October 11, 2012

- 1. This problem concerns the graph of the equation $e^y = 2\cos(2x)$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$

$$\frac{d}{dx} \left[e^{\frac{1}{2}} \right] = \frac{d}{dx} \left[2\cos(2x) \right]$$

$$e^{\frac{1}{2}} \frac{dy}{dx} = -2\sin(2x) 2$$

$$e^{\frac{1}{2}} \frac{dy}{dx} = -4\sin(2x)$$

$$\frac{dy}{dx} = \frac{-4\sin(2x)}{e^{y}}$$

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point $(\frac{\pi}{6}, 0)$.

$$\frac{dy}{dx}\Big|_{(x,y)=(\frac{\pi}{6}0)} = \frac{-4\sin\left(2,\frac{\pi}{6}\right)}{e^o} = \frac{-4\sin\left(\frac{\pi}{3}\right)}{1} = -4\left(\frac{\sqrt{3}}{2}\right) = \left[-2\sqrt{3}\right]$$

Richard

MATH 200 – Quiz 7 💄

I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

October 11, 2012

- 1. This problem concerns the graph of the equation $e^x = 2\cos(2y)$,
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.

$$\frac{d}{dx} \left[e^{x} \right] = \frac{d}{dx} \left[2\cos(2y) \right]$$

$$e^{x} = -2\sin(2y) 2 \frac{dy}{dx}$$

$$e^{x} = -4\sin(2y) \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{e^x}{-4\sin(2y)}$$

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point $(0, \frac{\pi}{6})$.

$$\frac{dy}{dx}\bigg|_{(x,y)=(o,\frac{\pi}{4})} = \frac{e^o}{-4\sin(a\cdot\frac{\pi}{6})} = \frac{1}{-4\sin(\frac{\pi}{3})} = \frac{1}{-4(\frac{\sqrt{3}}{2})} = \frac{1}{2\sqrt{3}}$$

- 1. This problem concerns the graph of the equation $y\cos(y) = x^2$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$ $\frac{d}{dx} \left[y \cos(y) \right] = \frac{d}{dx} \left[\chi^2 \right]$ $\frac{dy}{dx}\cos(y) + y(-\sin(y))\frac{dy}{dx} = 2x$ $\frac{dy}{dx}\left(\cos(y)-y\sin(y)\right)=2x$

$$\frac{dy}{dx} = \frac{2x}{\cos(y) - y\sin(y)}$$

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point $(\sqrt{\pi}, -\pi)$.

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point
$$(\sqrt{\pi}, -\pi)$$
.

$$\frac{dy}{dy} \Big|_{(X,Y) = (\sqrt{\pi}, -\pi)} = \frac{2\sqrt{\pi}}{\cos(-\pi) - (-\pi \sin(-\pi))} = \frac{2\sqrt{\pi}}{-1 + \pi \cdot o} = \frac{2\sqrt{\pi}}{-1 + \pi}$$

Richard

MATH 200 – Quiz 7 **W**

I'm in the Thurs11 Thurs12 Thurs1 on Fri10 recitation. (Circle one)

October 11, 2012

- 1. This problem concerns the graph of the equation $x \sin(y) = y$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$. d [xsin(y)] = dx [y] (1) $\sin(y) + \chi \cos(y) \frac{dy}{dx} = \frac{dy}{dx}$ $\chi \cos(y) \frac{dy}{dx} - \frac{dy}{dx} = -\sin(y)$ $\frac{dy}{dy} \left(x \cos(y) - 1 \right) = -\sin(y)$

$$\frac{dy}{dx} = \frac{-\sin(y)}{x\cos(y)-1}$$

$$\frac{dy}{dx} = \frac{\sin(y)}{1-x\cos(y)}$$

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$\frac{dy}{dx}\bigg|_{(x,y)=(\Xi,\Xi)} = \frac{-\sin(\Xi)}{\Xi\cos(\Xi)-1} = \frac{-1}{\Xi\cdot 0-1} = \boxed{1}$$