1. In this problem $y = \cos(3x + 1)$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

2. Find the derivative of $y = \tan(x^3 - 5x^2 + 3)$.

3. Find the derivative of $y = \sin(2e^x)$.

- 4. Information about functions f(x), g(x) and their derivatives is given below. Let h(x) = f(g(x)).
 - (a) Find h'(4).

x	1	2	3	4	5	6
f(x)	-3	-2	1	5	6	3
f'(x)	4	3	2	1	0	-2
$ \begin{array}{c c} f(x) \\ f'(x) \\ g(x) \end{array} $	1	1	-2	3	-4	5
g'(x)	2	-3	5	-8	10	-15

- (b) Find h(4).
- (c) Find the **equation** of the tangent line to the graph of y = h(x) at (4, h(4)).

1. In this problem $y = \sin(x^2)$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

2. Find the derivative of $y = \cos(\sqrt{x})$.

3. Find the derivative of $y = \tan(x^3 - 5x^2 + 3)$.

- 4. Information about functions f(x), g(x) and their derivatives is given below. Let h(x) = f(g(x)).
 - (a) Find h'(2).

x	1	2	3	4	5	6
f(x)	-3	-2	1	5	6	3
f'(x)	4	3	2	1	0	-2
$ \begin{array}{c c} f(x) \\ f'(x) \\ g(x) \end{array} $	1	1	-2	3	-4	5
g'(x)	2	-3	5	-8	10	-15

- (b) Find h(2).
- (c) Find the **equation** of the tangent line to the graph of y = h(x) at (2, h(2)).

1. In this problem $y = \cos(2x + 1)$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

2. Find the derivative of $y = \sin(x^5 - x + 5)$.

3. Find the derivative of $y = \tan(2e^x + x^2)$.

- 4. Information about functions f(x), g(x) and their derivatives is given below. Let h(x) = f(g(x)).
 - (a) Find h'(6).

x	1	2	3	4	5	6
f(x)	-3	-2	1	5	6	3
f'(x)	4	3	2	1	-1	-2
g(x)	1	1	-2	3	-4	5
g'(x)	2	-3	5	-8	10	-15

- (b) Find h(6).
- (c) Find the **equation** of the tangent line to the graph of y = h(x) at (6, h(6)).

1. In this problem $y = \cos(x^2)$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

2. Find the derivative of $y = \tan(\sqrt{x})$.

3. Find the derivative of $y = \sin(x^3 - 5x^2 + 3)$.

- 4. Information about functions f(x), g(x) and their derivatives is given below. Let h(x) = f(g(x)).
 - (a) Find h'(1).

x	1	2	3	4	5	6
f(x)	-3	-2	1	5	6	3
f'(x)	4	3	2	1	0	-2
$ \begin{array}{c c} f(x) \\ f'(x) \\ g(x) \end{array} $	1	1	-2	3	-4	5
g'(x)	2	-3	5	-8	10	-15

- (b) Find h(1).
- (c) Find the **equation** of the tangent line to the graph of y = h(x) at (1, h(1)).