VCU

MATH 200

CALCULUS I

R. Hammack

Test 2

October 23, 2015

Name: Kichard

Score: _

Directions. Answer the questions in the space provided. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Please put all phones away.

(c) $\lim_{h \to 0} \frac{\sin\left(\frac{\pi}{3} + h\right) - \sin\left(\frac{\pi}{3}\right)}{h} = \operatorname{CoS}\left(\frac{\pi}{3}\right) = \left[\frac{1}{2}\right] \leftarrow$

(a) If
$$f(x) = x^3 + \ln(x) + \pi^3$$
, then $f'(x) = 3 \times 2 + \frac{1}{2}$

- 1. (20 points) Warmup: short answer.

(b) If $f(x) = e^x$, then $f'(\ln(3)) = e^{\ln 3} = 3$

(f) $\frac{d}{dx} \left[\tan^{-1}(x) \right] = \sqrt{\frac{1}{1 + \chi^2}}$

(h) $\frac{d}{dx}[\cos(\pi x)] = \int -\sin(\pi x)\pi$

(d) $\frac{d}{dx}[\sec^{-1}(x)] = \frac{1}{|\chi|\sqrt{\chi^2 - 1}}$ (The limit is $f'(\frac{\pi}{3})$, where $f(x) = \sin(x)$ (e) $\frac{d}{dx}[3^x] = \frac{3}{3}\ln(3)$ Thus $f'(\frac{\pi}{3}) = \frac{1}{2}$

(g) $\frac{d}{dx} [\sqrt[3]{x^5}] = \frac{d}{dx} \left[\chi^{\frac{5}{3}} \right] = \frac{5}{3} \chi^{\frac{5}{3}} = \frac{5}{3} \chi^{\frac{2}{3}} = \frac{5}{3} \chi^{\frac{2}{3}}$

(i) $\frac{d}{dx} \left[\frac{1}{x} \right] = \frac{d}{dx} \left[\chi^{-1} \right] = -\chi^{-2} = -$

= 110 x ln(x) + 5x

(j) $\frac{d}{dx} [5x^2 \ln(x)] = 10 \times \ln(x) + 5 \times^2 \frac{1}{x}$

2. (5 points) Find the equation of the tangent line to the graph of $y = \sqrt{x}$ at the point where x = 9.

$$\frac{dy}{dx} = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

Thus slope of tangent where x = 9 is m = = 1 = 1. Also, the point

 $y-3 = \frac{1}{6}(x-9)$

$$y = \frac{1}{6}x - \frac{3}{2} + 3$$

$$y = \frac{1}{6}x + \frac{3}{2} + 3$$
3. (5 points) Information about functions $f(x)$, $g(x)$ and their derivatives is given in the table below.

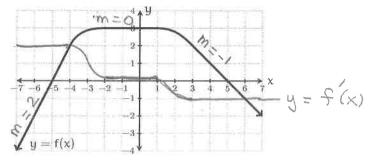
χ	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	0
f'(x)	2	1	1	3	0.5	-1
g(x)	10	9	7	4	0	-4
g'(x)	0	-0.5	-1	-3	-4	-4

Suppose h(x) = f(g(x)). Find h'(3). Show your work. $h'(x) = f'(g(x))g'(x) \leftarrow \{chain vule\}$

$$h'(3) = f'(9(3))g'(3)$$

= $f'(4)g'(3) = (0.5)(-3) = [$

4. (5 points) A function f(x) is graphed below. Using the same coordinate axis, sketch the graph of the derivative f'(x).



(a)
$$\frac{d}{dx} \left[\tan(\ln(x)) + x \right] = \int \sec^2(\ln(x)) \frac{1}{x} + 1$$

(b) $\frac{d}{dx} \left[(x^2 \sin(x))^5 \right] = 5 \left(\chi^2 \sin(x) \right) \frac{d}{dx} \left[\chi^2 \sin(x) \right]$

(c) $\frac{d}{dx} \left[\frac{e^{3x}}{x^2 - 4x} \right] = \frac{3e^{3x}(x^2 - 4x) - e^{3x}(2x - 4)}{(x^2 - 4x)^2}$

 $= \frac{\cos(\chi^3) 3\chi^2}{\sin(\chi^3)}$

 $\cot(x^3) 3x^2$

(d) $\frac{d}{dx} \left[\ln \left(\sin \left(x^3 \right) \right) \right] = \frac{d}{dx} \left[\sin \left(x^3 \right) \right]$

 $= \left| 5 \left(\chi^2 \sin \left(\chi \right) \right) \right| \left(2 \chi \sin \left(\chi \right) + \chi^2 \cos \left(\chi \right) \right)$

 $= \frac{|\sec^2(\ln(x))|}{x} + 1$

- 5. (20 points) Find the following derivatives.

6 (10 points) Use logarithmic differentiation to differentiate
$$y = (x^3 + x)^x$$
.

6 (10 points) Use logarithmic differentiation to differentiate
$$y = (x^3 + x)^4$$
.
$$y = (x^3 + x)^4$$

$$y = (x^3 + x)^{x}$$

 $\ln(y) = \ln((x^3 + x)^{x}) = x \ln(x^3 + x)$

$$y = (x + x)$$

$$\ln(y) = \ln((x^3 + x)^{x}) = x \ln(x^3 + x)$$

$$d \left[x \right] - d \left[x \cdot \ln(x^3 + x) \right]$$

$$lm(y) = lm((x^3+x)^{x}) = x lm(x^5+x)$$

$$\frac{d}{dx}[y] = \frac{d}{dx}[x lm(x^3+x)]$$

$$\frac{d}{dx}[y] = \frac{d}{dx}[x \ln(x^{3}+x)]$$

$$\frac{d}{dx}[y] = \frac{d}{dx}[x \ln(x^{3}+x)] + x \frac{3x^{2}+1}{x^{3}+x}$$

$$\frac{d}{dx}[y] = \frac{d}{dx}[x \ln(x^{3}+x)] + \frac{3x^{2}+1}{x^{3}+x}$$

$$y' = y \left(\ln(x^{3} + x) + \frac{3x^{2} + 1}{x^{2} + 1} \right)$$

$$y' = y \left(\ln(x^{3} + x) + \frac{3x^{2} + 1}{x^{2} + 1} \right)$$

$y' = (\chi^3 + \chi)^2 \left(ln(\chi^3 + \chi) + \frac{3\chi^2 + 1}{\chi^2 + 1} \right)$ 7 (10 points) Recall: the derivative of f(x) is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

Use this to find derivative of the function $f(x) = \frac{1}{x}$.

Use this to find derivative of the function
$$f(x) = \frac{1}{x}$$
.

$$f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$$

$$= \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x} \frac{(x+h)x}{(x+h)x}$$

$$= \lim_{h \to 0} \frac{x - (x+h)}{h(x+h)x}$$

$$= \lim_{h \to 0} \frac{-h}{h(x+h)x}$$

$$= \lim_{h \to 0} \frac{-1}{(x+h)x} = \frac{-1}{(x+o)x}$$

8. (15 points) An object moves on a straight line in such a way that its distance

from its starting point at time t seconds is
$$s(t) = 3\sqrt[3]{t} + 4t$$
 feet. How far away from the starting point is it when its velocity is 12 feet per second?

$$S(t) = 3t^{\frac{4}{3}} + 4t$$

$$Velocity = V(t) = S(t) = 4t^{\frac{1}{3}} + 4$$

= 4 3/x +4 To find the time when velocity is

12 ft/sec, we solve the equation
$$V(\pm) = 12$$

$$V(t) = 12$$

$$4 \sqrt[3]{t} + 4 = 12$$

$$4 \sqrt[3]{t} = 8$$

$$\sqrt[3]{\pm} = 2$$

$$(\sqrt[3]{\pm})^3 = 2^3$$

$$t=8$$
 seconds.
Thus object has velocity 12 ft/sec
when $t=8$. At this time it is

at the location
$$5(8) = 3\sqrt[3]{8} + 4.8$$

= $3 \cdot 2^4 + 32 = 3 \cdot 16 + 32 = 48 + 32$

= 80 feet from starting Point

9. (10 points) This question concerns the equation
$$\cos(y^2) + x = e^y$$
.

(a) Use implicit differentiation to find
$$\frac{dy}{dx}$$
.

(a) Use implicit differentiation to find
$$\frac{dy}{dx}$$
.

$$\frac{d}{dx} \left[\cos(y^2) + \chi \right] = \frac{d}{dx} \left[e^{y} \right]$$

$$-\sin(y^2) 2y \frac{dy}{dx} + 1 = e^{y} \frac{dy}{dx}$$

$$1 = \sin(y^2) 2y \frac{dy}{dx} + e^{y} \frac{dy}{dx}$$

$$1 = \left(\sin(y^2) 2y + e^{y} \right) \frac{dy}{dx}$$

$$|\sin(y^2) 2y + e^{y} = \frac{dy}{dx}$$

(b) Use your answer from part (a) to find the slope of the tangent line to the graph of
$$cos(y^2) + x = e^y$$
 at the point $(0,0)$.

$$\frac{dy}{dx}$$
 = $\frac{1}{\sin(o^2)2.0+e^o} = \frac{1}{0+1}$