VCU

MATH 200

CALCULUS I

R. Hammack

Test 2

October 23, 2015

Name:
Score:
Directions. Answer the questions in the space pro-
vided. Unless noted otherwise, you must show and
explain your work to receive full credit. Put your final
answer in a box when appropriate

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Please put all phones away.

1. (20 points) Warmup: short answer.

(a) If
$$f(x) = x^3 + \ln(x) + \pi^3$$
, then $f'(x) =$

(b) If
$$f(x) = e^x$$
, then $f'(\ln(3)) =$

(c)
$$\lim_{h\to 0} \frac{\sin\left(\frac{\pi}{3}+h\right)-\sin\left(\frac{\pi}{3}\right)}{h} =$$

(d)
$$\frac{d}{dx} [\sec^{-1}(x)] =$$

(e)
$$\frac{d}{dx}[3^x] =$$

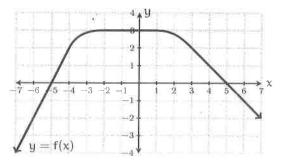
(f)
$$\frac{d}{dx} \left[\tan^{-1}(x) \right] =$$

(g)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\sqrt[3]{x^5} \right] =$$

(h)
$$\frac{d}{dx} [\cos(\pi x)] =$$

(i)
$$\frac{d}{dx} \left[\frac{1}{x} \right] =$$

(j)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[5x^2 \ln(x) \right] =$$


2. (5 points) Find the equation of the tangent line to the graph of $y=\sqrt{x}$ at the point where x=9.

3. (5 points) Information about functions f(x), g(x) and their derivatives is given in the table below.

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	0
f'(x)	2	1	1	3	0.5	-1
g(x)	10	9	7	4	0	-4
g'(x)	0	-0.5	-1	-3	-4	-4

Suppose h(x) = f(g(x)). Find h'(3). Show your work.

4. (5 points) A function f(x) is graphed below. Using the same coordinate axis, sketch the graph of the derivative f'(x).

5. (20 points) Find the following derivatives.

(a)
$$\frac{d}{dx} \left[\tan(\ln(x)) + x \right] =$$

(b)
$$\frac{d}{dx} \left[\left(x^2 \sin(x) \right)^5 \right] =$$

(c)
$$\frac{d}{dx} \left[\frac{e^{3x}}{x^2 - 4x} \right] =$$

(d)
$$\frac{d}{dx} \left[\ln \left(\sin \left(x^3 \right) \right) \right] =$$

6 (10 points) Use logarithmic differentiation to differentiate $y = (x^3 + x)^x$.

7 (10 points) Recall: the derivative of f(x) is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

Use this to find derivative of the function $f(x) = \frac{1}{x}$.

8. (15 points) An object moves on a straight line in such a way that its distance from its starting point at time t seconds is $s(t) = 3\sqrt[3]{t}^4 + 4t$ feet. How far away from the starting point is it when its velocity is 12 feet per second?

- 9. (10 points) This question concerns the equation $\cos(y^2) + x = e^y$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Use your answer from part (a) to find the slope of the tangent line to the graph of $\cos(y^2) + x = e^y$ at the point (0,0).