
March 27, 2013

1. This problem concerns the function $f(x) = e^{x^3 - 12x}$.

(b) Find the intervals on which f(x) increases, and those on which it decreases.

Increasing: (-0,-2)(2,00)

Decreasing: (-2, 2)

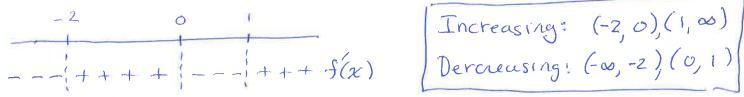
(c) Find the locations (x-coordinates) of the local maxima, if any. Find the locations of the local minima, if any.

By 1st Derivative Test: | Local max. at x = -2 | Local min. at x = 2

Name: Richard

MATH 200 – Quiz 8 (¹)

Instructions: Show work and put a box around your final answer.


March 27, 2013

- 1. This problem concerns the function $f(x) = 3x^4 + 4x^3 12x^2 + 2$.
 - (a) Find the critical points of f(x).

$$f(x) = 12x^{3} + 12x^{2} - 24x = 12x(x^{2} + x - 2) = 12x(x + z)(x - 1) = 0$$

$$Critical points: x = 0 x = -2 x = 1$$

(b) Find the intervals on which f(x) increases, and those on which it decreases.

(c) Find the locations (x-coordinates) of the local maxima, if any. Find the locations of the local minima, if any.

By 1st Derivative Test.

Instructions: Show work and put a box around your final answer.

March 27, 2013

- 1. This problem concerns the function $f(x) = \frac{3}{2}x^4 x^6$.
 - (a) Find the critical points of f(x).

$$f(x) = 6x^{3} - 6x^{5} = 6x^{3}(1 - x^{2}) = 6x^{3}(1 - x)(1 + x) = 0$$
Critical points $x = 6$ $x = 1$

(b) Find the intervals on which f(x) increases, and those on which it decreases.

(c) Find the locations (x-coordinates) of the local maxima, if any. Find the locations of the local minima if any.

By 1st Derivative Test:

Local max at x=-1 and x=1

Name: Richard

MATH 200 – Quiz 8 (\$)

Instructions: Show work and put a box around your final answer.

March 27, 2013

- 1. This problem concerns the function $f(x) = x^2 e^x$.
 - (a) Find the critical points of f(x).

(a) Find the critical points of
$$f(x)$$
.

$$f(x) = 2xe^{x} + x^{2}e^{x} = (2x + x^{2})e^{x} = x(2+x)e^{x} = 0$$

Critical points: $x = 0$

(b) Find the intervals on which f(x) increases, and those on which it decreases.

Increasing on $(-\infty, -2)$, $(0, \infty)$ Decreasing on (-2, 6)

(c) Find the locations (x-coordinates) of the local maxima, if any. Find the locations of the local minima, if any.

By 1st Devivative Test: