Math 200, Solutiok Key, Final Exam Review Problems

Your exam may contain problems that do not resemble these review problems.

- (1) (a) -2; π
 - (b) ∞ ; ∞
 - (c) 1/4; 5/7
 - (d) ∞ , $-\infty$;
 - (e) $-\pi/5$; 1/6; 1
 - (f) 1/2;0
 - (g) -2/5; 3/2; 3
- (2) f is continuous on $(-\infty, -\sqrt{2}) \cup (-\sqrt{2}, 0) \cup (0, \sqrt{2}) \cup (\sqrt{2}, \infty)$.
- (3) (a) 2; DNE; 4
 - (i) g(x) is not continuous at x = -1 since $2 = \lim_{x \to -1} g(x) \neq g(-1) = 3$. g(x) is not continuous at x = 1 since $\lim_{x \to 1} g(x)$ DNE.
 - (ii) f is not differentiable at -1,1, and 3
- (4) A = 8 and B = -5.

(5) (a)
$$y' = 3x^2 + 2 - \frac{1}{x^2}$$
; $y' = 3x^2 \ln(x) + x^2$; $y' = \sin(x) \cos(x) + x \cos^2(x) - x \sin^2(x)$

(b)
$$f'(x) = -\frac{9}{5}x^{-8/5} + \frac{1}{5}x^{-4/5} + 8x^7$$
; $g'(x) = \frac{5}{x} + 9x^2\cos(3x^3) + 5e^{5x}$

(c)
$$g'(\theta) = \frac{1}{2}\theta^{-1/2}\tan(\theta) + \sqrt{\theta}\sec^2(\theta); f'(t) = 3(t^4\ln(t))^2(4t^3\ln(t) + t^3);$$

$$f'(x) = \frac{1}{5}(x^2 + 1)^{-4/5}2x$$

(d)
$$f'(x) = \frac{(\ln(x) + 1)(1 + \ln(x)) - \ln(x)}{(1 + \ln(x))^2}$$

$$f'(z) = \frac{\sqrt[3]{z^2 + 1} - \frac{2}{3}z^2(z^2 + 1)^{-2/3}}{(z^2 + 1)^{2/3}}$$

(d)
$$f'(x) = \frac{(\ln(x) + 1)(1 + \ln(x)) - \ln(x)}{(1 + \ln(x))^2}$$
$$f'(z) = \frac{\sqrt[3]{z^2 + 1} - \frac{2}{3}z^2(z^2 + 1)^{-2/3}}{(z^2 + 1)^{2/3}}$$
$$h'(x) = \frac{-\cos(x)(1 + \cos(x)) - (1 - \sin(x))(-\sin(x))}{(1 + \cos(x))^2}$$

(e)
$$h'(x) = 2x \arcsin(\sqrt{x}) + x^2 \frac{1}{\sqrt{1-x}} \frac{1}{2\sqrt{x}};$$

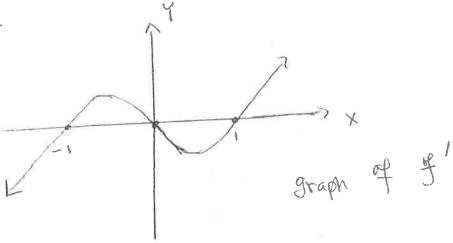
$$g'(t) = \frac{6t}{1 + 9t^4}$$

$$p'(z) = \frac{-2}{\sqrt{1 - 4x^2}}$$

(f)
$$f'(x) = x^{\tan(x)} \left(\sec^2(x) \ln(x) + \frac{\tan(x)}{x} \right)$$

$$h'(x) = \frac{1}{\sqrt{x^4 + 1}}$$
$$g'(x) = e^{\cos^2(t)}(-\sin(t))$$

- (6) y = 1
- (7) y = -5x + 1
- (8) $y-2 = \frac{-50}{111}(x-3)$ (9) See the figure below.



- (10) (a) v(t) = -32t + 64, $t \ge 0$; a(t) = -32 $t \ge 0$
 - (b) 160 ft
 - (c) $-32\sqrt{10}ft/sec$
- (11) (a) $-218.75 \text{ ft}^3/\text{sec}$ (b) $-187.5 \text{ ft}^3/\text{sec}$
- (12) $2\sqrt{3}ft/sec$
- (13) 30 ft/sec
- (14) -3 units /sec
- (15) Absolute maximum value = $\sqrt{2}$ and absolute minimum value=- $\sqrt{2}$
- (16) (ii)

- (a) NO HA and NO VA
- (b) f is increasing on $(-1,0) \cup (1,\infty)$, and f is decreasing on $(-\infty,-1) \cup [0,1)$

f(0)=4 is a local maximum value and f(1)=f(-1)=3 is a local minimum

- (c) f is concave up on $(-\infty, -\frac{1}{\sqrt{3}}) \cup (\frac{1}{\sqrt{5}}, \infty)$ and concave down on $(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. point of inflections are $(-\frac{1}{\sqrt{3}}, 31/9)$ and $(\frac{1}{\sqrt{3}}, 31/9)$
- (17) Exercise
- (18) (a) Critical points are 0.4 and 1. x = 0.4 corresponds to 1. maximum value and x = 1 does not correspond to local extrema.
 - (b) f is increasing on [0, 0.4] and f is decreasing on [0.4, 1.2].
 - (c) f is concave up on $(0.0.17) \cup (0.64, 1)$ and concave down on $(0.17, 0.64) \cup (1.1.2)$.

f has inflection points at x = 0.17, x = 0.64 and x = 1.

- (19) $x = y = \sqrt[3]{12}$
- (20) A height of 600 ft and a width of 1200 ft.
- (21) The maximum volume is 4000 cubic feet when the base is 20 ft and the height is 10
- (22) A height of 1500ft and a total width of 3000ft.
- (23) The point is (2,0).
- (24) $F(x) = \int_{0}^{x} \sin(t^2) dt$.
- (25) $\int_0^1 2^t dt = \text{Total change in population during the first hour. } F(0) + \int_0^1 2^t dt = \text{Total}$ population at the end of the first hour.
- (26) (a) $\frac{5}{4}x^4 + \tan(x) + 6\sin(x) + 2\ln(|x|) \frac{1}{3x^3} + \frac{7}{3}e^{3x} \pi^2x + C$

 - (b) $\frac{1}{-2(\ln|x|)^2} + C$ (c) $-\frac{1}{5}\cos^5(x) + C$

 - (d) $1/2arctan^2(x)| + C$ (e) $\frac{1}{5}(x^2+3)^{5/2} (x^2+3)^{3/2} + C$
- (27) (a) $3\pi/2$
 - (b) 13/162
 - (c) 1
- (e) $\frac{17}{6}\sqrt{17} \frac{1}{6}$ (f) $\ln 5 \ln 3$ (28) $v(t) = -\frac{3}{2}\cos(2t) + \frac{5}{2}$, $t \ge 0$; $s(t) = -\frac{3}{4}\sin(2t) + \frac{5}{2}t$, $t \ge 0$ (29) $y(x) = \frac{4}{3}x^3 + 2x$
- (30) 4 square units
- (31) $A = \int_{0}^{3} (x+2-(x^2-4)) dx = \frac{125}{6}$ square units.
- (32) $A = \int_{-\sqrt{2}}^{\sqrt{2}} (-x^2 + 3 (x^2 1)) dx = \frac{16}{3} \sqrt{2}$ square units.
- (33) $A = \int_{-1}^{2} (y + 2 y^2) dy = \frac{9}{2}$ square units.