- 1. (12 points) This problem concerns the function $f(x) = 60x 9x^2 2x^3$.
 - (a) Find the critical points.

- 2. (8 points) The graph of the **derivative** f'(x) of a function f(x) is shown below.
 - (a) State the critical points of f.
 - (b) State the interval(s) on which f increases.
 - (c) State the interval(s) on which f decreases.
 - (d) Using the same coordinate axes, sketch a possible graph of y = f(x). Be sure to clearly indicate any local extrema.

- 1. (12 points) This problem concerns the function $f(x) = x^2 e^x 3e^x$.
 - (a) Find the critical points.

- 2. (8 points) The graph of the **derivative** f'(x) of a function f(x) is shown below.
 - (a) State the critical points of f.
 - (b) State the interval(s) on which f increases.
 - (c) State the interval(s) on which f decreases.
 - (d) Using the same coordinate axes, sketch a possible graph of y = f(x). Be sure to clearly indicate any local extrema.

- 1. (12 points) This problem concerns the function $f(x) = \ln (x^2 6x + 10)$.
 - (a) Find the critical points.

- 2. (8 points) The graph of the **derivative** f'(x) of a function f(x) is shown below.
 - (a) State the critical points of f.
 - (b) State the interval(s) on which f increases.
 - (c) State the interval(s) on which f decreases.
 - (d) Using the same coordinate axes, sketch a possible graph of y = f(x). Be sure to clearly indicate any local extrema.

- 1. (12 points) This problem concerns the function $f(x) = 3x^4 + 4x^3 2$.
 - (a) Find the critical points.

- 2. (8 points) The graph of the **derivative** f'(x) of a function f(x) is shown below.
 - (a) State the critical points of f.
 - (b) State the interval(s) on which f increases.
 - (c) State the interval(s) on which f decreases.
 - (d) Using the same coordinate axes, sketch a possible graph of y = f(x). Be sure to clearly indicate any local extrema.

