1. (6 points) $\int\left(x+\sin ^{2}(x)+\cos ^{2}(x)\right) d x=$
2. (7 points) Suppose $f(x)$ is a function for which $f^{\prime}(x)=3 x^{2}+1$. The graph of f passes through the point $(1,3)$. Find $f(x)$.
3. (7 points) What constant acceleration will cause a car to increase its velocity from 20 feet per second to 25 feet per second in 10 seconds?
4. (6 points) $\int \sqrt{x}\left(1+x^{2}\right) d x=$
5. (7 points) Suppose $f(x)$ is a function for which $f^{\prime}(x)=\frac{8}{x^{3}}+x$. The graph of f passes through the point $(2,10)$. Find $f(x)$.
6. (7 points) A rock is dropped from a 1600 foot tall building, with an initial velocity of 0 feet per second. The acceleration due to gravity is -32 feet per second per second. How long does it take the for the rock to strike the ground?
7. (6 points) $\int \frac{\sqrt{x}+1}{\sqrt{x}} d x=$
8. (7 points) Suppose $f(x)$ is a function for which $f^{\prime}(x)=2 x+\cos (x)$ and its graph passes through the point $(\pi, 2)$. Find $f(x)$.
9. (7 points) A stone is thrown vertically upward with an initial velocity of 8 feet per second. Assuming the acceleration due to gravity is -32 feet per second per second, how long does it take the stone to stop rising?
10. (6 points) $\int(3-x)^{2} d x=$
11. (7 points) Suppose $f(x)$ is a function for which $f^{\prime}(x)=\sqrt{x}+2$ and $f(4)=7$. Find $f(x)$.
12. (7 points) A freight train travels on a straight track with a constant acceleration. At time $t=0$ its velocity is 10 miles per hour. Half an hour later (at $t=0.5$ hours) it is traveling at 70 mph . How far did it travel in the half hour period?
