Instructions: Show work and put a box around your final answer.

April 18, 2013

1.
$$\sum_{k=1}^{5} (3+2k) = (3+2\cdot1) + (3+2\cdot2) + (3+2\cdot3) + (3+2\cdot4) + (3+2\cdot5)$$

$$= 3+2+3+4+3+6+3+8+3+10$$

$$= 5\cdot3+2+4+6+8+10$$

$$= 15+30 = \boxed{45}$$

- 2. Suppose that f(x) is a function for which $\int_{1}^{5} f(x) dx = 3$ and $\int_{1}^{7} f(x) dx = -6$. Find $\int_{5}^{7} f(x) dx$.

 By definite integral property: $\int_{1}^{7} f(x) dx = \int_{1}^{5} f(x) dx + \int_{1}^{7} f(x) dx + \int_{1}^{7} f(x) dx + \int_{1}^{7} f(x) dx$ Therefore: $\int_{1}^{7} f(x) dx = -9$
- 3. Write the integral that finds area under the curve $y = \sin^2(x)$ from x = 0 to $x = \pi$. Do not compute the integral. $\int \int \sin^2(x) \, dx$

Name: Richard

MATH 200 – Quiz 13)

Instructions: Show work and put a box around your final answer.

April 18, 2013

1.
$$\sum_{k=1}^{4} (8-2k) = (8-2\cdot1) + (8-2\cdot2) + (8-2\cdot3) + (8-2\cdot4)$$

= $8-2+8-4+8-6+8-8$
= $6+4+2+0=12$

2. Suppose that f(x) is a function for which $\int_2^5 f(x) dx = 4$ and $\int_2^8 f(x) dx = 9$. Find $\int_5^8 f(x) dx$.

Definite integral property: $S_2^8 f(x) dx = S_5^8 f(x) dx + S_5^8 f(x) dx$ Therefore $S_2^8 f(x) dx = 5$

3. Write the definite integral that finds area under the curve $y = e^x + 2x$ from x = 1 to x = 4. Do not compute the integral.

$$\int_{1}^{4} (e^{x} + 2x) dx$$

Name: Richard

MATH 200 – Quiz 13]

Instructions: Show work and put a box around your final answer.

April 18, 2013

1.
$$\sum_{k=1}^{4} (2k-4) = (2\cdot 1+4) + (2\cdot 2-4) + (2\cdot 3-4) + (2\cdot 4-4)$$

$$= 2-4 + 4-4 + 6-4 + 8-4$$

$$= -2 + 0 + 2 + 4 = 4$$

2. Suppose that f(x) is a function for which $\int_2^5 f(x) dx = 7$ and $\int_2^8 f(x) dx = 8$. Find $\int_5^8 f(x) dx$.

Definite integral property:
$$\int_{2}^{8} f(x) dx = \int_{2}^{5} f(x) dx + \int_{5}^{8} f(x) dx$$

Therefore $\int_{5}^{8} f(x) dx = 8 - 7 = 11$

3. Write the definite integral that finds area under the curve $y = \sqrt{\sin(x)}$ from x = 0 to $x = \pi$. Do not compute the integral.

Name: Richard

MATH 200 – Quiz 13

Instructions: Show work and put a box around your final answer.

April 18, 2013

1.
$$\sum_{k=1}^{4} (k^2 + 2) = (k^2 + 2) + (2^2 + 2) + (3^2 + 2) + (4^2 + 2)$$

= 3 + 6 + 11 + 18 = 38

2. Suppose that f(x) is a function for which $\int_0^5 f(x) dx = -7$ and $\int_0^6 f(x) dx = 9$. Find $\int_5^6 f(x) dx$.

Definite integral Property:
$$\int_{5}^{6} f(x) dx = \int_{5}^{5} f(x) dx + \int_{5}^{6} f(x) dx$$

Thus $\int_{5}^{6} f(x) dx = 9 + 7 = 16$

3. Write the definite integral that finds area under the curve $y = 2e^{\cos x}$ from x = 1 to x = 4. Do not compute the integral.

$$\int_{1}^{4} e^{\cos(x)} dx$$