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Chapter 6

Counting

At its most basic level, counting is a process of pointing to each object in a collection
and calling o↵ “one, two, three,...” to determine the quantity. But this primitive
approach to counting is inadequate for applications that demand us to count large
quantities in complex situations. For instance, in order to determine its e�ciency,
we we might need to find how many steps a computer program makes to process
a certain input. Or we might need to count the possible outcomes in some game
or process in order to determine a winning strategy or compute the probability of
success.

This chapter presents fundamental methods of sophisticated counting. Sets play
a big role because the things we need to count are often naturally grouped together
into a set. The concept of a list is also extremely useful.

6.1 Lists

A list is an ordered sequence of objects. A list is denoted by an opening parenthesis,
followed by the objects, separated by commas, followed by a closing parenthesis.
For example, (a, b, c, d, e) is a list consisting of the first five letters of the English
alphabet, in order. The objects a, b, c, d, e are called the entries of the list; the first
entry is a, the second is b, and so on. If the entries are rearranged we get a di↵erent
list, so, for instance,

(a, b, c, d, e) 6= (b, a, c, d, e).

A list is somewhat like a set, but instead of being a mere collection of objects, the
entries of a list have a definite order. For sets we have

�
a, b, c, d, e

 
=
�
b, a, c, d, e

 
,

but—as noted above—the analogous equality for lists does not hold.
Unlike sets, lists can have repeated entries. Thus (5, 3, 5, 4, 3, 3) is a perfectly

acceptable list, as is (S,O, S). The length of a list is its number of entries. So
(5, 3, 5, 4, 3, 3) has length six, and (S,O, S) has length three.
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For more examples, (a, 15) is a list of length two. And (0, (0, 1, 1)) is a list of
length two whose second entry is a list of length three. Two lists are equal if they
have exactly the same entries in exactly the same positions. Thus equal lists have
the same number of entries. If two lists have di↵erent lengths, then they can not
be equal. Thus (0, 0, 0, 0, 0, 0) 6= (0, 0, 0, 0, 0). Also

( g, r, o, c, e, r, y, l, i, s, t )
bread
milk
eggs

bananas
coffee

6=
� �

because the list on the left has length eleven but the list on the right has just one
entry (a piece of paper with some words on it).

There is one very special list which has no entries at all. It is called the empty
list and is denoted ( ). It is the only list whose length is zero.

For brevity we often write lists without parentheses, or even commas. For in-
stance, we may write (S,O, S) as SOS if there is no risk of confusion. But be
alert that doing this can lead to ambiguity: writing (9, 10, 11) as 9 10 11 may cause
us to confuse it with (9, 1, 0, 1, 1). Here it’s best to retain the parenthesis/comma
notation or at least write the list as 9, 10, 11. A list of symbols written without
parentheses and commas is called a string.

The process of tossing a coin ten times may be described by a string such as
hhthttthht. Tossing it twice could lead to any of the outcomes hh, ht, th or
tt. Tossing it zero times is described by the empty list ( ).

Imagine rolling a dice five times and recording the outcomes. This might be
described by the list

�
, , , ,

�
, meaning that you rolled first, then , then

, etc. We might abbreviate this list as , or 3, 5, 3, 1, 6.
Now imagine rolling a pair of dice, one white and one black. A typical outcome

might be modeled as a set like
�

,
 
. Rolling the pair six times might be described

with a list of six such outcomes:

��
,

 
,
�

,
 
,
�

,
 
,
�

,
 
,
�

,
 
,
�

,
 �

.

We might abbreviate this list as , , , , , , or 42 35 66 11 12 23.
We study lists because many real-world phenomena can be modeled by them.

Your phone number can be identified as a list of ten digits. (Order is essential, for
rearranging the digits can produce a di↵erent phone number.) A byte is another
important example of a list. A byte is simply a length-eight list of 0’s and 1’s. The
world of information technology revolves around bytes. And the examples above
show that multi-step processes (such as rolling a dice twice) is modeled by lists.

We now explore methods of counting or enumerating lists and processes.
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6.2 The Multiplication Principle

Many practical problems involve counting the number of possible lists that satisfy
some condition or property.

For example, suppose we make a list of length three having the property that
the first entry must be an element of the set

�
a, b, c

 
, the second entry must be in�

5, 7
 
and the third entry must be in

�
a, x

 
. Thus (a, 5, a) and (b, 5, a) are two

such lists. How many such lists are there all together? To answer this, imagine
making the list by selecting the first entry, then the second and finally the third.
This is described in Figure 6.1. The choices for the first list entry are a, b or c, and
the left of the diagram branches out in three directions, one for each choice. Once
this choice is made, there are two choices (5 or 7) for the second entry, and this is
described by two branches from each of the three choices for the first entry. This
pattern continues for the choice for the third entry, which is either a or x. Thus,
in the diagram there are 3 · 2 · 2 = 12 paths from left to right, each corresponding
to a particular choice for each entry in the list. The corresponding lists are tallied
at the far-right end of each path. So, to answer our original question, there are 12
possible lists with the stated properties, and the diagram shows all of them.

first choice second choice third choice

Resulting list

a

b

c

5

7

5

7

5

7

a

x

a

x

a

x

x

a

x

a

x

a

(a, 5, a)

(a, 5, x)

(a, 7, a)

(a, 7, x)

(b, 5, a)

(b, 5, x)

(b, 7, a)

(b, 7, x)

(c, 5, a)

(c, 5, x)

(c, 7, a)

(c, 7, x)

Fig. 6.1 Constructing lists of length 3

In the above example there are 3 choices for the first entry, 2 choices for the
second entry, and 2 for the third, and the total number of possible lists is the
product of choices 3 · 2 · 2 = 12. This kind of reasoning is an instance of what we
will call the multiplication principle. We will do one more example before stating
this important idea.
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Consider making a list of length 4 from the four letters
�
a, b, c, d

 
, where the list

is not allowed to have a repeated letter. For example, abcd and cadb are allowed,
but aabc and cacb are not allowed. How many such lists are there?

Let’s analyze this question with a tree representing the choices for each list entry.
In making such a list we could start with the first entry: we have 4 choices for it,
namely a, b, c or d, and the left side of the tree branches out to each of these choices.
But once we’ve chosen a letter for the first entry, we can’t use that letter in the
list again, so there are only 3 choices for the second entry. And once we’ve chosen
letters for the first and second entries we can’t use these letters in the third entry,
so there are just 2 choices for it. By the time we get to the fourth entry we are
forced to use whatever letter we have left; there is only 1 choice.

The situation is described fully in the below tree showing how to make all al-
lowable lists by choosing 4 letters for the first entry, 3 for the second entry, 2 for
the third entry and 1 for the fourth entry. We see that the total number of lists is
the product 4 · 3 · 2 · 1 = 24.

1st choice

2nd choice

3rd choice

4th choice

Resulting list

abcd
abdc
acbd
acdb
adbc
adcb
bacd
badc
bcad
bcda
bdac
bdca
cabd
cadb
cbad
cbda
cdab
cdbc
dabc
dacb
dbac
dbca
dcab
dcba

a

b

c

d

b

c

d

a

c

d

a

b

d

a

b

c

c d

d c

b d

d b

b c

c b

c d

d c

a d

d a

a c

c a

b d

d b

a d

d a

a b

b a

b c

c b

a c

c a

a b

b a

Fig. 6.2 Constructing lists from letters in
�
a, b, c, d

 
, without repetition.
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These trees show that the number of lists constructible by some specified process
equals the product of the numbers of choices for each list entry. We summarize this
kind of reasoning as an important fact.

Fact 6.1. (Multiplication Principle) Suppose in making a list of length n
there are a1 possible choices for the first entry, a2 possible choices for the second
entry, a3 possible choices for the third entry, and so on. Then the total number
of di↵erent lists that can be made this way is the product a1 · a2 · a3 · · · · an.

In using the multiplication principle you do not need to draw out a tree with
a1 · a2 · · · · · an branches. Just multiply the numbers!

Example 6.1. A standard license plate consists of three letters followed by four
digits. For example, JRB-4412 and MMX-8901 are two standard license plates.
How many di↵erent standard license plates are possible?

Solution: A license plate such as JRB-4412 corresponds to a length-7 list
(J,R,B, 4, 4, 1, 2), so we just need to count how many such lists are possible. We
use the multiplication principle. There are a1 = 26 possibilities (one for each letter
of the alphabet) for the first entry of the list. Similarly, there are a2 = 26 possibil-
ities for the second entry and a3 = 26 possibilities for the third. There are a4 = 10
possibilities for the fourth entry. Likewise a5 = a6 = a7 = 10. So there is a total of
a1 · a2 · a3 · a4 · a5 · a6 · a7 = 26 · 26 · 26 · 10 · 10 · 10 · 10 = 175,760,000 possible
standard license plates.

Example 6.2. In ordering a café latte, you have a choice of whole, skim or soy
milk; small, medium or large; and either one or two shots of espresso. How many
choices do you have in ordering one drink?

Solution: Your choice is modeled by a list of form (milk, size, shots). There are 3
choices for the first entry, 3 for the second and 2 for the third. By the multiplication
principle, the number of choices is 3 · 3 · 2 = 18.

There are two types of list-counting problems. On one hand, there are situations
in which list entries can be repeated, as in license plates or telephone numbers. The
sequence CCX-4144 is a perfectly valid license plate in which the symbols C and 4
appear more than once. On the other hand, for some lists repeated symbols do not
make sense or are not allowed, as in the (milk, size, shots) list from Example 6.2.
We say repetition is allowed in the first type of list and repetition is not allowed
in the second kind of list. (We will call a list in which repetition is not allowed a
non-repetitive list.) The next example illustrates the di↵erence.
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Example 6.3. Consider lists of length 4 made with symbols A,B,C,D,E, F,G.

(a) How many such lists are possible if repetition is allowed?

(b) How many such lists are possible if repetition is not allowed?

(c) How many are there if repetition is not allowed and the list has an E?

(d) How many are there if repetition is allowed and the list has an E?

Solutions:

(a) Imagine the list as containing four boxes that we fill with selections from the
letters A, B, C, D, E, F and G, as illustrated below.

, , ,( )
7 choices

7 choices

7 choices

7 choices

We have 7 choices in filling each box. The multiplication principle says the
total number of lists that can be made this way is 7 · 7 · 7 · 7 = 2401.

(b) This problem is the same as the previous one except that repetition is not
allowed. We have seven choices for the first box, but once it is filled we can
no longer use the symbol that was placed in it. Hence there are only six
possibilities for the second box. Once the second box has been filled we have
used up two of our letters, and there are only five left to choose from in filling
the third box. Finally, when the third box is filled we have only four possible
letters for the last box.

, , ,( )
7 choices

6 choices

5 choices

4 choices

Thus there are 7 · 6 · 5 · 4 = 840 lists in which repetition does not occur.
(c) We are asked to count the length-4 lists in which repetition is not allowed and

the symbol E must appear somewhere in the list. Thus E occurs once and
only once in each list. Let us divide these lists into four categories depending
on whether the E occurs as the first, second, third or fourth entry. These
four types of lists are illustrated below.

, , , , , , , , , , , ,E E E E

Type 1 Type 2 Type 3 Type 4

( ( ( () ) ) )
6 choices 6 choices 6 choices 6 choices

5 choices 5 choices 5 choices 5 choices

4 choices 4 choices 4 choices 4 choices

Consider lists of the first type, in which the E appears in the first entry. We
have six remaining choices (A, B, C, D, F or G) for the second entry, five
choices for the third entry and four choices for the fourth entry. Hence there
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are 6 · 5 · 4 = 120 lists having an E in the first entry. As shown above, there
are also 6 · 5 · 4 = 120 lists having an E in the second, third or fourth entry.
So there are 120 + 120 + 120 + 120 = 480 lists with exactly one E.

(d) Now we seek the number of length-4 lists where repetition is allowed and the
list must contain an E. Here is our strategy: By Part (a) of this exercise there
are 7 · 7 · 7 · 7 = 74 = 2401 lists with repetition allowed. Obviously this is
not the answer to our current question, for many of these lists contain no E.
We will subtract from 2401 the number of lists that do not contain an E.
In making a list that does not contain an E, we have six choices for each list
entry (because we can choose any one of the six letters A, B, C, D, F or G).
Thus there are 6 ·6 ·6 ·6 = 64 = 1296 lists without an E. So the answer to our
question is that there are 2401 � 1296 = 1105 lists with repetition allowed
that contain at least one E.

Before moving on from Example 6.3, let’s address an important point. Perhaps
you wondered if Part (d) could be solved in the same way as Part (c). Let’s try
doing it that way. We want to count the length-4 lists (repetition allowed) that
contain at least one E. The following diagram is adapted from Part (c). The only
di↵erence is that there are now seven choices in each slot because we are allowed to
repeat any of the seven letters.

, , , , , , , , , , , ,E E E E

Type 1 Type 2 Type 3 Type 4

( ( ( () ) ) )
7 choices 7 choices 7 choices 7 choices

7 choices 7 choices 7 choices 7 choices

7 choices 7 choices 7 choices 7 choices

We get a total of 73 + 73 + 73 + 73 = 1372 lists, an answer that is larger than
the (correct) value of 1105 from our solution to Part (d) above. It is easy to see
what went wrong. The list (E,E,A,B) is of type 1 and type 2, so it got counted
twice. Similarly (E,E,C,E) is of type 1, 2 and 4, so it got counted three times. In
fact, you can find many similar lists that were counted multiple times. In solving
counting problems, we must always be careful to avoid this kind of double-counting
or triple-counting, or worse.

The next section presents two new counting principles that codify the kind of
thinking we used in parts (c) and (d) above. Combined with the multiplication
principle, they solve complex counting problems in ways that avoid the pitfalls
of double counting. But first, one more example of the multiplication principle
highlights another pitfall to be alert to.
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Example 6.4. A non-repetitive list of length 5 is to be made from the symbols A,
B, C, D, E, F , G. The first entry must be either a B, C or D, and the last entry
must be a vowel. How many such lists are possible?

Solution: Start by making a list of five boxes. The first box must contain either
B, C or D, so there are three choices for it.

, , , ,( )
3 choices

Now there are 6 letters left for the remaining 4 boxes. The knee-jerk action is to
fill them in, one at a time, using up an additional letter each time.

, , , ,( )
3 choices

6 choices

5 choices

4 choices

But when we get to the last box, there is a problem. It is supposed to contain
a vowel, but for all we know we have already used up one or both vowels in the
previous boxes. The multiplication principle breaks down because there is no way
to tell how many choices there are for the last box.

The correct way to solve this problem is to fill in the first and last boxes (the
ones that have restrictions) first.

, , , ,( )
3 choices 2 choices

Then fill the remaining middle boxes with the 5 remaining letters.

, , , ,( )
3 choices

5 choices

4 choices

3 choices

2 choices

By the multiplication principle, there are 3 · 5 · 4 · 3 · 2 = 360 lists.

The new principles to be introduced in the next section are usually used in
conjunction with the multiplication principle. So work a few exercises now to test
your understanding of it.
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Exercises for Section 6.2

1. Consider lists made from the letters T, H, E, O, R, Y, with repetition allowed.

(a) How many length-4 lists are there?
(b) How many length-4 lists are there that begin with T ?
(c) How many length-4 lists are there that do not begin with T ?

2. Airports are identified with 3-letter codes. For example, Richmond, Virginia has
the code RIC, and Memphis, Tennessee has MEM. How many di↵erent 3-letter
codes are possible?

3. How many lists of length 3 can be made from the symbols A, B, C, D, E, F if...

(a) ... repetition is allowed.
(b) ... repetition is not allowed.
(c) ... repetition is not allowed and the list must contain the letter A.
(d) ... repetition is allowed and the list must contain the letter A.

4. In ordering co↵ee you have a choice of regular or decaf; small, medium or large;
here or to go. How many di↵erent ways are there to order a co↵ee?

5. This problem involves 8-digit binary strings such as 10011011 or 00001010 (i.e.,
8-digit numbers composed of 0’s and 1’s).

(a) How many such strings are there?
(b) How many such strings end in 0?
(c) How many such strings have 1’s for their second and fourth digits?
(d) How many such strings have 1’s for their second or fourth digits?

6. You toss a coin, then roll a dice, and then draw a card from a 52-card deck. How
many di↵erent outcomes are there? How many outcomes are there in which the
dice lands on ? How many outcomes are there in which the dice lands on an odd
number? How many outcomes are there in which the dice lands on an odd number
and the card is a King?

7. This problem concerns 4-letter codes made from the letters A, B, C, D, ... , Z.

(a) How many such codes can be made?
(b) How many such codes have no two consecutive letters the same?

8. A coin is tossed 10 times in a row. How many possible sequences of heads and tails
are there?

9. A new car comes in a choice of five colors, three engine sizes and two transmissions.
How many di↵erent combinations are there?

10. A dice is tossed four times in a row. There are many possible outcomes, such as
, or . How many di↵erent outcomes are possible?
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6.3 The Addition and Subtraction Principles

We now discuss two new counting principles, the addition and subtraction principles.
Actually, they are not entirely new – you probably use them intuitively in everyday
life. Here we give names to these two fundamental thought patterns, and phrase
them in the language of sets. Doing this helps us recognize when we are using them,
and, more importantly, it helps us see new situations in which they can be used.

The addition principle simply asserts that if a set can be broken into pieces,
then the size of the set is the sum of the sizes of the pieces.

Fact 6.2. (Addition Principle)
Suppose a finite set X can be decomposed as a union X = X1 [X2 [ · · · [Xn,
where Xi \Xj = ; whenever i 6= j. Then

��X
�� =

��X1

��+
��X2

��+ · · ·+
��Xn

��.

X1

X2

X3

X4

X5

· · · XnXX

In our first example we will rework an instance where we used the addition
principle naturally, without comment: in Part (c) of Example 6.3.

Example 6.5. How many length-4 non-repetitive lists can be made from the sym-
bols A, B, C, D, E, F, G, if the list must contain an E?

In Example 6.3 (c) our approach was to divide these lists into four types, depending
on whether the E is in the first, second, third or fourth position.

E E E E

Type 1 Type 2 Type 3 Type 4

6 6 6 65 5 5 54 4 4 4

Then we used the multiplication principle to count the lists of type 1. There
are 6 choices for the second entry, 5 for the third, and 4 for the fourth. This is
indicated above, where the number below a box is the number of choices we have
for that position. The multiplication principle implies that there are 6 · 5 · 4 = 120
lists of type 1. Similarly there are 6 · 5 · 4 = 120 lists of types 2, 3, and 4.

X1 X2 X3 X4

X

EABC
EACB
EBAC

...

AEBC
AECB
BEAC

...

ABEC
ACEB
BAEC

...

ABCE
ACBE
BACE

...
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We then used the addition principle intuitively, conceiving of the lists to be
counted as the elements of a set X, broken up into parts X1, X2, X3 and X4, which
are the lists of types 1 , 2, 3 and 4, respectively.

The addition principle says that the number of lists that contain an E is |X| =
|X1|+ |X2|+ |X3|+ |X4| = 120 + 120 + 120 + 120 = 480.

We use the addition principle when we need to count the things in some set X.
If we can find a way to break X up as X = X1 [ X2 [ · · · [ Xn, where each Xi

is easier to count than X, then the addition principle gives an answer of |X| =
|X1|+ |X2|+ |X3|+ · · ·+ |Xn|.

But for this to work the intersection of any two pieces Xi must be ;, as stated in
Fact 6.2. For instance, if X1 and X2 shared an element, then that element would be
counted once in |X1| and again in |X2|, and we’d get |X| < |X1|+ |X2|+ · · ·+ |Xn|.
(This is precisely the double counting issue mentioned after Example 6.3.)

Example 6.6. How many even 5-digit numbers are there for which no digit is 0,
and the digit 6 appears exactly once? For instance, 55634 and 16118 are such
numbers, but not 63304 (has a 0), nor 63364 (too many 6’s), nor 55637 (not even).

Solution: Let X be the set of all such numbers. The answer will be |X|, so our
task is to find |X|. Put X = X1 [ X2 [ X3 [ X4 [ X5, where Xi is the set of
those numbers in X whose ith digit is 6, as diagramed below. Note Xi \ Xj = ;
whenever i 6= j because the numbers in Xi have their 6 in a di↵erent position than
the numbers in Xj . Our plan is to use the multiplication principle to compute each
|Xi|, and follow this with the addition principle.

6 6 6 6 6

X1 X2 X3 X4 X5

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 83 3 3 3

The first digit of any number in X1 is 6, and the three digits following it
can be any of the ten digits except 0 (not allowed) or 6 (already appears).
Thus there are eight choices for each of three digits following the first 6.
But because any number in X1 is even, its final digit must be one of 2,4 or 8,
so there are just three choices for this final digit. By the multiplication principle,
|X1| = 8 · 8 · 8 · 3 = 1536. Likewise |X2| = |X3| = |X4| = 8 · 8 · 8 · 3 = 1536.

But X5 is slightly di↵erent because we do not choose the final digit, which is
already 6. The multiplication principle gives |X5| = 8 · 8 · 8 · 8 = 4096.

The addition principle gives our final answer. The number of even 5-digit
numbers with no 0’s and one 6 is |X| = |X1| + |X2| + |X3| + |X4| + |X5| =
1536 + 1536 + 1536 + 1536 + 4096 = 10,240.
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Now we introduce our next counting method, the subtraction principle. To set
it up, imagine that a set X is a subset of a universal set U , as shown below. The
complement X = U �X is shaded. Suppose we wanted to count the things in this
shaded region. Surely this is the number of things in U minus the number of things
in X, which is to say

��U �X
�� = |U |� |X|. That is the subtraction principle.

X

U

U �X

Fact 6.3. (Subtraction Principle)

If X is a subset of a finite set U , then
��X

�� = |U |� |X|.
In other words, if X ✓ U then

��U �X
�� = |U |� |X|.

The subtraction principle is used in situations where it is easier to count the
things in some set U that we wish to exclude from consideration than it is to count
those things that are included. We have seen this kind of thinking before. We
quietly and naturally used it in part (d) of Example 6.3. For convenience we repeat
that example now, casting it into the language of the subtraction principle.

Example 6.7. How many length-4 lists can be made from the symbols
A, B, C, D, E, F, G if the list has at least one E, and repetition is allowed?

Solution: Such a list might contain one, two, three or four E’s, which could occur
in various positions. This is a fairly complex situation.

But it is very easy to count the set U of all lists of length 4 made from
A, B, C, D, E, F, G if we don’t care whether or not the lists have any E’s. The
multiplication principle says |U | = 7 · 7 · 7 · 7 = 2401.

It is equally easy to count the set X of those lists that contain no E’s. The
multiplication principle says |X| = 6 · 6 · 6 · 6 = 1296.

We are interested in those lists that have at least one E, and this is the set
U � X. By the subtraction principle, the answer to our question is |U � X| =
|U |� |X| = 2401� 1296 = 1105.

As we continue with counting we will have many opportunities to use the multi-
plication, addition and subtraction principles. Usually these will arise in the context
of other counting principles that we have yet to explore. It is thus important that
you solidify the current ideas now, by working some exercises before moving on.
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Exercises for Section 6.3

1. Five cards are dealt o↵ of a standard 52-card deck and lined up in a row. How many
such lineups are there that have at least one red card? How many such lineups are
there in which the cards are either all black or all hearts?

2. Five cards are dealt o↵ of a standard 52-card deck and lined up in a row. How
many such lineups are there in which all 5 cards are of the same suit?

3. Five cards are dealt o↵ of a standard 52-card deck and lined up in a row. How
many such lineups are there in which all 5 cards are of the same color (i.e., all black
or all red)?

4. Five cards are dealt o↵ of a standard 52-card deck and lined up in a row. How
many such lineups are there in which exactly one of the 5 cards is a queen?

5. How many integers between 1 and 9999 have no repeated digits? How many have
at least one repeated digit?

6. Consider lists made from the symbols A, B, C, D, E, with repetition allowed.

(a) How many such length-5 lists have at least one letter repeated?
(b) How many such length-6 lists have at least one letter repeated?

7. A password on a certain site must be five characters long, made from letters of the
alphabet, and have at least one upper case letter. How many di↵erent passwords
are there? What if there must be a mix of upper and lower case?

8. This problem concerns lists made from the letters A, B, C, D, E, F, G, H, I, J.

(a) How many length-5 lists can be made from these letters if repetition is not
allowed and the list must begin with a vowel?

(b) How many length-5 lists can be made from these letters if repetition is not
allowed and the list must begin and end with a vowel?

(c) How many length-5 lists can be made from these letters if repetition is not
allowed and the list must contain exactly one A?

9. Consider lists of length 6 made from the letters A, B, C, D, E, F, G, H. How
many such lists are possible if repetition is not allowed and the list contains two
consecutive vowels?

10. Consider the lists of length six made with the symbols P, R, O, F, S, where repe-
tition is allowed. (For example, the following is such a list: (P,R,O,O,F,S).) How
many such lists can be made if the list must end in an S and the symbol O is used
more than once?

11. How many integers between 1 and 1000 are divisible by 5? How many are not
divisible by 5?

12. Six math books, four physics books and three chemistry books are arranged on a
shelf. How many arrangements are possible if all books of the same subject are
grouped together?
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6.4 Factorials and Permutations

In working examples from the previous two sections you may have noticed that we
often need to count the number of non-repetitive lists of length n that are made
from n symbols. This kind of problem occurs so often that a special idea, called a
factorial, is used to handle it.

The table below motivates this. The first column lists successive integer values n,
from 0 onward. The second contains a set

�
a, b, . . .

 
of n symbols. The third column

shows all the possible non-repetitive lists of length n that can be made from these
symbols. Finally, the last column tallies how many lists there are of that type. For
n = 0, there is only one list of length 0 that can be made from 0 symbols, namely
the empty list ( ). Thus the value 1 is entered in the last column of that row.

n Symbols Non-repetitive lists of length n made from the symbols n!
0

� 
( ) 1

1
�
a
 

a 1
2

�
a, b

 
ab, ba 2

3
�
a, b, c

 
abc, acb, bac, bca, cab, cba 6

4
�
a, b, c, d

 abcd, acbd, bacd, bcad, cabd, cbad,
abdc, acdb, badc, bcda, cadb, cbda,
adbc, adcb, bdac, bdca, cdab, cdba,
dabc, dacb, dbac, dbca, dcab, dcba

24

...
...

...
...

For n > 0, the number that appears in the last column can be computed using
the multiplication principle. The number of non-repetitive lists of length n that
can be made from n symbols is n(n� 1)(n� 2) · · · 3 · 2 · 1. Thus, for instance, the
number in the last column of the row for n = 4 is 4 · 3 · 2 · 1 = 24.

The number in the last column of Row n is called the factorial of n. It is
denoted with the special symbol n!, which we pronounce as “n factorial.”

Definition 6.1. If n is a non-negative integer, then n! is the number of lists of
length n that can be made from n symbols, without repetition. Thus 0! = 1 and
1! = 1. If n > 1, then n! = n(n� 1)(n� 2) · · · 3 · 2 · 1.

It follows that 0! = 1
1! = 1
2! = 2 · 1 = 2
3! = 3 · 2 · 1 = 6
4! = 4 · 3 · 2 · 1 = 24
5! = 5 · 4 · 3 · 2 · 1 = 120
6! = 6 · 5 · 4 · 3 · 2 · 1 = 720, and so on.
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Students are often tempted to say 0! = 0, but this is wrong. The correct value
is 0! = 1, as the above definition and table show. Here is another way to see that
0! must equal 1: Notice that 5! = 5 · 4 · 3 · 2 · 1 = 5 · (4 · 3 · 2 · 1) = 5 · 4!. Also 4! =
4 · 3 · 2 · 1 = 4 · (3 · 2 · 1) = 4 · 3!. Generalizing this, we get a formula.

n! = n · (n� 1)! (6.1)

Plugging in n = 1 gives 1! = 1 · (1� 1)! = 1 · 0!, that is, 1! = 1 · 0!. If we mistakenly
thought 0! were 0, this would give the incorrect result 1! = 0.

Example 6.8. This problem involves making lists of length seven from the letters
a, b, c, d, e, f and g.

(a) How many such lists are there if repetition is not allowed?

(b) How many such lists are there if repetition is not allowed and the first two
entries must be vowels?

(c) How many such lists are there in which repetition is allowed, and the list
must contain at least one repeated letter?

To answer the first question, note that there are seven letters, so the num-
ber of lists is 7! = 5040. To answer the second question, notice that the set�
a, b, c, d, e, f, g

 
contains two vowels and five consonants. Thus in making the list

the first two entries must be filled by vowels and the final five must be filled with con-
sonants. By the multiplication principle, the number of such lists is 2·1·5·4·3·2·1 =
2!5! = 240.

To answer part (c) we use the subtraction principle. Let U be the set of all lists
made from a, b, c, d, e, f, g, with repetition allowed. The multiplication principle
gives |U | = 7 · 7 · 7 · 7 · 7 · 7 · 7 = 77 = 823, 543. Notice that U includes lists that
are non-repetitive, like (a,g,f,b,d,c,e), as well as lists that have some repetition, like
(f,g,b,g,a,a,a). We want to find the number of lists that have at least one repeated
letter, so we will subtract away from U all those lists that have no repetition. Let
X ✓ U be those lists that have no repetition, so |X| = 7!. Thus the answer to our
question is |U �X| = |U |� |X| = 77 � 7! = 823, 543� 5040 = 818,503.

In part (a) of Example 6.8 we counted the number of non-repetitive lists made
from all seven of the symbols in the set X =

�
a, b, c, d, e, f, g

 
, and there were

7! = 5040 such lists. Any such list, such as bcedagf, gfedcba or abcdefg is simply an
arrangement of the elements ofX in a row. There is a name for such an arrangement.
It is called a permutation of X.

A permutation of a set is an arrangement of all of the set’s elements in a row,
that is, a list without repetition that uses every element of the set. For example,
the permutations of the set X =

�
1, 2, 3

 
are the six lists

123, 132, 213, 231, 312, 321.

That we get six di↵erent permutations of X is predicted by Definition 6.1, which
says there are 3! = 3 · 2 · 1 = 6 non-repetitive lists that can be made from the three
symbols in X.
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Think of the numbers 1, 2 and 3 as representing three books. The above shows
that there are six ways to arrange them on a shelf.

From a standard deck of cards you take the four queens and lay them in a row.
By the multiplication principle there are 4! = 4 · 3 · 2 · 1 = 24 ways to do this, that
is, there are 24 permutations of the set of four Queen cards.
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In general, a set with n elements will have n! di↵erent permutations. Above,

the set
�
1, 2, 3

 
has 3! = 6 permutations, while

n
Q
} , Q

� , Q
~ , Q

|

o
has 4! = 24

permutations. The set
�
a,b,c,d,e,f,g

 
has 7! = 5040 permutations, though there’s

not much point in listing them all out. The important thing is that the factorial
counts the number of permutations.

In saying a permutation of a set is an arrangement of its elements in a row, we
are speaking informally because sometimes the elements are not literally in a row.
Imagine a classroom of 20 desks, in four rows of five desks each. Let X be a class
(set) of 20 students. If the students walk in and seat themselves, one per desk, we
can regard this as a permutation of the 20 students because we can number the
desks 1, 2, 3, . . . , 20 and in this sense the students have arranged themselves in a
list of length 20. There are 20! = 2, 432, 902, 008, 176, 640, 000 permutations of the
students.

Next we are going to explore a variation of the idea of a permutation of a set X.
Imagine taking some number k  |X| of elements from the set X and then
arranging them in a row. The result is what we call a k-permutation of X.
A permutation of X is a non-repetitive list made from all the elements of X.
A k-permutation of X is a non-repetitive list made from k elements of X.

For example, take X =
�
a, b, c, d

 
. The 1-permutations of X are the lists we

could make with just one element from X. There are only 4 such lists:

a b c d.

The 2-permutations of X are the non-repetitive lists that we could make from
two elements of X. There are 12 of them:

ab ac ad ba bc bd ca cb cd da db dc.

Even before writing them all down, we’d know there are 12 of them because in
making a non-repetitive length-2 list from X we have 4 choices for the first element,
then 3 choices for the second, so by the multiplication principle the total number
of 2-permutations of X is 4 · 3 = 12.
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Now let’s count the number of 3-permutations of X. They are the length-3 non-
repetitive lists made from elements of X. The multiplication principle says there
will be 4 · 3 · 2 = 24 of them. Here they are:

abc acb bac bca cab cba
abd adb bad bda dab dba
acd adc cad cda dac dca
bcd bdc cbd cdb dbc dcb

The 4-permutations of X are the non-repetitive lists made from all 4 elements
of X. These are simply the 4! = 4 · 3 · 2 · 1 = 24 permutations of X.

Let’s go back and think about the 0-permutations of X. They are the non-
repetitive lists of length 0 made from the elements of X. Of course there is only
one such list, namely the empty list ().

Now we are going to introduce some notation. The expression P (n, k) denotes
the number of k-permutations of an n-element set. By the examples on this page
we have P (4, 0) = 1, P (4, 1) = 4, P (4, 2) = 12, P (4, 3) = 24, and P (4, 4) = 24.

What about, say, P (4, 5)? This is the number of 5-permutations of a 4-element
set, that is, the number of non-repetitive length-5 lists that can be made from 4
symbols. There is no such list, so P (4, 5) = 0.

If n > 0, then P (n, k) can be computed with the multiplication principle. In
making a non-repetitive length-k list from n symbols we have n choices for the 1st
entry, n� 1 for the 2nd, n� 2 for the 3rd, and n� 3 for the 4th.

1st 2nd 3rd 4th 5th kth

n (n�1)(n�2)(n�3)(n�4) (n� k + 1)· · ·

· · ·

· · ·

Notice that the number of choices for the ith position is n � i + 1. For example,
the 5th position has n� 5 + 1 = n� 4 choices. Continuing in this pattern, the last
(kth) entry has n� k + 1 choices. Therefore

P (n, k) = n(n� 1)(n� 2) · · · (n� k + 1). (6.2)

All together there are k factors in this product, so to compute P (n, k) just perform
n(n� 1)(n� 2)(n� 3) · · · until you’ve multiplied k numbers. Examples:

P (10, 1) = 10 = 10
P (10, 2) = 10 · 9 = 90
P (10, 3) = 10 · 9 · 8 = 720
P (10, 4) = 10 · 9 · 8 · 7 = 5040

...
...

...
P (10, 10) = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 3, 628, 800
P (10, 11) = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 · 0 = 0.
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Note P (10, 11) = 0, as the 11th factor in the product is 0. This makes sense
because P (10, 11) is the number of non-repetitive length-11 lists made from just 10
symbols. There are no such lists, so P (10, 11) = 0 is right. In fact you can check
that Equation (6.2) gives P (n, k) = 0 whenever k > n.

Also notice above that P (10, 10) = 10!. In general P (n, n) = n!.
We now derive another formula for P (n, k), one that works for 0  k  n. Using

Equation (6.2) with cancellation and the definition of a factorial,

P (n, k) = n(n� 1)(n� 2) · · · (n� k + 1)

=
n(n� 1)(n� 2) · · · (n� k + 1)(n� k)(n� k � 1) · · · 3 · 2 · 1

(n� k)(n� k � 1) · · · 3 · 2 · 1 =
n!

(n� k)!
.

To illustrate, let’s find P (8, 5) in two ways. Equation (6.2) says P (8, 5) =

8·7·6·5·4 = 6720. By the above formula, P (8, 5) =
8!

(8� 5)!
=

8!

3!
=

40, 320

6
= 6720.

We summarize these ideas in the following definition and fact.

Fact 6.4. A k-permutation of an n-element set is a non-repetitive length-k
list made from elements of the set. Informally we think of a k-permutation as an
arrangement of k of the set’s elements in a row.

The number of k-permutations of an n-element set is denoted P (n, k), and

P (n, k) = n(n� 1)(n� 2) · · · (n� k + 1).

If 0  k  n, then P (n, k) = n(n� 1)(n� 2) · · · (n� k + 1) =
n!

(n� k)!
.

Notice that P (n, 0) = n!
(n�0)!

= n!
n! = 1, which makes sense because only one list

of length 0 can be made from n symbols, namely the empty list. Also P (0, 0) =
0!

(0�0)!
= 0!

0!
= 1

1
= 1, which is to be expected because there is only one list of length

0 that can be made with 0 symbols, again the empty list.

Example 6.9. Ten contestants run a marathon. All finish, and there are no ties.
How many di↵erent possible rankings are there for first-, second- and third-place?

Solution: Call the contestants A, B, C, D, E, F, G, H, I and J . A ranking
of winners can be regarded as a 3-permutation of the set of 10 contestants. For
example, ECH means E in first-place, C in second-place and H in third. Thus
there are P (10, 3) = 10 · 9 · 8 = 720 possible rankings.

Example 6.10. You deal five cards o↵ of a 52-card deck, and line them up. How
many such lineups are there that either consist of all red cards, or all clubs?

Solution: The number of ways to line up five of the 26 red cards is P (26, 5) =
26·25·24·23·22 = 7,893,600. The number of ways to line up five of the 13 (black)
club cards is P (13, 5) = 13·12·11·10·9 = 154,440. By the addition principle, there
are P (26, 5) + P (13, 5) = 8,048,040 lineups that are either all red, or all clubs.
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You do not need to use the notation P (n, k) to solve the problems in this section.
Straightforward applications of the multiplication and addition principles su�ce.
However, the P (n, k) notation often proves to be a convenient shorthand.

Exercises for Section 6.4

1. What is the smallest n for which n! has more than 10 digits?

2. For which values of n does n! have n or fewer digits?

3. How many 5-digit positive integers have all odd digits, none repeated?

4. Using only pencil and paper, find the value of 100!
95! .

5. Using only pencil and paper, find the value of 120!
118! .

6. There are two 0’s at the end of 10! = 3, 628, 800. Using only pencil and paper,
determine how many 0’s are at the end of the number 100!.

7. Find how many 9-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7, 8,
9 if repetition is not allowed and all the odd digits occur first (on the left) followed
by all the even digits (i.e., as in 137598264, but not 123456789).

8. Compute how many 7-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7
if there is no repetition and the odd digits must appear in an unbroken sequence.
(Examples: 3571264 or 2413576 or 2467531, etc., but not 7234615.)

9. How many permutations of the letters A, B, C, D, E, F, G are there in which the
three letters ABC appear consecutively, in alphabetical order?

10. How many permutations of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are there in which
the digits alternate even and odd? (Examples: 2183470965 or 1234567890.)

11. You deal 7 cards o↵ of a 52-card deck and line them up in a row. How many possible
lineups are there in which not all cards are red?

12. You deal 7 cards o↵ of a 52-card deck and line them up in a row. How many possible
lineups are there in which no card is a club?

13. How many lists of length six (with no repetition) can be made from the 26 letters
of the English alphabet?

14. Five of ten books are arranged on a shelf. In how many ways can this be done?

15. In a club of 15 people, we need to choose a president, vice-president, secretary, and
treasurer. In how many ways can this be done?

16. How many 4-permutations are there of the set
�
A,B,C,D,E, F

 
if whenever A

appears in the permutation, it is followed by E?

17. Three people in a group of ten line up at a ticket counter to buy tickets. How many
lineups are possible?

18. There is an interesting function � : [0,1) ! R called the gamma function. It
is defined as �(x) =

R1
0

tx�1e�tdt. It has the remarkable property that if x 2 N,
then �(x) = (x� 1)!. Thus x! = �(x+ 1). Check that this is true for x = 1, 2, 3, 4.
As � can be evaluated at any number in [0,1), we have a formula for x! for any
real number. Extra credit: Compute ⇡!.
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6.5 Counting Subsets

The previous section dealt with counting lists made by selecting k entries from a
set of n elements. We turn now to a related question: How many subsets can be
made by selecting k elements from a set with n elements?

To see the di↵erence between these two problems, take A =
�
a, b, c, d, e

 
. Con-

sider the non-repetitive lists made from selecting two elements from A. Fact 6.4
says there are P (5, 2) = 5 · 4 = 20 such lists, namely

(a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e),
(b, a), (c, a), (d, a), (e, a), (c, b), (d, b), (e, b), (d, c), (e, c), (e, d).

But there are only ten 2-element subsets of A. They are
�
a, b

 
,
�
a, c

 
,
�
a, d

 
,
�
a, e

 
,
�
b, c

 
,
�
b, d

 
,
�
b, e

 
,
�
c, d

 
,
�
c, e

 
,
�
d, e

 
.

The reason that there are more lists than subsets is that changing the order of
the entries of a list produces a di↵erent list, but changing the order of the elements
of a set does not change the set. Using elements a, b 2 A, we can make two lists
(a, b) and (b, a), but only one subset

�
a, b

 
.

This section is concerned with counting subsets, not lists. As noted above, the
basic question is this: How many subsets can be made by choosing k elements from
an n-element set? We begin with some notation that gives a name to the answer
to this question.

Definition 6.2. If n and k are integers, then
�n
k

�
denotes the number of subsets

that can be made by choosing k elements from an n-element set. We read
�n
k

�
as

“n choose k.” (Some textbooks write C(n, k) instead of
�n
k

�
.)

The table below illustrates this. Values of k appear in the far-left column.
To the right of each k are all of the subsets (if any) of A of size k. For example,
when k = 1, set A has four subsets of size k, namely

�
a
 
,
�
b
 
,
�
c
 

and
�
d
 
.

Therefore
�
4

1

�
= 4. When k = 2 there are six subsets of size k so

�
4

2

�
= 6.

k k-element subsets of A =
�
a, b, c, d

 �
4

k

�

�1
�

4

�1

�
= 0

0 ;
�
4

0

�
= 1

1
�
a
 
,
�
b
 
,
�
c
 
,
�
d
 �

4

1

�
= 4

2
�
a, b

 
,
�
a, c

 
,
�
a, d

 
,
�
b, c

 
,
�
b, d

 
,
�
c, d

 �
4

2

�
= 6

3
�
a, b, c

 
,
�
a, b, d

 
,
�
a, c, d

 
,
�
b, c, d

 �
4

3

�
= 4

4
�
a, b, c, d

 �
4

4

�
= 1

5
�
4

5

�
= 0
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When k = 0, there is only one subset of A that has cardinality k, namely the
empty set, ;. Therefore

�
4

0

�
= 1.

Notice that if k is negative or greater than |A|, then A has no subsets of cardi-
nality k, so

�
4

k

�
= 0 in these cases. In general,

�n
k

�
= 0 whenever k < 0 or k > n.

In particular, this means
�n
k

�
= 0 if n is negative.

Although it was not hard to work out the values of
�
4

k

�
by writing out subsets

in the above table, this method of actually listing sets would not be practical for
computing

�n
k

�
when n and k are large. We need a formula. To find one, we will now

carefully work out the value of
�
5

3

�
in a way that highlights a pattern that points

the way to a formula for any
�n
k

�
.

To begin, note that
�
5

3

�
is the number of 3-element subsets of

�
a, b, c, d, e

 
. These

are listed in the top row of the table below, where we see
�
5

3

�
= 10. The column

under each subset tallies the 3! = 6 permutations of that subset. The first subset�
a, b, c

 
has 3! = 6 permutations; these are listed below it. The second column

tallies the permutations of
�
a, b, d

 
, and so on.

�
a,b,c

 �
a,b,d

 �
a,b,e

 �
a,c,d

 �
a,c,e

 �
a,d,e

 �
b,c,d

 �
b,c,e

 �
b,d,e

 �
c,d,e

 

�
5

3

�

abc abd abe acd ace ade bcd bce bde cde

acb adb aeb adc aec aed bdc bec bed ced

bac bad bae cad cae dae cbd cbe dbe dce

bca bda bea cda cea dea cdb ceb deb dec

cba dba eba dca eca eda dcb ecb edb edc

cab dab eab dac eac ead dbc ebc ebd ecd

3!

The body of this table has
�
5

3

�
columns and 3! rows, so it has a total of 3!

�
5

3

�

lists. But notice also that the table consists of every 3-permutation of
�
a, b, c, d, e

 
.

Fact 6.4 says that there are P (5, 3) = 5!

(5�3)!
such 3-permutations. Thus the total

number of lists in the table can be written as either 3!
�
5

3

�
or 5!

(5�3)!
, which is to say

3!
�
5

3

�
= 5!

(5�3)!
. Dividing both sides by 3! yields

✓
5

3

◆
=

5!

3!(5� 3)!
.

Working this out, you will find that it does give the correct value of 10.
But there was nothing special about the values 5 and 3. We could do the above

analysis for any
�n
k

�
instead of

�
5

3

�
. The table would have

�n
k

�
columns and k! rows.

We would get ✓
n

k

◆
=

n!

k!(n� k)!
.

We have established the following fact, which holds for all k, n 2 Z.
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Fact 6.5. If 0  k  n, then

✓
n

k

◆
=

n!

k!(n� k)!
. Otherwise

✓
n

k

◆
= 0.

Let’s now use our new knowledge to work some exercises.

Example 6.11. How many size-4 subsets does
�
1, 2, 3, 4, 5, 6, 7, 8, 9

 
have?

Answer:

✓
9

4

◆
=

9!

4!(9� 4)!
=

9 · 8 · 7 · 6 · 5!
4! 5!

=
9 · 8 · 7 · 6

4!
=

9 · 8 · 7 · 6
24

= 126.

Example 6.12. How many 5-element subsets of A =
�
1, 2, 3, 4, 5, 6, 7, 8, 9

 
have

exactly two even elements?

Solution: Making a 5-element subset of A with exactly two even elements is a
2-step process. First select two of the four even elements from A. There are

�
4

2

�
= 6

ways to do this. Next, there are
�
5

3

�
= 10 ways to select three of the five odd

elements of A. By the multiplication principle, there are
�
4

2

��
5

3

�
= 6 · 10 = 60 ways

to select two even and three odd elements from A. So there are 60 5-element subsets
of A with exactly two even elements.

Example 6.13. A single 5-card hand is dealt o↵ of a standard 52-card deck. How
many di↵erent 5-card hands are possible?

Solution: Think of the deck as a set D of 52 cards. Then a 5-card hand is just a
5-element subset of D. There are many such subsets, such as

⇢
7

|
,

2

|
,

3

~
,

A

�
,

5

}

�
.

Thus the number of 5-card hands is the number of 5-element subsets of D, which is
✓
52

5

◆
=

52!

5! · 47! =
52 · 51 · 50 · 49 · 48 · 47!

5! · 47! =
52 · 51 · 50 · 49 · 48

5!
= 2, 598, 960.

Answer: There are 2,598,960 di↵erent five-card hands that can be dealt from a
deck of 52 cards.

Example 6.14. This problem concerns 5-card hands that can be dealt o↵ of a 52-
card deck. How many such hands are there in which two of the cards are clubs and
three are hearts?

Solution: Such a hand is described by a list of length two of the form
✓ ⇢

⇤

| ,
⇤

|

�
,

⇢
⇤

~ ,
⇤

~ ,
⇤

~

� ◆
,

where the first entry is a 2-element subset of the set of 13 club cards, and the second
entry is a 3-element subset of the set of 13 heart cards. There are

�
13

2

�
choices for

the first entry and
�
13

3

�
choices for the second, so by the multiplication principle

there are
�
13

2

��
13

3

�
= 13!

2!11!

13!

3!10!
= 22, 308 such lists. Thus there are 22,308 such

5-card hands.
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Example 6.15. A lottery features a bucket of 36 balls numbered 1 through 36.
Six balls will be drawn randomly. For $1 you buy a ticket with six blanks:
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ . You fill in the blanks with six di↵erent numbers between 1 and 36.
You win $1, 000, 000 if you chose the same numbers that are drawn, regardless of
order. What are your chances of winning?

Solution: In filling out the ticket you are choosing six numbers from a set of 36
numbers. Thus there are

�
36

6

�
= 36!

6!(36�6)!
= 1, 947, 792 di↵erent combinations of

numbers you might write. Only one of these will be a winner. Your chances of
winning are one in 1,947,792.

Example 6.16. How many 7-digit binary strings (0010100, 1101011, etc.) have an
odd number of 1’s?

Solution: Let A be the set of all 7-digit binary strings with an odd number of
1’s, so the answer will be |A|. To find |A|, we break A into smaller parts. Notice
any string in A will have either one, three, five or seven 1’s. Let A1 be the set of
7-digit binary strings with only one 1. Let A3 be the set of 7-digit binary strings
with three 1’s. Let A5 be the set of 7-digit binary strings with five 1’s, and let A7

be the set of 7-digit binary strings with seven 1’s. Then A = A1 [ A3 [ A5 [ A7.
Any two of the sets Ai have empty intersection, so the addition principle gives
|A| = |A1|+ |A3|+ |A5|+ |A7|.

Now we must compute the individual terms of this sum. Take A3, the set of
7-digit binary strings with three 1’s. Such a string can be formed by selecting three
out of seven positions for the 1’s and putting 0’s in the other spaces. Thus |A3| =�
7

3

�
. Similarly |A1| =

�
7

1

�
, |A5| =

�
7

5

�
, and |A7| =

�
7

7

�
.

Answer: |A| = |A1|+|A3|+|A5|+|A7| =
�
7

1

�
+
�
7

3

�
+
�
7

5

�
+
�
7

7

�
= 7+35+21+1 = 64.

There are 64 7-digit binary strings with an odd number of 1’s.

Example 6.17. A figure is made by arranging 10 nodes in a circle and connecting
all pairs of vertices with line segments. How many line segments are there? How
many triangles? (By triangle we mean a triangle formed by three of the nodes and
the line segments connecting them.)

Solution: There is one line segment for each pair of nodes. As there are
�
10

2

�
= 45

such pairs, there are 45 line segments. Each triangle can be made by picking three
of the 10 nodes and including the line segments between them. There are

�
10

3

�
= 120

ways to pick three out of ten nodes, so there are 120 triangles.
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Exercises for Section 6.5

1. Suppose a set A has 37 elements. How many subsets of A have 10 elements? How
many subsets have 30 elements? How many have 0 elements?

2. Suppose A is a set for which |A| = 100. How many subsets of A have 5 elements?
How many subsets have 10 elements? How many have 99 elements?

3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?

4. Suppose a set B has the property that
���X : X 2 P(B), |X|=6

 �� = 28. Find |B|.

5. How many 16-digit binary strings contain exactly seven 1’s? (Examples of such
strings include 0111000011110000 and 0011001100110010, etc.)

6.
���X 2 P(

�
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 
) : |X| = 4

 �� =

7.
���X 2 P(

�
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 
) : |X| < 4

 �� =

8. This problem concerns lists made from the symbols A, B, C, D, E, F, G, H, I.

(a) How many length-5 lists can be made if there is no repetition and the list is
in alphabetical order? (Example: BDEFI or ABCGH, but not BACGH.)

(b) How many length-5 lists can be made if repetition is not allowed and the
list is not in alphabetical order?

9. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F, without
repetition. How many such lists have the property that the D occurs before the A?

10. A department consists of 5 men and 7 women. From this department you select a
committee with 3 men and 2 women. In how many ways can you do this?

11. How many positive 10-digit integers contain no 0’s and exactly three 6’s?

12. Twenty-one people are to be divided into two teams, the Red Team and the Blue
Team. There will be 10 people on Red Team and 11 people on Blue Team. In how
many ways can this be done?

13. Suppose n, k 2 Z, and 0  k  n. Use Fact 6.5, the formula
�
n
k

�
= n!

k!(n�k)! , to

show that
�
n
k

�
=
�

n
n�k

�
.

14. Suppose n, k 2 Z, and 0  k  n. Use Definition 6.2 alone (without using Fact 6.5)
to show that

�
n
k

�
=
�

n
n�k

�
.

15. How many 10-digit binary strings are there that do not have exactly four 1’s?

16. How many 6-element subsets of A =
�
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 
have exactly three

even elements? How many do not have exactly three even elements?

17. How many 10-digit binary strings are there that have exactly four 1’s or exactly
five 1’s? How many do not have exactly four 1’s or exactly five 1’s?

18. How many 10-digit binary strings have an even number of 1’s?

19. A 5-card poker hand is called a flush if all cards are the same suit. How many
di↵erent flushes are there?
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6.6 Pascal’s Triangle and the Binomial Theorem

There are some beautiful and significant patterns among the numbers
�n
k

�
. We now

investigate a pattern based on one equation in particular. It happens that

✓
n+ 1

k

◆
=

✓
n

k � 1

◆
+

✓
n

k

◆
(6.3)

for any integers n and k with 1  k  n.
To see why this is true, notice that the left-hand side

�n+1

k

�
is the number

of k-element subsets of the set A =
�
0, 1, 2, 3, . . . , n

 
, which has n + 1 elements.

Such a subset either contains 0 or it does not. The
� n
k�1

�
on the right is the number

of k-element subsets of A that contain 0, because to make such a subset we can start
with

�
0
 
and append it an additional k � 1 numbers selected from

�
1, 2, 3, . . . , n

 
,

and there are
� n
k�1

�
ways to do this. Also, the

�n
k

�
on the right is the number of

subsets of A that do not contain 0, for it is the number of ways to select k elements
from

�
1, 2, 3, . . . , n

 
. In light of all this, Equation (6.3) just states the obvious fact

that the number of k-element subsets of A equals the number of k-element subsets
that contain 0 plus the number of k-element subsets that do not contain 0.

Having seen why Equation (6.3) is true, we now highlight it by arranging the
numbers

�n
k

�
in a triangular pattern. The left-hand side of Figure 6.3 shows the

numbers
�n
k

�
arranged in a pyramid with

�
0

0

�
at the apex, just above a row containing�

1

k

�
with k = 0 and k = 1. Below this is a row listing the values of

�
2

k

�
for k = 0, 1, 2,

and so on.

�
0
0

�
�
1
0

� �
1
1

�
�
2
0

� �
2
1

� �
2
2

�
�
3
0

� �
3
1

� �
3
2

� �
3
3

�
�
4
0

� �
4
1

� �
4
2

� �
4
3

� �
4
4

�
�
5
0

� �
5
1

� �
5
2

� �
5
3

� �
5
4

� �
5
5

�
�
6
0

� �
6
1

� �
6
2

� �
6
3

� �
6
4

� �
6
5

� �
6
6

�
�
7
0

� �
7
1

� �
7
2

� �
7
3

� �
7
4

� �
7
5

� �
7
6

� �
7
7

�
. . .

...
...

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
. . .

...
...

Fig. 6.3 Pascal’s triangle

Any number
�n+1

k

�
for 0 < k < n in this pyramid is just below and between the

two numbers
� n
k�1

�
and

�n
k

�
in the previous row. But Equation (6.3) says

�n+1

k

�
=� n

k�1

�
+
�n
k

�
. Therefore any number (other than 1) in the pyramid is the sum of the

two numbers immediately above it.
This pattern is especially evident on the right of Figure 6.3, where each

�n
k

�
is

worked out. Notice how 21 is the sum of the numbers 6 and 15 above it. Similarly,
5 is the sum of the 1 and 4 above it and so on.
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This arrangement is called Pascal’s triangle, after Blaise Pascal, 1623–1662,
a French philosopher and mathematician who discovered many of its properties.
We’ve shown only the first eight rows, but the triangle extends downward forever.
We can always add a new row at the bottom by placing a 1 at each end and obtaining
each remaining number by adding the two numbers above its position. Doing this
in Figure 6.3 (right) gives a new bottom row

1 8 28 56 70 56 28 8 1.

This row consists of the numbers
�
8

k

�
for 0  k  8, and we have computed them

without the formula
�
8

k

�
= 8!

k!(8�k)! . Any
�n
k

�
can be computed this way.

The very top row (containing only 1) of Pascal’s triangle is called Row 0. Row
1 is the next down, followed by Row 2, then Row 3, etc. Thus Row n lists the
numbers

�n
k

�
for 0  k  n. Exercises 6.5.13 and 6.5.14 established

✓
n

k

◆
=

✓
n

n� k

◆
, (6.4)

for each 0  k  n. In words, the kth entry of Row n of Pascal’s triangle equals
the (n� k)th entry. This means that Pascal’s triangle is symmetric with respect to
the vertical line through its apex, as is evident in Figure 6.3.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

.
.
.

.

.

.

.
.
.

1

1x + 1y

1x2 + 2xy + 1y2

1x3 + 3x2y + 3xy2 + 1y3

1x4 + 4x3y +6x2y2 + 4xy3 + 1y4

1x5 + 5x4y +10x3y2+10x2y3+ 5xy4 + 1y5

.
.
.

.

.

.

.
.
.

Fig. 6.4 The nth row of Pascal’s triangle lists the coe�cients of (x+ y)n

Notice that Row n appears to be a list of the coe�cients of (x + y)n.
For example (x+y)2 = 1x2+2xy+1y2, and Row 2 lists the coe�cients 1 2 1. Also
(x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3, and Row 3 is 1 3 3 1. See Figure 6.4, which
suggests that the numbers in Row n are the coe�cients of (x+ y)n.

In fact this turns out to be true for every n. This fact is known as the binomial
theorem, and it is worth mentioning here. It tells how to raise a binomial x + y
to a non-negative integer power n.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 133

Counting 133

Theorem 6.6. (Binomial Theorem) If n is a non-negative integer, then

(x+y)n =
�n
0

�
xn+

�n
1

�
xn�1y+

�n
2

�
xn�2y2+

�n
3

�
xn�3y3+ · · ·+

� n
n�1

�
xyn�1+

�n
n

�
yn.

For now we will be content to accept the binomial theorem without proof. (You
will be asked to prove it in an exercise in Chapter 15.) You may find it useful from
time to time. For instance, you can use it if you ever need to expand an expression
such as (x + y)7. To do this, look at Row 7 of Pascal’s triangle in Figure 6.3 and
apply the binomial theorem to get

(x+ y)7 = x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7.

For another example,

(2a� b)4 =
�
(2a) + (�b)

�4

= (2a)4 + 4(2a)3(�b) + 6(2a)2(�b)2 + 4(2a)(�b)3 + (�b)4

= 16a4 � 32a3b+ 24a2b2 � 8ab3 + b4.

Exercises for Section 6.6

1. Write out Row 11 of Pascal’s triangle.

2. Use the binomial theorem to find the coe�cient of x8y5 in (x+ y)13.

3. Use the binomial theorem to find the coe�cient of x8 in (x+ 2)13.

4. Use the binomial theorem to find the coe�cient of x6y3 in (3x� 2y)9.

5. Use the binomial theorem to show
Pn

k=0

�
n
k

�
= 2n.

6. Use Definition 6.2 (page 126) and Fact 2.3 (page 24) to show
Pn

k=0

�
n
k

�
= 2n.

7. Use the binomial theorem to show
Pn

k=0 3k
�
n
k

�
= 4n.

8. Use Fact 6.5 (page 128) to derive Equation 6.3 (page 131).

9. Use the binomial theorem to show
�
n
0

�
�
�
n
1

�
+
�
n
2

�
�
�
n
3

�
+
�
n
4

�
� · · ·+(�1)n

�
n
n

�
= 0,

for n > 0.

10. Show that the formula k
�
n
k

�
= n

�
n�1
k�1

�
is true for all integers n, k with 0  k  n.

11. Use the binomial theorem to show 9n =
Pn

k=0(�1)k
�
n
k

�
10n�k.

12. Show that
�
n
k

��
k
m

�
=
�
n
m

��
n�m
k�m

�
.

13. Show that
�
n
3

�
=
�
2
2

�
+
�
3
2

�
+
�
4
2

�
+
�
5
2

�
+ · · ·+

�
n�1
2

�
.

14. The first five rows of Pascal’s triangle appear in the digits of powers of 11: 110 = 1,
111 = 11, 112 = 121, 113 = 1331 and 114 = 14641. Why is this so? Why does the
pattern not continue with 115?
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6.7 The Inclusion-Exclusion Principle

Many counting problems involve computing the cardinality of a union A[B of two
finite sets. We examine this kind of problem now.

First we develop a formula for |A [B|. It is tempting to say that |A [B| must
equal |A|+ |B|, but that is not quite right. If we count the elements of A and then
count the elements of B and add the two figures together, we get |A| + |B|. But
if A and B have some elements in common, then we have counted each element in
A \B twice.

A B

Thus |A|+|B| exceeds |A[B| by |A\B|. Consequently |A[B| = |A|+|B|�|A\B|.
This can be a useful equation.

Fact 6.7. Inclusion-Exclusion Formula

If A and B are finite sets, then |A [B| = |A|+ |B|� |A \B|.

Notice that the sets A, B and A \ B are all generally smaller than A [ B, so
Fact 6.7 has the potential of reducing the problem of determining |A [B| to three
simpler counting problems. It is called the inclusion-exclusion formula because
elements in A \B are included (twice) in |A|+ |B|, then excluded when |A \B| is
subtracted. Notice that if A \ B = ;, then we do in fact get |A [ B| = |A| + |B|.
(This is an instance of the addition principle!) Conversely, if |A [ B| = |A| + |B|,
then it must be that A \B = ;.

Example 6.18. A 3-card hand is dealt o↵ of a standard 52-card deck. How many
di↵erent such hands are there for which all three cards are red or all three cards are
face cards?

Solution: Let A be the set of 3-card hands where all three cards are red (i.e., either
~ or }). Let B be the set of 3-card hands in which all three cards are face cards
(i.e., J,K or Q of any suit). These sets are illustrated below.

A =

((
5

~
,

K

}
,

2

~

)
,

(
K

~
,

J

~
,

Q

~

)
,

(
A

}
,

6

}
,

6

~

)
, . . .

)
(Red cards)

B =

((
K

�
,

K

}
,

J

|

)
,

(
K

~
,

J

~
,

Q

~

)
,

(
Q

}
,

Q

|
,

Q

~

)
, . . .

)
(Face cards)

We seek the number of 3-card hands that are all red or all face cards, and this
number is |A[B|. By Fact 6.7, |A[B| = |A|+ |B|� |A\B|. Let’s examine |A|, |B|
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and |A \ B| separately. Any hand in A is formed by selecting three cards from
the 26 red cards in the deck, so |A| =

�
26

3

�
. Similarly, any hand in B is formed by

selecting three cards from the 12 face cards in the deck, so |B| =
�
12

3

�
. Now think

about A \ B. It contains all the 3-card hands made up of cards that are red face
cards.

A \B=

((
K

~
,

K

}
,

J

~

)
,

(
K

~
,

J

~
,

Q

~

)
,

(
,

Q

}
,

J

}
,

Q

~

)
, . . .

)
(Red face

cards)

The deck has only 6 red face cards, so |A \B| =
�
6

3

�
.

Answer: The number of 3-card hands that are all red or all face cards is |A[B| =
|A|+ |B|� |A \B| =

�
26

3

�
+
�
12

3

�
�
�
6

3

�
= 2600 + 220� 20 = 2800.

Example 6.19. A 3-card hand is dealt o↵ of a standard 52-card deck. How many
di↵erent such hands are there for which it is not the case that all 3 cards are red
or all three cards are face cards?

Solution: We will use the subtraction principle combined with our answer to Ex-
ample 6.18, above. The total number of 3-card hands is

�
52

3

�
= 52!

3!(52�3)!
= 52!

3!49!
=

52·51·50
3!

= 26 · 17 · 50 = 22, 100. To get our answer, we must subtract from this the
number of 3-card hands that are all red or all face cards, that is, we must subtract
the answer from Example 6.18. Thus the answer to our question is 22, 100�2800 =
19,300.

There is an analogue of Fact 6.7 that involves three sets. Consider three sets A,
B and C, as represented in the following Venn Diagram.

A B

C

Using the same kind of reasoning that resulted in Fact 6.7, you can convince yourself
that

|A [B [ C| = |A|+ |B|+ |C|� |A \B|� |A \ C|� |B \ C|+ |A \B \ C|. (6.5)

There’s probably not much harm in ignoring this one for now, but if you find this
kind of thing intriguing you should definitely take a course in combinatorics. (Ask
your instructor!)
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Exercises for Section 6.7

1. At a certain university 523 of the seniors are history majors or math majors (or
both). There are 100 senior math majors, and 33 seniors are majoring in both
history and math. How many seniors are majoring in history?

2. How many 4-digit positive integers are there for which there are no repeated digits,
or for which there may be repeated digits, but all digits are odd?

3. How many 4-digit positive integers are there that are even or contain no 0’s?

4. This problem involves lists made from the letters T, H, E, O, R, Y, with repetition
allowed.

(a) How many 4-letter lists are there that don’t begin with T, or don’t end in Y?
(b) How many 4-letter lists are there in which the sequence of letters T, H, E

appears consecutively (in that order)?
(c) How many 6-letter lists are there in which the sequence of letters T, H, E

appears consecutively (in that order)?

5. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?

6. Is the following statement true or false? Explain. If A1 \ A2 \ A3 = ;, then
|A1 [A2 [A3| = |A1|+ |A2|+ |A3|.

7. Consider 4-card hands dealt o↵ of a standard 52-card deck. How many hands are
there for which all 4 cards are of the same suit or all 4 cards are red?

8. Consider 4-card hands dealt o↵ of a standard 52-card deck. How many hands are
there for which all 4 cards are of di↵erent suits or all 4 cards are red?

9. A 4-letter list is made from the letters L, I, S, T, E, D according to the following
rule: Repetition is allowed, and the first two letters on the list are vowels or the
list ends in D. How many such lists are possible?

10. How many 6-digit numbers are even or are divisible by 5?

11. How many 7-digit numbers are even or have exactly three digits equal to 0?

12. How many 5-digit numbers are there in which three of the digits are 7, or two of
the digits are 2?

13. How many 8-digit binary strings end in 1 or have exactly four 1’s?

14. How many 3-card hands (from a standard 52-card deck) have the property that it
is not the case that all cards are black or all cards are of the same suit?

15. How many 10-digit binary strings begin in 1 or end in 1?
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6.8 Counting Multisets

You have in your pocket four pennies, two nickels, a dime and two quarters. You
might be tempted to regard this collection as a set

�
1, 1, 1, 1, 5, 5, 10, 25, 25

 
.

But this is not a valid model of your collection of change, because a set cannot have
repeated elements. To overcome this di�culty, we make a new construction called
a multiset. A multiset is like a set, except that elements can be repeated. We will
use square brackets [ ] instead of braces

�  
to denote multisets. For example, your

multiset of change is
⇥
1, 1, 1, 1, 5, 5, 10, 25, 25

⇤
.

A multiset is a hybrid of a set and a list; in a multiset, elements can be repeated,
but order does not matter. For instance

⇥
1, 1, 1, 1, 5, 5, 10, 25, 25

⇤
=
⇥
25, 5, 1, 1, 10, 1, 1, 5, 25

⇤

=
⇥
25, 10, 25, 1, 5, 1, 5, 1, 1

⇤
.

Given a multiset A, its cardinality |A| is the number of elements it has, includ-
ing repetition. So if A =

⇥
1, 1, 1, 1, 5, 5, 10, 25, 25

⇤
, then |A| = 9. The multiplicity

of an element x 2 A is the number of times that x appears, so 1 2 A has multiplicity
4, while 5 and 25 each have multiplicity 2, and 10 has multiplicity 1. Notice that
every set can be regarded as a multiset for which each element has multiplicity 1.
In this sense we can think of ; = {} = [] as the multiset that has no elements.

To illustrate the idea of multisets, consider the multisets of cardinality 2 that
can be made from the symbols

�
a, b, c, d

 
. They are

[a, a] [a, b] [a, c] [a, d] [b, b] [b, c] [b, d] [c, c] [c, d] [d, d].

We have listed them so that the letters in each multiset are in alphabetical order
(remember, we can order the elements of a multiset in any way we choose), and the
10 multisets are arranged in dictionary order.

For multisets of cardinality 3 made from
�
a, b, c, d

 
, we have

[a, a, a] [a, a, b] [a, a, c] [a, a, d] [a, b, b]
[a, b, c] [a, b, d] [a, c, c] [a, c, d] [a, d, d]
[b, b, b] [b, b, c] [b, b, d] [b, c, c] [b, c, d]
[b, d, d] [c, c, c] [c, c, d] [c, d, d] [d, d, d].

Though X =
�
a, b, c, d

 
has no subsets of cardinality 5, there are many multisets

of cardinality 5 made from these elements, including [a, a, a, a, a], [a, a, b, c, d] and
[b, c, c, d, d], and so on. Exactly how many are there?

This is the first question about multisets that we shall tackle: Given a finite set
X, how many cardinality-k multisets can be made from X?
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Let’s start by counting the cardinality-5 multisets made from symbols X =�
a, b, c, d

 
. (Our approach will lead to a general formula.) We know we can write

any such multiset with its letters in alphabetical order. Tweaking the notation
slightly, we could write any such multiset with bars separating the groupings of
a, b, c, d, as shown in the table below. Notice that if a symbol does not appear in
the multiset, we still write the bar that would have separated it from the others.

Multiset with separating bars encoding

[a, a, b, c, d] aa
��b
��c
��d ⇤ ⇤ | ⇤ | ⇤ |⇤

[a, b, b, c, d] a
��bb

��c
��d ⇤| ⇤ ⇤| ⇤ |⇤

[a, b, c, c, d] a
��b
��cc

��d ⇤| ⇤ | ⇤ ⇤|⇤
[a, a, c, c, d] aa

����cc
��d ⇤ ⇤ || ⇤ ⇤|⇤

[b, b, d, d, d]
��bb

����ddd | ⇤ ⇤|| ⇤ ⇤⇤
[a, a, a, a, a] aaaaa

������ ⇤ ⇤ ⇤ ⇤ ⇤|||

This suggests that we can encode the multisets as lists made from the two symbols
⇤ and |, with an ⇤ for each element of the multiset, as follows.

⇤ for each a

z }| {
⇤ · · · · · · ⇤

��
⇤ for each b

z }| {
⇤ · · · · · · ⇤

��
⇤ for each c

z }| {
⇤ · · · · · · ⇤

��
⇤ for each d

z }| {
⇤ · · · · · · ⇤

For examples see the right-hand column of the table. Any such encoding is a
list made from 5 stars and 3 bars, so the list has a total of 8 entries. How many
such lists are there? We can form such a list by choosing 3 of the 8 positions for
the bars, and filling the remaining five positions with stars. Therefore the number
of such lists is

�
8

3

�
= 8!

3!5!
= 56. That is our answer. There are 56 cardinality-5

multisets that can be made from the symbols in X = {a, b, c, d}.
If we wanted to count the cardinality-3 multisets made from X, then the exact

same reasoning would apply, but with 3 stars instead of 5. We’d be counting the
length-6 lists with 3 stars and 3 bars. There are

�
6

3

�
= 6!

3!3!
= 20 such lists. So

there are 20 cardinality-3 multisets made from X = {a, b, c, d}. This agrees with
our accounting on the previous page.

In general, given a set X = {x1, x2, . . . , xn} of n elements, any cardinality-k
multiset made from its elements can be encoded in a star-and-bar list

⇤ for each x1

z }| {
⇤ ⇤ ⇤ ⇤ ⇤

��
⇤ for each x2

z }| {
⇤ ⇤ ⇤ ⇤ ⇤

��
⇤ for each x3

z }| {
⇤ ⇤ ⇤ ⇤ ⇤

�� · · · · · ·
��

⇤ for each xn

z }| {
⇤ ⇤ ⇤ ⇤ ⇤ .

Such a list has k stars (one for each element of the multiset) and n�1 separating
bars (a bar between each of the n groupings of stars). Therefore its length is k+n�1.
We can make such a list by selecting n� 1 list positions out of k + n� 1 positions
for the bars and inserting stars in the left-over positions. Thus there are

�k+n�1

n�1

�
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such lists. Alternatively we could choose k of the k + n � 1 positions for the stars
and fill in the remaining n� 1 with bars, so there are

�k+n�1

k

�
such lists. Note that�k+n�1

k

�
=
�k+n�1

n�1

�
by Equation (6.4) on page 132. Let’s summarize our reckoning.

Fact 6.8. The number of k-element multisets that can be made from the elements
of an n-element set X =

�
x1, x2, . . . , xn

 
is

✓
k + n� 1

k

◆
=

✓
k + n� 1

n� 1

◆
.

This works because any cardinality-k multiset made from the n elements of
X can be encoded in a star-and-bar list of length k + n� 1, having form

⇤ for each x1

z }| {
⇤ ⇤ ⇤ ⇤ ⇤

��
⇤ for each x2

z }| {
⇤ ⇤ ⇤ ⇤ ⇤

��
⇤ for each x3

z }| {
⇤ ⇤ ⇤ ⇤ ⇤

�� · · · · · ·
��

⇤ for each xn

z }| {
⇤ ⇤ ⇤ ⇤ ⇤

with k stars and n�1 bars separating the n groupings of stars. Such a list can be
made by selecting n�1 positions for the bars, and filling the remaining positions
with stars, and there are

�k+n�1

n�1

�
ways to do this.

For example, the number of 2-element multisets that can be made from the 4-
element set X = {a, b, c, d} is

�
2+4�1

2

�
=
�
5

2

�
= 10. This agrees with our accounting

of them on page 137. The number of 3-element multisets made from the elements
of X is

�
3+4�1

3

�
=
�
6

3

�
= 20. Again this agrees with our list of them on page 137.

The number of 1-element multisets made from X is
�
1+4�1

1

�
=
�
4

1

�
= 4. Indeed,

the four multisets are [a], [b], [c] and [d]. The number of 0-element multisets made
from X is

�
0+4�1

0

�
=
�
3

0

�
= 1. This is right, because there is only one such multiset,

namely ;.

Example 6.20. A bag contains 20 identical red marbles, 20 identical green marbles,
and 20 identical blue marbles. You reach in and grab 20 marbles. There are many
possible outcomes. You could have 11 reds, 4 greens and 5 blues. Or you could have
20 reds, 0 greens and 0 blues, etc. All together, how many outcomes are possible?

Solution: Each outcome can be thought of as a 20-element multiset made from
the elements of the 3-element set X =

�
r,g,b

 
. For example, 11 reds, 4 greens and

5 blues would correspond to the multiset

[ r,r,r,r,r,r,r,r,r,r,r,g,g,g,g,b,b,b,b,b ].

The outcome consisting of 10 reds and 10 blues corresponds to the multiset

[ r,r,r,r,r,r,r,r,r,r,b,b,b,b,b,b,b,b,b,b ].

Thus the total number of outcomes is the number of 20-element multisets made
from the elements of the 3-element set X = {r,g,b}. By Fact 6.8, the answer is�
20+3�1

20

�
=
�
22

20

�
= 231 possible outcomes.
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Rather than remembering the formula in Fact 6.8, it is probably best to work
out a new stars-and-bars model as needed. This is because it is often easy to see
how a particular problem can be modeled with stars and bars, and once they have
been set up, the formula in Fact 6.8 falls out automatically.

For example, we could solve Example 6.20 by noting that each outcome has
a star-and-bar encoding using 20 stars and 2 bars. For instance, the outcome
[r,r,r,r,r,r,r,r,r,r,r,g,g,g,g,b,b,b,b,b] encodes as ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤|⇤ ⇤ ⇤ ⇤|⇤ ⇤ ⇤ ⇤ ⇤.
We can form such a list by choosing 2 out of 22 slots for bars and filling the remaining
20 slots with stars. There are

�
22

2

�
= 231 ways of doing this.

Our next example involves counting the number of non-negative integer solutions
of the equation w + x + y + z = 20. By a non-negative integer solution to the
equation, we mean an assignment of non-negative integers to the variables that
makes the equation true. For example, one solution is w = 7, x = 3, y = 5,
z = 5. We can write this solution compactly as (w, x, y, z) = (7, 3, 5, 5). Two other
solutions are (w, x, y, z) = (1, 3, 1, 15) and (w, x, y, z) = (0, 20, 0, 0). We would not
include (w, x, y, z) = (1,�1, 10, 10) as a solution because even though it satisfies
the equation, the value of x is negative. How many solutions are there all together?
The next example presents a way of solving this type of question.

Example 6.21. Count the non-negative integer solutions of w + x+ y + z = 20.

Solution: We can model a solution with stars and bars. For example, encode the
solution (w, x, y, z) = (3, 4, 5, 8) as

3
z}|{
⇤ ⇤ ⇤

��
4

z }| {
⇤ ⇤ ⇤⇤

��
5

z }| {
⇤ ⇤ ⇤ ⇤ ⇤

��
8

z }| {
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤⇤ .

In general, any solution (w, x, y, z) = (a, b, c, d) gets encoded as

a stars
z }| {
⇤ ⇤ ⇤ · · · ⇤

��
b stars

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
c stars

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
d stars

z }| {
⇤ ⇤ ⇤ · · · ⇤,

where all together there are 20 stars and 3 bars. So, for instance the solution
(w, x, y, z) = (0, 0, 10, 10) gets encoded as || ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤| ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤, and the
solution (w, x, y, z) = (7, 3, 5, 5) is encoded as ⇤⇤⇤⇤⇤⇤⇤|⇤⇤⇤ |⇤⇤⇤⇤⇤ |⇤⇤⇤⇤⇤. Thus
we can describe any non-negative integer solution to the equation as a list of length
20 + 3 = 23 that has 20 stars and 3 bars. We can make any such list by choosing
3 out of 23 spots for the bars, and filling the remaining 20 spots with stars. The
number of ways to do this is

�
23

3

�
= 23!

3!20!
= 23·22·21

3·2 = 23 · 11 · 7 = 1771. Thus there
are 1771 non-negative integer solutions of w + x+ y + z = 20.

For another approach to this example, model solutions of w + x + y + z = 20
as 20-element multisets made from the elements of

�
w, x, y, z

 
. For example, solu-

tion (5, 5, 4, 6) corresponds to [w,w,w,w,w, x, x, x, x, x, y, y, y, y, z, z, z, z, z, z].
By Fact 6.8, there are

�
20+4�1

20

�
=

�
23

20

�
= 1771 such multisets, so this is the

number of solutions to w + x+ y + z = 20.
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Example 6.22. This problem concerns the lists (w, x, y, z) of integers with the
property that 0  w  x  y  z  10. That is, each entry is an integer between 0
and 10, and the entries are ordered from smallest to largest. For example, (0, 3, 3, 7),
(1, 1, 1, 1) and (2, 3, 6, 9) have this property, but (2, 3, 6, 4) does not. How many such
lists are there?

Solution: We can encode such a list with 10 stars and 4 bars, where w is the
number of stars to the left of the first bar, x is the number of stars to the left of
the second bar, y is the number of stars to the left of the third bar, and z is the
number of stars to the left of the fourth bar.

For example, (2, 3, 6, 9) is encoded as ⇤ ⇤ | ⇤ | ⇤ ⇤ ⇤ | ⇤ ⇤ ⇤ |⇤, and (1, 2, 3, 4) is
encoded as ⇤| ⇤ | ⇤ | ⇤ | ⇤ ⇤ ⇤ ⇤ ⇤ ⇤.

Here are some other examples of lists paired with their encodings.

(0, 3, 3, 7) | ⇤ ⇤ ⇤ | | ⇤ ⇤ ⇤ ⇤ | ⇤ ⇤⇤
(1, 1, 1, 1) ⇤ | | | | ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤⇤
(9, 9, 9, 10) ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ | | | ⇤ |

Such encodings are lists of length 14, with 10 stars and 4 bars. We can
make such a list by choosing 4 of the 14 slots for the bars and filling the re-
maining slots with stars. The number of ways to do this is

�
14

4

�
= 1001.

Answer: There are 1001 such lists.

We will examine one more type of multiset problem. To motivate it, consider
the permutations of the letters of the word “BOOK.” At first glance there are 4
letters, so we should get 4! = 24 permutations. But this is not quite right because
two of the letters are identical. We could interchange the two O’s but still have the
same permutation. To get a grip on the problem, let’s make one of the letters lower
case: BOoK. Now our 24 permutations are listed below in the oval.

BOoK KOoB OoKB OoBK OBoK OKoB OKBo OBKo BKOo KBOo KOBo BOKo

BoOK KoOB oOKB oOBK oBOK oKOB oKBO oBKO BKoO KBoO KoBO BoKO

BOOK KOOB OOKB OOBK OBOK OKOB OKBO OBKO BKOO KBOO KOBO BOKO

The columns in the oval correspond to the same permutation of the letters of BOOK,
as indicated in the row below the oval. Thus there are actually 4!

2
= 24

2
= 12

permutations of the letters of BOOK.
This is actually a problem about multisets. The letters in “BOOK” form a

multiset
⇥
B,O,O,K

⇤
, and we have determined that it has 12 permutations.

For another motivational example, consider the permutations of the letters of
the word BANANA. Here there are two N’s and three A’s. Though some of the
letters look identical, think of them as distinct physical objects that we can permute
into di↵erent orderings. It helps to subscript the letters to emphasize that they are
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actually six distinct objects:

B A1 N1 A2 N2 A3.

Now, there are 6! = 720 permutations of these six letters. It’s not practical to write
out all of them, but we can get a sense of the problem by making a partial listing
in the box below.

B A1 N1 A2 N2 A3

B A1 N1 A3 N2 A2

B A2 N1 A1 N2 A3

B A2 N1 A3 N2 A1

B A3 N1 A2 N2 A1

B A3 N1 A1 N2 A2

B A1 N2 A2 N1 A3

B A1 N2 A3 N1 A2

B A2 N2 A1 N1 A3

B A2 N2 A3 N1 A1

B A3 N2 A2 N1 A1

B A3 N2 A1 N1 A2

A1 B N1 A2 N2 A3

A1 B N1 A3 N2 A2

A2 B N1 A1 N2 A3

A2 B N1 A3 N2 A1

A3 B N1 A2 N2 A1

A3 B N1 A1 N2 A2

A1 B N2 A2 N1 A3

A1 B N2 A3 N1 A2

A2 B N2 A1 N1 A3

A2 B N2 A3 N1 A1

A3 B N2 A2 N1 A1

A3 B N2 A1 N1 A2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

720 permutations of
B A1 N1 A2 N2 A3

BANANA ABNANA

The first column lists the permutations of B A1 N1 A2 N2 A3 corresponding to the
word BANANA. By the multiplication principle, the column has 3!2! = 12 permu-
tations because the three Ai’s can be permuted in 3! ways within their positions,
and the two Ni’s can be permuted in 2! ways. Similarly, the second column lists
the 3!2! = 12 permutations corresponding to the “word” ABNANA.

All together there are 6! = 720 permutations of B A1 N1 A2 N2 A3, and groupings
of 12 of them correspond to particular permutations of BANANA. Therefore the
total number of permutations of BANANA is 6!

3!2!
= 720

12
= 60.

The kind of reasoning used here generalizes to the following fact.

Fact 6.9. Suppose a multiset A has n elements, with multiplicities p1, p2, . . . , pk.

Then the total number of permutations of A is

n!

p1! p2! · · · pk!
.

Example 6.23. Count the permutations of the letters in MISSISSIPPI.

Solution: Think of this word as an 11-element multiset with one M, four I’s, four
S’s and two P’s. By Fact 6.9, it has 11!

1! 4! 4! 2!
= 34, 650 permutations.

Example 6.24. Determine the number of permutations of
⇥
1, 1, 1, 1, 5, 5, 10, 25, 25

⇤
.

Solution: By Fact 6.9 the answer is 9!

4! 2! 1! 2!
= 3780.
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Exercises for Section 6.8

1. How many 10-element multisets can be made from the symbols
�
1, 2, 3, 4

 
?

2. How many 2-element multisets can be made from the 26 letters of the alphabet?

3. You have a dollar in pennies, a dollar in nickels, a dollar in dimes, and a dollar in
quarters. You give a friend four coins. How many ways can this be done?

4. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green balls,
and 20 identical white balls. You reach in and grab 15 balls. How many di↵erent
outcomes are possible?

5. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green balls,
and one white ball. You reach in and grab 15 balls. How many di↵erent outcomes
are possible?

6. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green
balls, one white ball, and one black ball. You reach in and grab 20 balls. How
many di↵erent outcomes are possible?

7. In how many ways can you place 20 identical balls into five di↵erent boxes?

8. How many lists (x, y, z) of three integers are there with 0  x  y  z  100?

9. A bag contains 50 pennies, 50 nickels, 50 dimes and 50 quarters. You reach in and
grab 30 coins. How many di↵erent outcomes are possible?

10. How many non-negative integer solutions does u+ v + w + x+ y + z = 90 have?

11. How many integer solutions does the equation w + x+ y + z = 100 have if w � 4,
x � 2, y � 0 and z � 0?

12. How many integer solutions does the equation w + x+ y + z = 100 have if w � 7,
x � 0, y � 5 and z � 4?

13. How many length-6 lists can be made from the symbols {a, b, c, d, e, f, g}, if
repetition is allowed and the list is in alphabetical order? (Examples: bbcegg, but
not bbbagg.)

14. How many permutations are there of the letters in the word “PEPPERMINT”?

15. How many permutations are there of the letters in the word “TENNESSEE”?

16. A community in Canada’s Northwest Territories is known in the local language as
“TUKTUYAAQTUUQ.” How many permutations does this name have?

17. You roll a dice six times in a row. How many possible outcomes are there that have
two 1’s three 5’s and one 6?

18. Flip a coin ten times in a row. How many outcomes have 3 heads and 7 tails?

19. In how many ways can you place 15 identical balls into 20 di↵erent boxes if each
box can hold at most one ball?

20. You distribute 25 identical pieces of candy among five children. In how many ways
can this be done?

21. How many numbers between 10,000 and 99,999 contain one or more of the digits
3, 4 and 8, but no others?
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6.9 The Division and Pigeonhole Principles

Our final fundamental counting principle is called the division principle. Before
discussing it, we need some notation. Given a number x, its floor bxc is x rounded
down to the nearest integer. Thus b 10

4
c = 2, and b9.31c = 9, and b7c = 7, etc. The

ceiling of x, denoted dxe, is x rounded up to the nearest integer. Thus d 10

4
e = 3,

and d9.31e = 10, and d7e = 7.
The division principle is often illustrated by a simple situation involving pigeons.

Imagine n pigeons that live in k pigeonholes, or boxes. (Possibly n 6= k.) At night
all the pigeons fly into the boxes. When this happens, some of the k boxes may
contain more than one pigeon, and some may be empty. But no matter what,
the average number of pigeons per box is n

k . Obviously, at least one of the boxes
contains n

k or more pigeons. (Because not all the boxes can contain fewer than
the average number of pigeons per box.) And because a box must contain a whole
number of pigeons, we round up to conclude that at least one box contains dn

k e or
more pigeons.

Similarly, at least one box must contain n
k or fewer pigeons, because not all

boxes can contain more than the average number of pigeons per box. Rounding
down, at least one box contains bn

k c or fewer pigeons.
We call this line of reasoning the division principle. (Some texts call it the strong

form of the pigeonhole principle.)

Fact 6.10. (Division Principle)

Suppose n objects are placed into k boxes.
Then at least one box contains dn

k e or more objects,
and at least one box contains bn

k c or fewer objects.

This has a useful variant. If n > k, then n
k > 1, so dn

k e > 1, and this means
some box contains more than one object. On the other hand, if n < k then n

k < 1,
so bn

k c < 1, meaning at least one box is empty. Thus the division principle yields
the following consequence, called the pigeonhole principle.

Fact 6.11. (Pigeonhole Principle)

Suppose n objects are placed into k boxes.
If n > k, then at least one box contains more than one object.
If n < k, then at least one box is empty.

The pigeonhole principle is named for the scenario in which n pigeons fly into
k pigeonholes (or boxes). If there are more pigeons than boxes (n > k) then some
box gets more than one pigeon. And if there are fewer pigeons than boxes (n < k)
then there must be at least one empty box.
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Like the multiplication, addition and subtraction principles, the division and
pigeonhole principles are intuitive and obvious, but they can prove things that are
not obvious. The challenge is seeing where and how to apply them. Our examples
will start simple and get progressively more complex.

For an extremely simple application, notice that in any group of 13 people, at
least two of them were born on the same month. Although this is obvious, it really
does follow from the pigeonhole principle. Think of the 13 people as objects, and
put each person in the “box” that is his birth month. As there are more people than
boxes (months), at least one box (month) has two or more people in it, meaning at
least two of the 13 people were born in the same month.

Further, for any group of 100 people, the division principle says that there is a
month in which d 100

12
e = 9 or more of the people were born. It also guarantees a

month in which b 100

12
c = 8 or fewer of the people were born.

Example 6.25. Pick six integers between 0 and 9 (inclusive), without repetition.
Show that two of them must add up to 9.

For example, suppose you picked 0, 1, 3, 5, 7 and 8. Then 1 + 8 = 9. If you picked
4, 5, 6, 7, 8, 9. then 4 + 5 = 9. The problem asks us to show that this happens no
matter how we pick the numbers.

Solution: Pick six numbers between 0 and 9. Here’s why two of them sum to 9:
Imagine five boxes, each marked with two numbers, as shown below. Each box is
labeled so that the two numbers written on it sum to 9.

0, 9 1, 8 2, 7 3, 6 4, 5

For each number that was picked, put it in the box having that number written on
it. For example, if we picked 7, it goes in the box labeled “2, 7.” (The number 2,
if picked, would go in that box too.) In this way we place the six chosen numbers
in five boxes. As there are more numbers than boxes, the pigeonhole principle says
that some box has more than one (hence two) of the picked numbers in it. Those
two numbers sum to 9.

Notice that if we picked only five numbers from 0 to 9, then it’s possible that
no two sum to 9: we could be unlucky and pick 0, 1, 2, 3, 4. But the pigeonhole
principle ensures that if six are picked then two do sum to 9.

Example 6.26. A store has a gumball machine containing a large number of red,
green, blue and white gumballs. You get one gumball for each nickel you put into
the machine. The store o↵ers the following deal: You agree to buy some number of
gumballs, and if 13 or more of them have the same color you get $5. What is the
fewest number of gumballs you need to buy to be 100% certain that you will make
money on the deal?
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Solution: Let n be the number of gumballs that you buy. Imagine sorting your n
gumballs into four boxes labeled RED, GREEN, BLUE, and WHITE. (That is, red
balls go in the red box, green balls go in the green box, etc.)

RED GREEN BLUE WHITE

The division principle says that one box contains dn
4
e or more gumballs. Provided

dn
4
e � 13, you will know you have 13 gumballs of the same color. This happens if

n
4
> 12 (so the ceiling of n

4
rounds to a value larger than 12). Therefore you need

n > 4 · 12 = 48, so if n = 49 you know you have at least d 49

4
e = d12.25e = 13

gumballs of the same color.

Answer: Buy 49 gumballs for 49 nickels, which is $2.45. You get $5, and therefore
have made $2.55.

Note that if you bought just 48 gumballs, you might win, but there is a chance that
you’d get 12 gumballs of each color and miss out on the $5. And if you bought
more than 49, you’d still get the $5, but you would have spent more nickels.

Explicitly mentioning the boxes in the above solution is not necessary. Some
people prefer to draw a conclusion based on averaging alone. They might solve the
problem by letting n be the number of gumballs bought, so n = r + g + b + w,
where r is the number of them that are red, g is the number that are green, b is
the number of blues and w is the number of whites. Then the average number of

gumballs of a particular color is
r + g + b+ w

4
=

n

4
. We need this to be greater

than 12 to ensure 13 of the same color, and the smallest number that does the job
is n = 49. This is still the division principle, in a pure form.

Example 6.27. Nine points are randomly placed on the right triangle shown below.
Show that three of these points form a triangle whose area is 1

8
square unit or less.

(We allow triangles with zero area, in which case the three points lie on a line.)

| {z }
1

9
>>>>>>>=

>>>>>>>;

1
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Solution: Divide the triangle into four smaller triangles, as indicated by the dashed
lines below.

| {z }
1

9
>>>>>>>=

>>>>>>>;

1

Each of these four triangles has an area of 1

2
bh = 1

2

1

2

1

2
= 1

8
square units. Think

of these smaller triangles as “boxes.” So we have placed 9 points in 4 boxes. (If
one of the 9 points happens to be on a dashed line, say it belongs to the box below
or to its left.) The division principle says one of the boxes has at least d 9

4
e = 3 of

the points in it. Those three points form a triangle whose area is no larger than the
area of the “box” that it is in. Thus these three points form a triangle whose area
is 1

8
or less.

Exercises for Section 6.9

1. Show that if six integers are chosen at random, then at least two of them will have
the same remainder when divided by 5.

2. You deal a pile of cards, face down, from a standard 52-card deck. What is the
least number of cards the pile must have before you can be assured that it contains
at least five cards of the same suit?

3. What is the fewest number of times you must roll a six-sided dice before you can
be assured that 10 or more of the rolls resulted in the same number?

4. Select any five points on a square whose side-length is one unit. Show that at least

two of these points are within
p

2
2 units of each other.

5. Prove that any set of seven distinct natural numbers contains a pair of numbers
whose sum or di↵erence is divisible by 10.

6. Given a sphere S, a great circle of S is the intersection of S with a plane through
its center. Every great circle divides S into two parts. A hemisphere is the union
of the great circle and one of these two parts. Show that if five points are placed
arbitrarily on S, then there is a hemisphere that contains four of them.
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6.10 Combinatorial Proof

Combinatorial proof is a method of proving two di↵erent expressions are equal
by showing that they are both answers to the same counting question. We have
already used combinatorial proof (without calling it combinatorial proof) in proving
Pascal’s formula

�n+1

k

�
=
� n
k�1

�
+
�n
k

�
on page 131.

There we argued that the left-hand side
�n+1

k

�
is, by definition, the number of k-

element subsets of the set S =
�
0, 1, 2, . . . , n

 
with |S| = n+1. But the right-hand

side also gives the number of k-element subsets of S, because such a subset either
contains 0 or it does not. We can make any k-element subset of S that contains 0
by starting with 0 and selecting k � 1 other elements from

�
1, 2, . . . , n

 
, in

� n
k�1

�

ways. We can make any k-element subset that does not contain 0 by selecting k
elements from

�
1, 2, . . . , n

 
, and there are

�n
k

�
ways to do this. Thus,

✓
n+ 1

k

◆

| {z }
number of
k-element
subsets of

S=
�
0, 1, . . . , n

 

=

✓
n

k � 1

◆

| {z }
number of
k-element
subsets of
S with 0

+

✓
n

k

◆
.

| {z }
number of
k-element
subsets of
S without 0

Both sides count the number of k-element subsets of S, so they are equal. This is
combinatorial proof.

Example 6.28. Use combinatorial proof to show
�n
k

�
=
� n
n�k

�
.

Solution: First, by definition, if k < 0 or k > n, then both sides are 0, and thus
equal. Therefore for the rest of the proof we can assume 0  k  n.

The left-hand side
�n
k

�
is the number of k-element subsets of S =

�
1, 2, . . . , n

 
.

Every k-element subset X ✓ S pairs with a unique (n�k)-element subset X =
S � X ✓ S. Thus the number of k-element subsets of S equals the number of
(n�k)-element subsets of S, which is to say

�n
k

�
=
� n
n�k

�
.

We could also derive
�n
k

�
=
� n
n�k

�
by using the formula for

�n
k

�
and quickly get

✓
n

n� k

◆
=

n!

(n� k)!
�
n� (n� k)

�
!
=

n!

(n� k)! k!
=

n!

k! (n� k)!
=

✓
n

k

◆
.

But you may feel that the combinatorial proof is “slicker” because it uses the mean-
ings of the terms. Often it is flat-out easier than using formulas, as in the next
example.
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Our next example will prove that
nP

k=0

�n
k

�2
=

�
2n
n

�
, for any positive integer n,

which is to say that
�n
0

�2
+
�n
1

�2
+
�n
2

�2
+ · · ·+

�n
n

�2
=
�
2n
n

�
. For example, if n = 5,

this statement asserts
�
5

0

�2
+
�
5

1

�2
+
�
5

2

�2
+
�
5

3

�2
+
�
5

4

�2
+
�
5

5

�2
=
�
2·5
5

�
, that is,

12 + 52 + 102 + 102 + 52 + 12 =
�
10

5

�
,

which is true, as both sides equal 252. In general, the statement says that the
squares of the entries in the nth row of Pascal’s triangle add up to

�
2n
n

�
.

Example 6.29. Use a combinatorial proof to show that
nX

k=0

✓
n

k

◆2

=

✓
2n

n

◆
.

Solution. First, the right-hand side
�
2n
n

�
is the number of ways to select n things

from a set S that has 2n elements.
Now let’s count this a di↵erent way. Divide S into two equal-sized parts, S =

A [B, where |A| = n and |B| = n, and A \B = ;.
For any fixed k with 0  k  n, we can select n things from S by taking k

things from A and n � k things from B for a total of k + (n � k) = n things. By
the multiplication principle, we get

�n
k

�� n
n�k

�
n-element subsets of S this way.

As k could be any number from 0 to n, the number of ways to select n things
from S is thus

✓
n

0

◆

|{z}

0
fr
om

A

✓
n

n� 0

◆

| {z }

n
fr
om

B

+

✓
n

1

◆

|{z}

1
fr
om

A

✓
n

n� 1

◆

| {z }

n
�
1
fr
om

B

+

✓
n

2

◆

|{z}

2
fr
om

A

✓
n

n� 2

◆

| {z }

n
�
2
fr
om

B

+

✓
n

3

◆

|{z}

3
fr
om

A

✓
n

n� 3

◆

| {z }

n
�
3
fr
om

B

+ · · ·+
✓
n

n

◆

|{z}
n
fr
om

A

✓
n

0

◆
.

| {z }

0
fr
om

B

But because
� n
n�k

�
=
�n
k

�
, this expression equals

�n
0

��n
0

�
+
�n
1

��n
1

�
+
�n
2

��n
2

�
+ · · · +

�n
n

��n
n

�
, which is

�n
0

�2
+
�n
1

�2
+
�n
2

�2
+ · · ·+

�n
n

�2
=

nP
k=0

�n
k

�2
.

In summary, we’ve counted the ways to choose n elements from the set S with

two methods. One method gives
�
2n
n

�
, and the other gives

nP
k=0

�n
k

�2
. Therefore

nP
k=0

�n
k

�2
=
�
2n
n

�
.

Be on the lookout for opportunities to use combinatorial proof, and watch for
it in your readings outside of this course. Also, try some of the exercises below.
Sometimes it takes some creative thinking and false starts before you hit on an idea
that works, but once you find it the solution is usually remarkably simple.
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Exercises for Section 6.10

Use combinatorial proof to solve the following problems. You may assume that any
variables m,n, k and p are non-negative integers.

1. Show that 1(n�0) + 2(n�1) + 3(n�2) + 4(n�3) + · · ·+ (n�1)2 + (n�0)1 =�n+2

3

�
.

2. Show that 1 + 2 + 3 + · · ·+ n =
�n+1

2

�
.

3. Show that
�n
2

��n�2

k�2

�
=
�n
k

��k
2

�
.

4. Show that P (n, k) = P (n� 1, k) + k · P (n� 1, k � 1).

5. Show that
�
2n
2

�
= 2

�n
2

�
+ n2.

6. Show that
�
3n
3

�
= 3

�n
3

�
+ 6n

�n
2

�
+ n3.

7. Show that
pP

k=0

�m
k

�� n
p�k

�
=
�m+n

p

�
.

8. Show that
mP

k=0

�m
k

�� n
p+k

�
=
�m+n
m+p

�
.

9. Show that
nP

k=m

� k
m

�
=
�n+1

m+1

�
.

10. Show that
nP

k=1

k
�n
k

�
= n2n�1.

11. Show that
nP

k=0

2k
�n
k

�
= 3n.

12. Show that
nP

k=0

�n
k

�� k
m

�
=
�n
m

�
2n�m.
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Solutions for Chapter 6

Section 6.2

1. Consider lists made from the letters T, H, E, O, R, Y, with repetition allowed.

(a) How many length-4 lists are there? Answer: 6 · 6 · 6 · 6 = 1296.

(b) How many length-4 lists are there that begin with T?
Answer: 1 · 6 · 6 · 6 = 216.

(c) How many length-4 lists are there that do not begin with T?
Answer: 5 · 6 · 6 · 6 = 1080.

3. How many ways can you make a list of length 3 from symbols a,b,c,d,e,f if...

(a) ... repetition is allowed. Answer: 6 · 6 · 6 = 216.

(b) ... repetition is not allowed. Answer: 6 · 5 · 4 = 120.

(c) ... repetition is not allowed and the list must contain the letter a.
Answer: 5 · 4 + 5 · 4 + 5 · 4 = 60.

(d) ... repetition is allowed and the list must contain the letter a.
Answer: 6 · 6 · 6� 5 · 5 · 5 = 91.

(Note: See Example 6.3 if a more detailed explanation is required.)

5. This problems involves 8-digit binary strings such as 10011011 or 00001010. (i.e.,
8-digit numbers composed of 0’s and 1’s.)

(a) How many such strings are there? Answer: 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 256.

(b) How many such strings end in 0? Answer: 2 · 2 · 2 · 2 · 2 · 2 · 2 · 1 = 128.

(c) How many such strings have the property that their second and fourth digits
are 1’s? Answer: 2 · 1 · 2 · 1 · 2 · 2 · 2 · 2 = 64.

(d) How many such strings are such that their second or fourth digits are 1’s?
Solution: These strings can be divided into three types. Type 1 consists of
those strings of form ⇤1⇤0⇤⇤⇤⇤, Type 2 consist of strings of form ⇤0⇤1⇤⇤⇤⇤,
and Type 3 consists of those of form ⇤1 ⇤ 1 ⇤ ⇤ ⇤ ⇤. By the multiplication
principle there are 26 = 64 strings of each type, so there are 3 · 64 = 192

8-digit binary strings whose second or fourth digits are 1’s.

7. This problem concerns 4-letter codes made from the letters A,B,C,D,...,Z.

(a) How many such codes can be made? Answer: 26 · 26 · 26 · 26 = 456,976

(b) How many such codes have no two consecutive letters the same?
Solution: We use the multiplication principle. There are 26 choices for the
first letter. The second letter can’t be the same as the first letter, so there
are only 25 choices for it. The third letter can’t be the same as the second
letter, so there are only 25 choices for it. The fourth letter can’t be the
same as the third letter, so there are only 25 choices for it. Thus there are

26 · 25 · 25 · 25 = 406,250 codes with no two consecutive letters the

same.

9. A new car comes in a choice of five colors, three engine sizes and two transmissions.
How many di↵erent combinations are there? Answer 5 · 3 · 2 = 30.
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Section 6.3

1. Five cards are dealt o↵ of a standard 52-card deck and lined up in a row. How many
such lineups are there that have at least one red card?

Solution: All together there are 52 · 51 · 50 · 49 · 48 = 311875200 possible lineups. The
number of lineups that do not have any red cards (i.e. are made up only of black
cards) is 26 · 25 · 24 · 23 · 22 = 7, 893, 600. By the subtraction principle, the answer to
the question is 311, 875, 200� 7, 893, 600 = 303,981,600.

How many such lineups are there in which the cards are all black or all hearts?

Solution: The number of lineups that are all black is 26·25·24·23·22 = 7, 893, 600. The
number of lineups that are hearts (which are red) is 13·12·11·10·9 = 154, 440. By the
addition principle, the answer to the question is 7, 893, 600 + 154, 440 = 8,048,040.

3. Five cards are dealt o↵ of a standard 52-card deck and lined up in a row. How many
such lineups are there in which all 5 cards are of the same color?

Solution: There are 26 · 25 · 24 · 23 · 22 = 7, 893, 600 possible black-card lineups and
26 · 25 · 24 · 23 · 22 = 7, 893, 600 possible red-card lineups, so by the addition principle
the answer is 7, 893, 600 + 7, 893, 600 = 15,787,200.

5. How many integers between 1 and 9999 have no repeated digits?

Solution: Consider the 1-digit, 2-digit, 3-digit and 4-digit number separately. The
number of 1-digit numbers that have no repeated digits is 9 (i.e., all of them). The
number of 2-digit numbers that have no repeated digits is 9 · 9 = 81. (The number
can’t begin in 0, so there are only 9 choices for its first digit.) The number of 3-digit
numbers that have no repeated digits is 9 ·9 ·8 = 648. The number of 4-digit numbers
that have no repeated digits is 9 ·9 ·8 ·7 = 4536. By the addition principle, the answer
to the question is 9 + 81 + 648 + 4536 = 5274.

How many integers between 1 and 9999 have at least one repeated digit?

Solution: The total number of integers between 1 and 9999 is 9999. Using the
subtraction principle, we can subtract from this the number of digits that have no
repeated digits, which is 5274, as above. Therefore the answer to the question is
9999� 5274 = 4725.

7. A password on a certain site must have five characters made from letters of the
alphabet, and there must be at least one upper case letter. How many di↵erent
passwords are there?

Solution: Let U be the set of all possible passwords made from a choice of upper and
lower case letters. Let X be the set of all possible passwords made from lower case
letters. Then U �X is the set of passwords that have at least one upper case letter.
By the subtraction principle our answer will be |U �X| = |U |� |X|.
All together, there are 26 + 26 = 52 upper and lower case letters, so by the multipli-
cation principle |U | = 52 · 52 · 52 · 52 · 52 = 525 = 380, 204, 032.

Likewise |X| = 26 · 26 · 26 · 26 · 26 = 265 = 11, 881, 376.

Thus the answer is |U |� |X| = 380, 204, 032� 11, 881, 376 = 368,322,656.

What if there must be a mix of upper and lower case?

Solution: The number of passwords using only upper case letters is 265 = 11, 881, 376,
and, as calculated above, this is also the number of passwords that use only lower case
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letters. By the addition principle, the number of passwords that use only lower case
or only upper case is 11, 881, 376 + 11, 881, 376 = 23, 762, 752. By the subtraction
principle, the number of passwords that use a mix of upper and lower case it the
total number of possible passwords minus the number that use only lower case or
only upper case, namely 380, 204, 032� 23, 762, 752 = 356,441,280.

9. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,G,H.
How many such lists are possible if repetition is not allowed and the list contains two
consecutive vowels?

Solution: There are just two vowels A and E to choose from. The lists we want to
make can be divided into five types. They have one of the forms V V⇤⇤⇤⇤, or ⇤V V⇤⇤⇤,
or ⇤⇤V V ⇤⇤, or ⇤⇤⇤V V⇤, or ⇤⇤⇤⇤V V , where V indicates a vowel and ⇤ indicates a
consonant. By the multiplication principle, there are 2 ·1 ·6 ·5 ·4 ·3 = 720 lists of form
V V ⇤⇤⇤⇤. In fact, that for the same reason there are 720 lists of each form. Thus by
the addition principle, the answer to the question is 720 + 720 + 720 + 720 + 720 =
3600

11. How many integers between 1 and 1000 are divisible by 5? How many are not?

Solution: The integers that are divisible by 5 are 5, 10, 15, 20, . . . , 995, 1000. There
are 1000/5 = 200 such numbers. By the subtraction principle, the number that are
not divisible by 5 is 1000� 200 = 800.

Sections 6.4

1. Answer: n = 14 (by calculator experimentation).

3. Answer: 5! = 120 (Permutations of the five odd digits 1, 3, 5, 7, 9).

5.
120!
118! =

120·119·118!
118! = 120 · 119 = 14,280.

7. Answer: 5!4! = 2880.

9. How many permutations of the letters A,B,C,D,E, F,G are there in which the three
letters ABC appear consecutively, in alphabetical order?

Solution: Regard ABC as a single symbol ABC . Then we are looking for the

number of permutations of the five symbols ABC , D, E, F, G. The number of such
permutations is 5! = 120.

11. You deal 7 cards o↵ of a 52-card deck and line them up in a row. How many possible
lineups are there in which not all cards are red?

Solution: All together, there are P (52, 7) 7-card lineups with cards selected from the
entire deck. And there are P (26, 7) 7-card lineups with red cards selected from the
26 red cards in the deck. By the subtraction principle, the number of lineups that
are not all red is P (52, 7)� P (26, 7) = 670,958,870,400.

13. P (26, 6) = 165, 765, 600

15. P (15, 4) = 32, 760

17. P (10, 3) = 720
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Section 6.5

1. Suppose a set A has 37 elements. How many subsets of A have 10 elements? How
many subsets have 30 elements? How many have 0 elements?

Answers:
�
37
10

�
= 348,330,136;

�
37
30

�
= 10,295,472;

�
37
0

�
= 1.

3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?

Solution: The answer will be the n for which
�
n
3

�
= 56. After some trial and error,

you will discover
�
8
3

�
= 56, so |X| = 8.

5. How many 16-digit binary strings contain exactly seven 1’s?

Solution: Make such a string as follows. Start with a list of 16 blank spots. Choose
7 of the blank spots for the 1’s and put 0’s in the other spots. There are ( 16

7 ) =
11,440 ways to do this.

7. |{X 2 P({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) : |X| < 4}| = ( 10
0 )+( 10

1 )+( 10
2 )+( 10

3 )=1+10+45+
120 = 176.

9. This problem concerns lists of length six made from the letters A,B,C,D,E,F, without
repetition. How many such lists have the property that the D occurs before the A?

Solution: Make such a list as follows. Begin with six blank spaces and select two of
these spaces. Put the D in the first selected space and the A in the second. There
are ( 6

2 ) = 15 ways of doing this. For each of these 15 choices there are 4! = 24 ways
of filling in the remaining spaces. Thus the answer is 15⇥ 24 = 360 such lists.

11. How many 10-digit integers contain no 0’s and exactly three 6’s?

Solution: Make such a number as follows: Start with 10 blank spaces and choose
three of these spaces for the 6’s. There are ( 10

3 ) = 120 ways of doing this. For each
of these 120 choices we can fill in the remaining seven blanks with choices from the
digits 1, 2, 3, 4, 5, 7, 8, 9, and there are 87 to do this. Thus the answer to the question
is ( 10

3 ) · 87 = 251,658,240.

13. Assume n, k 2 Z with 0  k  n. Then
�
n
k

�
= n!

(n�k)!k! = n!
k!(n�k)! =

n!
(n�(n�k))!(n�k)! =

�
n

n�k

�
.

15. How many 10-digit binary strings are there that do not have exactly four 1’s?

Solution: All together, there are 210 di↵erent binary strings. The number of 10-digit
binary strings with exactly four 1’s is

�
10
4

�
, because to make one we need to choose

4 out of 10 positions for the 1’s and fill the rest in with 0’s. By the subtraction
principle, the answer to our questions is 210 �

�
10
4

�
.

17. How many 10-digit binary numbers are there that have exactly four 1’s or exactly
five 1’s?

Solution: By the addition principle the answer is
�
10
4

�
+
�
10
5

�
.

How many do not have exactly four 1’s or exactly five 1’s?

Solution: By the subtraction principle combined with the answer to the first part of
this problem, the answer is 210 �

�
10
4

�
�
�
10
5

�

19. A 5-card poker hand is called a flush if all cards are the same suit. How many di↵erent
flushes are there?

Solution: There are
�
13
5

�
= 1287 5-card hands that are all hearts. Similarly, there are�

13
5

�
= 1287 5-card hands that are all diamonds, or all clubs, or all spades. By the

addition principle, there are then 1287 + 1287 + 1287 + 1287 = 5148 flushes.
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Section 6.6

1. Row 11 of Pascal’s triangle: 1 11 55 165 330 462 462 330 165 55 11 1

3. Use the binomial theorem to find the coe�cient of x8 in (x+ 2)13.
Answer: According to the binomial theorem, the coe�cient of x8y5 in (x + y)13 is
( 13

5 )x8y5 = 1287x8y5. Now plug in y = 2 to get the final answer of 41184x8.

5. Use the binomial theorem to show
Pn

k=0 (
n
k ) = 2n. Hint: Observe that 2n = (1+1)n.

Now use the binomial theorem to work out (x+ y)n and plug in x = 1 and y = 1.

7. Use the binomial theorem to show
Pn

k=0 3k ( n
k ) = 4n.

Hint: Observe that 4n = (1 + 3)n. Now look at the hint for the previous problem.

9. Use the binomial theorem to show ( n
0 )� ( n

1 )+( n
2 )� ( n

3 )+( n
4 )� ( n

5 )+ . . .± ( n
n ) = 0.

Hint: Observe that 0 = 0n = (1 + (�1))n. Now use the binomial theorem.

11. Use the binomial theorem to show 9n =
Pn

k=0(�1)k ( n
k ) 10

n�k.
Hint: Observe that 9n = (10 + (�1))n. Now use the binomial theorem.

13. Assume n � 3. Then
�
n
3

�
=

�
n�1
3

�
+
�
n�1
2

�
=

�
n�2
3

�
+
�
n�2
2

�
+
�
n�1
2

�
= · · · =�

2
2

�
+
�
3
2

�
+ · · ·+

�
n�1
2

�
.

Section 6.7

1. At a certain university 523 of the seniors are history majors or math majors (or both).
There are 100 senior math majors, and 33 seniors are majoring in both history and
math. How many seniors are majoring in history?

Solution: Let A be the set of senior math majors and B be the set of senior history
majors. From |A [ B| = |A| + |B| � |A \ B| we get 523 = 100 + |B| � 33, so
|B| = 523 + 33� 100 = 456. There are 456 history majors.

3. How many 4-digit positive integers are there that are even or contain no 0’s?

Solution: Let A be the set of 4-digit even positive integers, and let B be the set of
4-digit positive integers that contain no 0’s. We seek |A [B|. By the multiplication
principle |A| = 9 · 10 · 10 · 5 = 4500. (Note the first digit cannot be 0 and the last
digit must be even.) Also |B| = 9 · 9 · 9 · 9 = 6561. Further, A\B consists of all even
4-digit integers that have no 0’s. It follows that |A \ B| = 9 · 9 · 9 · 4 = 2916. Then
the answer is |A [B| = |A|+ |B|� |A \B| = 4500 + 6561� 2916 = 8145.

5. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?

Solution: Let A be the set of such strings that begin in 1. Let B be the set of such
strings that end in 1. Let C be the set of such strings that have exactly four 1’s.
Then the answer to our question is |A[B[C|. Using Equation (6.5) to compute this
number, we have |A[B[C| = |A|+|B|+|C|�|A\B|�|A\C|�|B\C|+|A\B\C| =
26 + 26 + ( 7

4 )� 25 � ( 6
3 )� ( 6

3 ) + ( 5
2 ) = 64 + 64 + 35� 32� 20� 20 + 10 = 101.

7. This problem concerns 4-card hands dealt o↵ of a 52-card deck. How many 4-card
hands are there for which all four cards are of the same suit or all four are red?

Solution: Let A be the set of 4-card hands for which all four cards are of the same
suit. Let B be the set of 4-card hands for which all four cards are red. Then A\B is
the set of 4-card hands for which the four cards are either all hearts or all diamonds.
The answer to our question is |A[B| = |A|+ |B|� |A\B| = 4 ( 13

4 )+( 26
4 )�2 ( 13

4 ) =
2 ( 13

4 ) + ( 26
4 ) = 1430 + 14, 950 = 16,380.
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9. A 4-letter list is made from the letters L,I,S,T,E,D according to the following rule:
Repetition is allowed, and the first two letters on the list are vowels or the list ends
in D. How many such lists are possible?

Solution: Let A be the set of such lists for which the first two letters are vowels,
so |A| = 2 · 2 · 6 · 6 = 144. Let B be the set of such lists that end in D, so |B| =
6 · 6 · 6 · 1 = 216. Then A \ B is the set of such lists for which the first two entries
are vowels and the list ends in D. Thus |A \ B| = 2 · 2 · 6 · 1 = 24. The answer to
our question is |A [B| = |A|+ |B|� |A \B| = 144 + 216� 24 = 336.

11. How many 7-digit numbers are even or have exactly three digits equal to 0?

Solution: Let A be the set of 7-digit numbers that are even. By the multiplication
principle, |A| = 9 · 10 · 10 · 10 · 10 · 10 · 5 = 4, 500, 000. Let B be the set of 7-digit
numbers that have exactly three digits equal to 0. Then |B| = 9 ·

�
6
3

�
· 9 · 9 · 9. (First

digit is anything but 0. Then choose 3 of 6 of the remaining places in the number
for the 0’s. Finally the remaining 3 places can be anything but 0.)

Note A\B is the set of 7-digit numbers that are even and contain exactly three 0’s.
We can compute |A \ B| with the addition principle, by dividing A \ B into two
parts: the even 7-digit numbers with three digits 0 and the last digit is not 0, and
the even 7-digit numbers with three digits 0 and the last digit is 0. The first part
has 9 ·

�
5
3

�
· 9 · 9 · 4 elements. The second part has 9 ·

�
5
2

�
· 9 · 9 · 9 · 1 elements. Thus

|A \B| = 9 ·
�
5
3

�
· 9 · 9 · 4 + 9 ·

�
5
2

�
· 9 · 9 · 9.

By the inclusion-exclusion formula, the answer to our question is |A [ B| = |A| +
|B|� |A \B| = 4, 500, 000 + 94

�
6
3

�
� 93

�
5
3

�
· 4� 94

�
5
2

�
= 4, 536, 450.

13. How many 8-digit binary strings end in 1 or have exactly four 1’s?

Solution: Let A be the set of strings that end in 1. By the multiplication principle
|A| = 27. Let B be the number of strings with exactly four 1’s. Then |B| =

�
8
4

�

because we can make such a string by choosing 4 of 8 spots for the 1’s and filling the
remaining spots with 0’s. Then A \B is the set of strings that end with 1 and have
exactly four 1’s. Note that |A\B| =

�
7
3

�
(make the last entry a 1 and choose 3 of the

remaining 7 spots for 1’s). By the inclusion-exclusion formula, the number 8-digit
binary strings that end in 1 or have exactly four 1’s is |A[B| = |A|+ |B|� |A\B| =
27 +

�
8
4

�
�
�
7
3

�
= 163.

15. How many 10-digit binary strings begin in 1 or end in 1?

Solution: Let A be the set of strings that begin with 1. By the multiplication principle
|A| = 29. Let B be the number of strings that end with 1. By the multiplication
principle |B| = 29. Then A \ B is the set of strings that begin and end with 1. By
the multiplication principle |A \ B| = 28. By the inclusion-exclusion formula, the
number 10-digit binary strings begin in 1 or end in 1 is |A[B| = |A|+ |B|� |A\B| =
29 + 29 � 28 = 768.

Section 6.8

1. The number of 10-element multisets made from {1, 2, 3, 4} is
�
10+4�1

10

�
=
�
13
10

�
= 286.

3. You have a dollar in pennies, a dollar in nickels, a dollar in dimes and a dollar in
quarters. You give four coins to a friend. In how many ways can this be done?

Solution: In giving your friend four coins, you are giving her a 4-element multiset
made from elements in {1, 5, 10, 25}. There are

�
4+4�1

4

�
=
�
7
4

�
= 35 such multisets.
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5. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green balls,
and one white ball. You reach in and grab 15 balls. How many di↵erent outcomes
are possible?

Solution: First we count the number of outcomes that don’t have a white ball.
Modeling this with stars and bars, we are looking at length-17 lists of the form

red
z }| {
⇤ ⇤ ⇤ · · · ⇤

��
blue

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
green

z }| {
⇤ ⇤ ⇤ · · · ⇤,

where there are 15 stars and two bars. Therefore there are
�
17
15

�
outcomes without

the white ball. Next we count the outcomes that do have the white ball. Then there
are 14 remaining balls in the grab. In counting the ways that they can be selected
we can use the same stars-and-bars model above, but this time the list is of length
16 and has 14 stars. There are

�
16
14

�
outcomes. Finally, by the addition principle, the

answer to the question is
�
17
15

�
+
�
16
14

�
= 256.

7. In how many ways can you place 20 identical balls into five di↵erent boxes?

Solution: Let’s model this with stars and bars. Doing this we get a list of length 24
with 20 stars and 4 bars, where the first grouping of stars has as many stars as balls
in Box 1, the second grouping has as many stars as balls in Box 2, and so on.

Box 1
z }| {
⇤ ⇤ ⇤ · · · ⇤

��
Box 2

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
Box 3

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
Box 4

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
Box 5

z }| {
⇤ ⇤ ⇤ · · · ⇤,

The number of ways to place 20 balls in the five boxes equals the number of such
lists, which is

�
24
20

�
= 10,626.

9. A bag contains 50 pennies, 50 nickels, 50 dimes and 50 quarters. You reach in and
grab 30 coins. How many di↵erent outcomes are possible?

Solution: The stars-and-bars model is

pennies
z }| {
⇤ ⇤ ⇤ · · · ⇤

��
nickels

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
dimes

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
quarters
z }| {
⇤ ⇤ ⇤ · · · ⇤,

so there are
�
33
30

�
= 5456 outcomes.

11. How many integer solutions does the equation w + x + y + z = 100 have if w � 4,
x � 2, y � 0 and z � 0?

Solution: Imagine a bag containing 100 red balls, 100 blue balls, 100 green balls and
100 white balls. Each solution of the equation corresponds to an outcome in selecting
100 balls from the bag, where the selection includes w � 4 red balls, x � 2 blue balls,
y � 0 green balls and z � 0 white balls.

Now let’s consider making such a selection. Pre-select 4 red balls and 2 blue balls,
so 94 balls remain in the bag. Next the remaining 94 balls are selected. We can
calculate the number of ways that this selection can be made with stars and bars,
where there are 94 stars and 3 bars, so the list’s length is 97.

red
z }| {
⇤ ⇤ ⇤ · · · ⇤

��
blue

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
green

z }| {
⇤ ⇤ ⇤ · · · ⇤

��
white

z }| {
⇤ ⇤ ⇤ · · · ⇤,
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The number of outcomes is thus
�
97
3

�
= 147,440.

13. How many length-6 lists can be made from the symbols {a, b, c, d, e, f, g}, if
repetition is allowed and the list is in alphabetical order?

Solution: Any such list corresponds to a 6-element multiset made from the symbols
{a, b, c, d, e, f, g}. For example, the list aacddg corresponds to the multiset
[a,a,c,d,d,g]. Thus the number of lists equals the number of multisets, which is�
6+7�1

6

�
=
�
12
6

�
= 924.

15. How many permutations are there of the letters in the word “TENNESSEE”?

Solution: By Fact 6.9, the answer is 9!
4!2!2! = 3,780.

17. You roll a dice six times in a row. How many possible outcomes are there that have
two 1’s three 5’s and one 6?

Solution: This is the number of permutations of the “word” . By Fact 6.9,
the answer is 6!

2!3!1! = 60.

19. In how many ways can you place 15 identical balls into 20 di↵erent boxes if each box
can hold at most one ball?

Solution: Regard each such distribution as a binary string of length 20, where there
is a 1 in the ith position precisely if the ith box contains a ball (and zeros elsewhere).
The answer is the number of permutations of such a string, which by Fact 6.9 is
20!
15!5! =15,504. Alternatively, the answer is the number of ways to choose 15 positions
out of 20, which is

�
20
15

�
= 15,504.

21. How many numbers between 10,000 and 99,999 contain one or more of the digits 3,
4 and 8, but no others?

Solution: First count the numbers that have three 3’s, one 4, and one 8, like 33,348.
By Fact 6.9, the number of permutations of this is 5!

3!1!1! = 20.

By the same reasoning there are 20 numbers that contain three 4’s, one 3, and one
8, and 20 numbers that contain three 8’s, one 3, and one 4.

Next, consider the numbers that have two 3’s, two 4’s and one 8, like 33,448. By
Fact 6.9, the number of permutations of this is 5!

2!2!1! = 30.

By the same reasoning there are 30 numbers that contain two 3’s, two 8’s and one 4,
and 30 numbers that contain two 4’s, two 8’s and one 3. This exhausts all possibilities.
By the addition principle the answer is 20 + 20 + 20 + 30 + 30 + 30 = 150.

Section 6.9

1. Show that if 6 integers are chosen at random, at least two will have the same remain-
der when divided by 5.

Solution: Pick six integers n1, n2, n3, n4, n5 and n6 at random. Imagine five boxes,
labeled Box 0, Box 1, Box 2, Box 3, Box 4. Each of the picked integers has a remainder
when divided by 5, and that remainder is 0, 1, 2, 3 or 4. For each ni, let ri be its
remainder when divided by 5. Put ni in Box ri. We have now put six numbers in
five boxes, so by the pigeonhole principle one of the boxes has two or more of the
picked numbers in it. Those two numbers have the same remainder when divided by
5.

3. What is the fewest number of times you must roll a six-sided dice before you can be



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 159

Counting 159

assured that 10 or more of the rolls resulted in the same number?

Solution: Imagine six boxes, labeled 1 through 6. Every time you roll a , put an
object in Box 1. Every time you roll a , put an object in Box 2, etc. After n rolls,
the division principle says that one box contains dn

6 e objects, and this means you
rolled the same number dn

6 e times. We seek the smallest n for which dn
6 e � 10. This

is the smallest n for which n
6 > 9, that is n > 9 · 6 = 54. Thus the answer is n = 55.

You need to roll the dice 55 times.

5. Prove that any set of 7 distinct natural numbers contains a pair of numbers whose
sum or di↵erence is divisible by 10.

Solution: Let S be any set of 7 natural numbers. We want to show the sum or
di↵erence of two of them is a multiple of 10. Take six boxes labeled as follows:

1, 9 2, 8 3, 7 4, 6 5 0

Notice that if a box has two numbers on it, then they add up to 10. Take the numbers
from S and put them into the boxes in the following way: For each x 2 S, look at its
rightmost (one’s) digit, and put it in the box that has that digit on it. (For example,

put 253 in box 3,7 . Also put 17 and 13 into 3,7 . Put 91 in 1,9 ; put 55 in 5 and

put 100 into 0 , etc.) Because S has more elements than there are boxes, at least
one box will contain two (or more) numbers. Take two numbers x and y that are in
the same box. If their rightmost digits happen to be the same, then the rightmost
digit of the di↵erence x � y is 0, so this di↵erence is a multiple of 10. On the other
hand, if their right-most digits are di↵erent, then because they are in the same box,
their rightmost digits sum to 10. Therefore the rightmost digit of the sum x+ y is 0,
so the sum is a multiple of 10.

Section 6.10

1. Show that 1(n�0)+2(n�1)+3(n�2)+4(n�3)+ · · ·+(n�1)2+(n�0)1 =
�
n+2
3

�
.

Solution: Let S = {0, 1, 2, 3, . . . , n, n + 1}, which is a set with n + 2 elements. The
right-hand side

�
n+2
3

�
of our equations is the number of 3-element subsets of S.

Let’s now count these 3-element subsets in a di↵erent way. Any such subset X can
be written as X = {j, k, `}, where 0  j < k < `  n + 1. Note that this forces the
middle element k to be in the range 1  k  n. Given a fixed middle element k,
there are k choices for the smallest element j and n + 1 � k choices for the largest
element `.

0 1 2 · · · k � 1
| {z }
k choices for j

k
"

middle

k + 1 k + 2 k + 3 · · · n n+ 1
| {z }

n + 1 � k choices for `

By the multiplication principle, there are k(n+1�k) possible 3-element sets X with
middle element k. For example, if k = 1, there are 1(n � 0) sets X with middle
element 1. If k = 2, there are 2(n� 1) sets X with middle element 2. If k = 3, there
are 3(n � 2) sets X with middle element 3. Thus the left-hand side of our equation
counts up the number of 3-element subsets of S, so it is equal to the right-hand side.

3. Show that
�
n
2

��
n�2
k�2

�
=
�
n
k

��
k
2

�
.

Solution: Consider the following problem. From a group of n people, you need to
select k people to serve on a committee, and you also need to select 2 of these k
people to lead the committee’s discussion. In how many ways can this be done?
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One approach is to first select k people from n, and then select 2 of these k people to
lead the discussion. By the multiplication principle, there are

�
n
k

��
k
2

�
ways to make

this selection.

Another approach is to first select 2 of the n people to be the discussion leaders, and
there are

�
n
2

�
ways to do this. Next we need to fill out the committee by selecting

k � 2 people from the remaining n � 2 people, and there are
�
n�2
k�2

�
ways to do this.

By the multiplication principle, there are
�
n
2

��
n�2
k�2

�
ways to make the selection.

By the previous two paragraphs,
�
n
2

��
n�2
k�2

�
and

�
n
k

��
k
2

�
are both answers to the same

counting problem, so they are equal.

5. Show that
�
2n
2

�
= 2

�
n
2

�
+ n2.

Solution: Let S be a set with 2n elements. Then the left-hand side counts the number
of 2-element subsets of S.

Let’s now count this in a di↵erent way. Split S as S = A [ B, where |A| = n = |B|.
We can choose a 2-element subset of S in three ways: We could choose both elements
from A, and there are

�
n
2

�
ways to do this. We could choose both elements from B,

and there are
�
n
2

�
ways to do this. Or we could choose one element from A and then

another element from B, and by the multiplication principle there are n · n = n2

ways to do this. Thus the number of 2-element subsets of S is
�
n
2

�
+
�
n
2

�
+ n2 =

2
�
n
2

�
+n2, and this is the right-hand side. Therefore the equation holds because both

sides count the same thing.

7. Show that
pP

k=0

�
m
k

��
n

p�k

�
=
�
m+n

p

�
.

Solution: Take three non-negative integers m,n and p. Let S be a set with |S| =
m+ n, so the right-hand side counts the number of p-element subsets of S.

Now let’s count this in a di↵erent way. Split S as S = A [ B, where |A| = m and
|B| = n. We can make any p-element subset of S by choosing k of its elements from
A in and p � k of its elements from B, for any 0  k  p. There are

�
m
k

�
ways to

choose k elements from A, and
�

n
p�k

�
ways to choose p� k elements from B, so there

are
�
m
k

��
n

p�k

�
ways to make a p-element subset of S that has k elements from A. As

k could be any number between 0 and p, the left-hand side of our equation counts
up the p-element subsets of S. Thus the left- and right-hand sides count the same
thing, so they are equal.

9. Show that
nP

k=m

�
k
m

�
=
�
n+1
m+1

�
.

Solution: Let S = {0, 1, 2, . . . , n}, so |S| = n+1. The right-hand side of our equation
is the number of subsets X of S with m+ 1 elements.

Now let’s think of a way to make such an X ✓ S with |X| = m+ 1. We could begin
by selecting a largest element k for X. Now, once we have chosen k, there are k
elements in S to the left of k, and we need to choose m of them to go in X (so these,
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along with k, form the set X).

S =
�

0, 1, 2, 3, 4, 5, · · · , k � 1,
| {z }

choose m of these k numbers for X

k,
"

largest

number

in X

k + 1, k + 2, k + 3,· · · , n
 

There are
�
k
m

�
ways to choose these m numbers, so there are

�
k
m

�
subsets of S whose

largest element is k. Notice that we must have m  k  n. (The largest element
k of X cannot be smaller than m because we need at least m elements on its left.)

Summing over all possible largest values in X, we see that
nP

k=m

�
k
m

�
equals the number

of subsets of S with m+ 1 elements.

The previous two paragraphs show that
nP

k=m

�
k
m

�
and

�
n+1
m+1

�
are answers to the same

counting question, so they are equal.

11. Show that
nP

k=0
2k
�
n
k

�
= 3n.

Solution: Consider the problem of counting the number of length-n lists made from
the symbols {a, b, c}, with repetition allowed. There are 3n such lists, so the right-
hand side counts the number of such lists.

On the other hand, given k with 0  k  n, let’s count the lists that have exactly k
entries unequal to a. There are 2k

�
n
k

�
such lists. (First choose k of n list positions

to be filled with b or c, in
�
n
k

�
ways. Then fill these k positions with b’s and c’s in 2k

ways. Fill any remaining positions with a’s.) As k could be any number between 0
and n, the left-had side of our equation counts up the number of length-n lists made
from the symbols {a, b, c}. Thus the right- and left-hand sides count the same thing,
so they are equal.


