VCU

MATH 200

CALCULUS I

R. Hammack

Test 1

May 23, 2014

Name:		

Score: _____

Directions. Answer the questions in the space provided. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used.

1. (25 points) Warmup: short answer.

(a)
$$\tan\left(\frac{5\pi}{3}\right) =$$

(b) Describe the domain of $f(x) = \frac{x+1}{x\sqrt{x+5}}$.

(c) Suppose
$$h(x) = \frac{\sin(\sqrt{x})}{\sqrt{x}}$$
.

State functions f(x) and g(x) for which $h(x) = f \circ g(x)$,

(d)
$$\lim_{x\to 3} \left(\frac{x^2-1}{x^3}\right)^{\frac{2}{3}} =$$

(e)
$$\lim_{x \to \frac{\pi}{2}^+} \tan(x) =$$

2. (15 points) Consider the equation $2\sin^2(x) = -\sin(x)$. Find all solutions x of this equation for which $0 \le x \le 2\pi$.

3. (15 points) Evaluate the following limits.

(a)
$$\lim_{x\to 2} \frac{\sin(2x-4)}{5x-10} =$$

(b)
$$\lim_{h\to 0}\,\frac{\sqrt{4+h}-2}{h}=$$

(c)
$$\lim_{x \to 3} \frac{\frac{1}{x^2} - \frac{1}{9}}{x - 3} =$$

4. (15 points) Sketch the graph of any function that meets all of the following criteria.

1.
$$f(-1) = 3$$

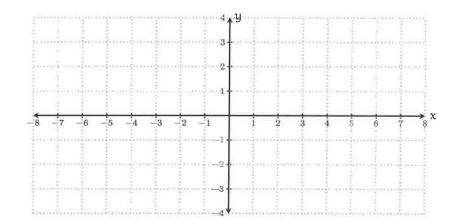
$$2. \lim_{x\to\infty} f(x) = -2$$

3. The line y = 3 is a horizontal asymptote

4.
$$\lim_{x\to 2^+} f(x) = -\infty$$
 and $\lim_{x\to 2^-} f(x) = \infty$

5.
$$\lim_{x \to -1} f(x) = 2$$

6. f(x) continuous at every x value except x = -1 and x = 2



- 5. (15 points) This question concerns the function $f(x) = \frac{15 12x 3x^2}{50 2x^2}$.
 - (a) State the intervals on which f(x) is continuous.

(b) Find the horizontal asymptotes (if any).

(c) Find the vertical asymptotes (if any).

6. (15 points) Two functions f(x) and g(x) are graphed below. Answer the following questions.

(a)
$$\lim_{x\to 3} f(x) =$$

(b) Find c if $\lim_{x\to c} f(x) = 0$.

(c)
$$\lim_{x \to -2} \frac{3 f(x) g(x)}{\sqrt{12 + f(x)}} =$$

- (d) $g \circ f(-2) =$
- (e) $\lim_{x\to 3} f(g(x)) =$

