1. Find the derivative: $y=\sin ^{-1}\left(x^{5}-3 x^{2}\right)$
2. Find the derivative: $y=\left(\tan ^{-1}(x)\right)^{5}$
3. Find the derivative: $y=\frac{\sec ^{-1}(x)}{e^{x}}$
4. Suppose $f(x)$ is the number of liters of fuel in a rocket when it is x miles above the Earth's surface. Explain in simple terms the meaning of the statement $f^{\prime}(20)=-8$.
5. Find the derivative: $y=\tan ^{-1}\left(x^{5}-3 x^{2}\right)$
6. Find the derivative: $y=\left(\sin ^{-1}(x)\right)^{5}$
7. Find the derivative: $y=\ln (x) \sec ^{-1}(x)$
8. Suppose $f(x)$ is the number of liters of fuel in a rocket when it is x miles above the Earth's surface. Explain in simple terms the meaning of the statement $f^{\prime}(20)=-8$.
9. Find the derivative: $y=\sec ^{-1}\left(x^{5}-3 x^{2}\right)$
10. Find the derivative: $y=\left(\sin ^{-1}(x)\right)^{5}$
11. Find the derivative: $y=e^{5 x} \tan ^{-1}(x)$
12. Consider the function $h(x)$, where $h(x)$ equals the elevation (in feet above sea level) x miles due west of your present location. Suppose $h^{\prime}(75)=5$. Explain what this means.
13. Find the derivative: $y=\sin ^{-1}\left(x^{5}-3 x^{2}\right)$
14. Find the derivative: $y=3\left(\tan ^{-1}(x)\right)^{4}$
15. Find the derivative: $y=\sec (x) \sec ^{-1}(x)$
16. Consider the function $h(x)$, where $h(x)$ equals the elevation (in feet above sea level) x miles due west of your present location. Suppose $h^{\prime}(75)=5$. Explain what this means.
