1. Suppose $f(x)=\sin (x)+\cot (x)$. Find $f^{\prime}(x)$.
2. Suppose $y=\left(x^{5}-4 x\right) e^{x}$. Find $\frac{d y}{d x}$.
3. Suppose $y=\frac{1}{1+\tan (x)}$. Find y^{\prime}.
4. Information about functions f and g and their derivatives are given in the table below.

Suppose $h(x)=x^{2} f(x)+g(x)$. Find $h^{\prime}(2)$.

x	1	2	3	4	5	6
$f(x)$	-3	-2	1	5	6	3
$f^{\prime}(x)$	5	3	2	1	0	-2
$g(x)$	0	1	-2	3	-4	5
$g^{\prime}(x)$	2	-3	5	-8	10	-15

1. Suppose $f(x)=\cos (x)+\tan (x)$. Find $f^{\prime}(x)$.
2. Suppose $y=\left(e^{x}+1\right)\left(x^{2}-5 x+4\right)$. Find $\frac{d y}{d x}$.
3. Suppose $y=\frac{x e^{x}}{\sin (x)}$. Find y^{\prime}.
4. Information about functions f and g and their derivatives are given in the table below.

Suppose $h(x)=\frac{1+f(x)}{g(x)}$. Find $h^{\prime}(2)$.

x	1	2	3	4	5	6
$f(x)$	-3	-2	1	5	6	3
$f^{\prime}(x)$	5	3	2	1	0	-2
$g(x)$	0	1	-2	3	-4	5
$g^{\prime}(x)$	2	-3	5	-8	10	-15

1. Suppose $f(x)=\sec (x)+\cos (x)$. Find $f^{\prime}(x)$.
2. Suppose $y=\sin (x)\left(3 x^{2}+2\right)$. Find $\frac{d y}{d x}$.
3. Suppose $y=\frac{x+\tan (x)}{x^{5}+1}$. Find y^{\prime}.
4. Information about functions f and g and their derivatives are given in the table below.

Suppose $h(x)=\frac{f(x)}{5 g(x)}$. Find $h^{\prime}(3)$.

x	1	2	3	4	5	6
$f(x)$	-3	-2	1	5	6	3
$f^{\prime}(x)$	5	3	2	1	0	-2
$g(x)$	0	1	-2	3	-4	5
$g^{\prime}(x)$	2	-3	5	-8	10	-15

1. Suppose $f(x)=\sec (x)+\tan (x)$. Find $f^{\prime}(x)$.
2. Suppose $y=x^{3} \cos (x)$. Find $\frac{d y}{d x}$.
3. Suppose $y=\frac{1}{x^{2} e^{x}}$. Find y^{\prime}.
4. Information about functions f and g and their derivatives are given in the table below.

Suppose $h(x)=\frac{f(x)}{x+g(x)}$. Find $h^{\prime}(2)$.

x	1	2	3	4	5	6
$f(x)$	-3	-2	1	5	6	3
$f^{\prime}(x)$	5	3	2	1	0	-2
$g(x)$	0	1	-2	3	-4	5
$g^{\prime}(x)$	2	-3	5	-8	10	-15

