1. In this problem $y=\cos (3 x+1)$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
2. Find the derivative of $y=\tan \left(x^{3}-5 x^{2}+3\right)$.
3. Find the derivative of $y=\sin \left(2 e^{x}\right)$.
4. Information about functions $f(x), g(x)$ and their derivatives is given below. Let $h(x)=f(g(x))$.
(a) Find $h^{\prime}(4)$.

x	1	2	3	4	5	6
$f(x)$	-3	-2	1	5	6	3
$f^{\prime}(x)$	4	3	2	1	0	-2
$g(x)$	1	1	-2	3	-4	5
$g^{\prime}(x)$	2	-3	5	-8	10	-15

(b) Find $h(4)$.
(c) Find the equation of the tangent line to the graph of $y=h(x)$ at $(4, h(4))$.
\qquad

1. In this problem $y=\sin \left(x^{2}\right)$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
2. Find the derivative of $y=\cos (\sqrt{x})$.
3. Find the derivative of $y=\tan \left(x^{3}-5 x^{2}+3\right)$.
4. Information about functions $f(x), g(x)$ and their derivatives is given below. Let $h(x)=f(g(x))$.
(a) Find $h^{\prime}(2)$.

x	1	2	3	4	5	6
$f(x)$	-3	-2	1	5	6	3
$f^{\prime}(x)$	4	3	2	1	0	-2
$g(x)$	1	1	-2	3	-4	5
$g^{\prime}(x)$	2	-3	5	-8	10	-15

(b) Find $h(2)$.
(c) Find the equation of the tangent line to the graph of $y=h(x)$ at $(2, h(2))$.
\qquad

1. In this problem $y=\cos (2 x+1)$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
2. Find the derivative of $y=\sin \left(x^{5}-x+5\right)$.
3. Find the derivative of $y=\tan \left(2 e^{x}+x^{2}\right)$.
4. Information about functions $f(x), g(x)$ and their derivatives is given below. Let $h(x)=f(g(x))$.
(a) Find $h^{\prime}(6)$.

x	1	2	3	4	5	6
$f(x)$	-3	-2	1	5	6	3
$f^{\prime}(x)$	4	3	2	1	-1	-2
$g(x)$	1	1	-2	3	-4	5
$g^{\prime}(x)$	2	-3	5	-8	10	-15

(b) Find $h(6)$.
(c) Find the equation of the tangent line to the graph of $y=h(x)$ at $(6, h(6))$.
\qquad

1. In this problem $y=\cos \left(x^{2}\right)$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
2. Find the derivative of $y=\tan (\sqrt{x})$.
3. Find the derivative of $y=\sin \left(x^{3}-5 x^{2}+3\right)$.
4. Information about functions $f(x), g(x)$ and their derivatives is given below. Let $h(x)=f(g(x))$.
(a) Find $h^{\prime}(1)$.

x	1	2	3	4	5	6
$f(x)$	-3	-2	1	5	6	3
$f^{\prime}(x)$	4	3	2	1	0	-2
$g(x)$	1	1	-2	3	-4	5
$g^{\prime}(x)$	2	-3	5	-8	10	-15

(b) Find $h(1)$.
(c) Find the equation of the tangent line to the graph of $y=h(x)$ at $(1, h(1))$.

