan(sin^{-1}(x)) =$

7. (5 points) Find the inverse of the function $f(x) = \frac{\ln(3x+1)}{3}$.

8. (10 points) Find all solutions of the equation $\sin(x) + \cos(x) = 0$.

- **9.** (10 points) State the horizontal and vertical asymptotes of the following functions. You do not need to show any work. If there is no asymptote, write "none."
 - (a) $y = \ln(x)$

Horizontal:

Vertical:

(b) $y = \tan^{-1}(x)$

Horizontal:

Vertical:

(c) $y = \frac{x+1}{3x-2}$

Horizontal:

Vertical:

(c) $y = \frac{\sin(x)}{x}$

Horizontal:

Vertical:

(d) $y = e^x$

Horizontal:

Vertical: