
CHAPTER 9

Disproof

Ever since Chapter 4 we have dealt with one major theme: Given a
statement, prove that is it true. In every example and exercise we

were handed a true statement and charged with the task of proving it.
Have you ever wondered what would happen if you were given a false
statement to prove? The answer is that no (correct) proof would be possible,
for if it were, the statement would be true, not false.

But how would you convince someone that a statement is false? The
mere fact that you could not produce a proof does not automatically mean
the statement is false, for you know (perhaps all too well) that proofs
can be difficult to construct. It turns out that there is a very simple and
utterly convincing procedure that proves a statement is false. The process
of carrying out this procedure is called disproof. Thus, this chapter is
concerned with disproving statements.

Before describing the new method, we will set the stage with some
relevant background information. First, we point out that mathematical
statements can be divided into three categories, described below.

One category consists of all those statements that have been proved to be
true. For the most part we regard these statements as significant enough
to be designated with special names such as “theorem,” “proposition,”
“lemma” and “corollary.” Some examples of statements in this category are
listed in the left-hand box in the diagram on the following page. There are
also some wholly uninteresting statements (such as 2= 2) in this category,
and although we acknowledge their existence we certainly do not dignify
them with terms such as “theorem” or “proposition.”

At the other extreme is a category consisting of statements that are
known to be false. Examples are listed in the box on the right. Since
mathematicians are not very interested in them, these types of statements
do not get any special names, other than the blanket term “false statement.”

But there is a third (and quite interesting) category between these
two extremes. It consists of statements whose truth or falsity has not
been determined. Examples include things like “Every perfect number
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is even,” or “Every even integer greater than 2 is the sum of two primes.”
(The latter statement is called the Goldbach conjecture. See Section 2.1.)
Mathematicians have a special name for the statements in this category
that they suspect (but haven’t yet proved) are true. Such statements are
called conjectures.

Three Types of Statements:
Known to be true Truth unknown Known to be false

(Theorems & propositions) (Conjectures)

Examples:

• Pythagorean theorem
• Fermat’s last theorem

(Section 2.1)
• The square of an odd

number is odd.

• The series
∞∑

k=1

1
k

diverges.

Examples:

• All perfect numbers are
even.

• Any even number greater
than 2 is the sum of two
primes. (Goldbach’s
conjecture, Section 2.1)

• There are infinitely many
prime numbers of form
2n −1, with n ∈N.

Examples:
• All prime numbers are

odd.
• Some quadratic equations

have three solutions.
• 0= 1

• There exist natural
numbers a,b and c
for which a3 +b3 = c3.

Mathematicians spend much of their time and energy attempting
to prove or disprove conjectures. (They also expend considerable mental
energy in creating new conjectures based on collected evidence or intuition.)
When a conjecture is proved (or disproved) the proof or disproof will
typically appear in a published paper, provided the conjecture is of sufficient
interest. If it is proved, the conjecture attains the status of a theorem or
proposition. If it is disproved, then no one is really very interested in it
anymore—mathematicians do not care much for false statements.

Most conjectures that mathematicians are interested in are quite
difficult to prove or disprove. We are not at that level yet. In this text, the
“conjectures” that you will encounter are the kinds of statements that an
experienced mathematician would immediately spot as true or false, but
you may have to do some work before figuring out a proof or disproof. But
in keeping with the cloud of uncertainty that surrounds conjectures at the
advanced levels of mathematics, most exercises in this chapter (and many
beyond it) will ask you to prove or disprove statements without giving any
hint as to whether they are true or false. Your job will be to decide whether
or not they are true and to either prove or disprove them. The examples
in this chapter will illustrate the processes one typically goes through in
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deciding whether a statement is true or false, and then verifying that it’s
true or false.

You know the three major methods of proving a statement: direct proof,
contrapositive proof and proof by contradiction. Now we are ready to
understand the method of disproving a statement. Suppose you want to
disprove a statement P. In other words you want to prove that P is false.
The way to do this is to prove that ∼ P is true, for if ∼ P is true, it follows
immediately that P has to be false.

How to disprove P: Prove ∼ P.

Our approach is incredibly simple. To disprove P, prove ∼ P. In theory,
this proof can be carried out by direct, contrapositive or contradiction
approaches. However, in practice things can be even easier than that
if we are disproving a universally quantified statement or a conditional
statement. That is our next topic.

9.1 Disproving Universal Statements: Counterexamples
A conjecture may be described as a statement that we hope is a theorem.
As we know, many theorems (hence many conjectures) are universally
quantified statements. Thus it seems reasonable to begin our discussion
by investigating how to disprove a universally quantified statement such as

∀x ∈ S,P(x).

To disprove this statement, we must prove its negation. Its negation is

∼ (∀x ∈ S,P(x)) = ∃x ∈ S,∼ P(x).

The negation is an existence statement. To prove the negation is true,
we just need to produce an example of an x ∈ S that makes ∼ P(x) true,
that is, an x that makes P(x) false. This leads to the following outline for
disproving a universally quantified statement.

How to disprove ∀x ∈ S,P(x).

Produce an example of an x ∈ S
that makes P(x) false.
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Things are even simpler if we want to disprove a conditional statement
P(x)⇒Q(x). This statement asserts that for every x that makes P(x) true,
Q(x) will also be true. The statement can only be false if there is an x that
makes P(x) true and Q(x) false. This leads to our next outline for disproof.

How to disprove P(x)⇒Q(x).
Produce an example of an x that
makes P(x) true and Q(x) false.

In both of the above outlines, the statement is disproved simply by
exhibiting an example that shows the statement is not always true. (Think
of it as an example that proves the statement is a promise that can be
broken.) There is a special name for an example that disproves a statement:
It is called a counterexample.

Example 9.1 As our first example, we will work through the process of
deciding whether or not the following conjecture is true.

Conjecture: For every n ∈Z, the integer f (n)= n2 −n+11 is prime.

In resolving the truth or falsity of a conjecture, it’s a good idea to gather
as much information about the conjecture as possible. In this case let’s
start by making a table that tallies the values of f (n) for some integers n.

n −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

f (n) 23 17 13 11 11 13 17 23 31 41 53 67 83 101

In every case, f (n) is prime, so you may begin to suspect that the conjecture
is true. Before attempting a proof, let’s try one more n. Unfortunately,
f (11)= 112−11+11= 112 is not prime. The conjecture is false because n = 11
is a counterexample. We summarize our disproof as follows:

Disproof. The statement “For every n ∈ Z, the integer f (n) = n2 −n+11 is
prime,” is false. For a counterexample, note that for n = 11, the integer
f (11)= 121= 11 ·11 is not prime. ■

In disproving a statement with a counterexample, it is important to explain
exactly how the counterexample makes the statement false. Our work
would not have been complete if we had just said “for a counterexample,
consider n = 11,” and left it at that. We need to show that the answer f (11)
is not prime. Showing the factorization f (11)= 11 ·11 suffices for this.
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Example 9.2 Either prove or disprove the following conjecture.

Conjecture If A, B and C are sets, then A− (B∩C)= (A−B)∩ (A−C).

Disproof. This conjecture is false because of the following counterexample.
Let A = {

1,2,3
}
, B = {

1,2
}
and C = {

2,3
}
. Notice that A− (B∩C)= {

1,3
}
and

(A−B)∩ (A−C)=;, so A− (B∩C) 6= (A−B)∩ (A−C). ■

(To see where this counterexample came from, draw Venn diagrams for
A−(B∩C) and (A−B)∩(A−C). You will see that the diagrams are different.
The numbers 1, 2 and 3 can then be inserted into the regions of the
diagrams in such a way as to create the above counterexample.)

9.2 Disproving Existence Statements
We have seen that we can disprove a universally quantified statement or a
conditional statement simply by finding a counterexample. Now let’s turn
to the problem of disproving an existence statement such as

∃x ∈ S,P(x).

Proving this would involve simply finding an example of an x that makes
P(x) true. To disprove it, we have to prove its negation ∼ (∃x ∈ S,P(x)) =
∀x ∈ S,∼ P(x). But this negation is universally quantified. Proving it
involves showing that ∼ P(x) is true for all x ∈ S, and for this an example
does not suffice. Instead we must use direct, contrapositive or contradiction
proof to prove the conditional statement “If x ∈ S, then ∼ P(x).” As an
example, here is a conjecture to either prove or disprove.

Example 9.3 Either prove or disprove the following conjecture.

Conjecture: There is a real number x for which x4 < x < x2.

This may not seem like an unreasonable statement at first glance. After
all, if the statement were asserting the existence of a real number for
which x3 < x < x2, then it would be true: just take x =−2. But it asserts
there is an x for which x4 < x < x2. When we apply some intelligent guessing
to locate such an x we run into trouble. If x = 1

2 , then x4 < x, but we don’t
have x < x2; similarly if x = 2, we have x < x2 but not x4 < x. Since finding
an x with x4 < x < x2 seems problematic, we may begin to suspect that the
given statement is false.

Let’s see if we can disprove it. According to our strategy for disproof,
to disprove it we must prove its negation. Symbolically, the statement is
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∃x ∈R, x4 < x < x2, so its negation is

∼ (∃x ∈R, x4 < x < x2) = ∀x ∈R,∼ (x4 < x < x2).

Thus, in words the negation is:

For every real number x, it is not the case that x4 < x < x2.

This can be proved with contradiction, as follows. Suppose for the
sake of contradiction that there is an x for which x4 < x < x2. Then x must
be positive since it’s greater than the non-negative number x4. Dividing
all parts of x4 < x < x2 by the positive number x produces x3 < 1 < x. Now
subtract 1 from all parts of x3 < 1< x to obtain x3 −1< 0< x−1 and reason
as follows:

x3 −1 < 0 < x−1

(x−1)(x2 + x+1) < 0 < (x−1)

x2 + x+1 < 0 < 1

(Division by x−1 did not reverse the inequality < because the second line
above shows 0< x−1, that is, x−1 is positive.) Now we have x2 + x+1< 0,
which is a contradiction because x being positive forces x2 + x+1> 0

We summarize our work as follows.
The statement “There is a real number x for which x4 < x < x2” is false

because we have proved its negation “For every real number x, it is not the
case that x4 < x < x2.”

As you work the exercises, keep in mind that not every conjecture will be
false. If one is true, then a disproof is impossible and you must produce a
proof. Here is an example:

Example 9.4 Either prove or disprove the following conjecture.

Conjecture There exist three integers x, y, z, all greater than 1 and no
two equal, for which xy = yz.

This conjecture is true. It is an existence statement, so to prove it we
just need to give an example of three integers x, y, z, all greater than 1 and
no two equal, so that xy = yz. A proof follows.

Proof. Note that if x = 2, y= 16 and z = 4, then xy = 216 = (24)4 = 164 = yz. ■
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9.3 Disproof by Contradiction
Contradiction can be a very useful way to disprove a statement. To see
how this works, suppose we wish to disprove a statement P. We know
that to disprove P, we must prove ∼ P. To prove ∼ P with contradiction,
we assume ∼∼ P is true and deduce a contradiction. But since ∼∼ P = P,
this boils down to assuming P is true and deducing a contradiction. Here
is an outline:

How to disprove P with contradiction:

Assume P is true, and deduce a contradiction.

To illustrate this, let’s revisit Example 9.3 but do the disproof with
contradiction. You will notice that the work duplicates much of what we
did in Example 9.3, but is it much more streamlined because here we do
not have to negate the conjecture.

Example 9.5 Disprove the following conjecture.

Conjecture: There is a real number x for which x4 < x < x2.

Disproof. Suppose for the sake of contradiction that this conjecture is true.
Let x be a real number for which x4 < x < x2. Then x is positive, since it is
greater than the non-negative number x4. Dividing all parts of x4 < x < x2

by the positive number x produces x3 < 1< x. Now subtract 1 from all parts
of x3 < 1< x to obtain x3 −1< 0< x−1 and reason as follows:

x3 −1 < 0 < x−1

(x−1)(x2 + x+1) < 0 < (x−1)

x2 + x+1 < 0 < 1

Now we have x2 + x+1< 0, which is a contradiction because x is positive.
Thus the conjecture must be false. ■

Exercises for Chapter 9
Each of the following statements is either true or false. If a statement is true,
prove it. If a statement is false, disprove it. These exercises are cumulative,
covering all topics addressed in Chapters 1–9.
1. If x, y ∈R, then |x+ y| = |x|+ |y|.
2. For every natural number n, the integer 2n2 −4n+31 is prime.



Disproof by Contradiction 153

3. If n ∈Z and n5 −n is even, then n is even.
4. For every natural number n, the integer n2 +17n+17 is prime.
5. If A, B,C and D are sets, then (A×B)∪ (C×D)= (A∪C)× (B∪D).
6. If A, B,C and D are sets, then (A×B)∩ (C×D)= (A∩C)× (B∩D).
7. If A, B and C are sets, and A×C = B×C, then A = B.
8. If A, B and C are sets, then A− (B∪C)= (A−B)∪ (A−C).
9. If A and B are sets, then P(A)−P(B)⊆P(A−B).

10. If A and B are sets and A∩B =;, then P(A)−P(B)⊆P(A−B).
11. If a,b ∈N, then a+b < ab.
12. If a,b, c ∈N and ab, bc and ac all have the same parity, then a,b and c all have

the same parity.
13. There exists a set X for which R⊆ X and ;∈ X .
14. If A and B are sets, then P(A)∩P(B)=P(A∩B).
15. Every odd integer is the sum of three odd integers.
16. If A and B are finite sets, then |A∪B| = |A|+ |B|.
17. For all sets A and B, if A−B =;, then B 6= ;.
18. If a,b, c ∈N, then at least one of a−b, a+ c and b− c is even.
19. For every r, s ∈Q with r < s, there is an irrational number u for which r < u < s.
20. There exist prime numbers p and q for which p− q = 1000.
21. There exist prime numbers p and q for which p− q = 97.
22. If p and q are prime numbers for which p < q, then 2p+ q2 is odd.
23. If x, y ∈R and x3 < y3, then x < y.
24. The inequality 2x ≥ x+1 is true for all positive real numbers x.
25. For all a,b, c ∈Z, if a |bc, then a |b or a | c.
26. Suppose A, B and C are sets. If A = B−C, then B = A∪C.
27. The equation x2 = 2x has three real solutions.
28. Suppose a,b ∈Z. If a |b and b |a, then a = b.
29. If x, y ∈R and |x+ y| = |x− y|, then y= 0.
30. There exist integers a and b for which 42a+7b = 1.
31. No number (other than 1) appears in Pascal’s triangle more than four times.
32. If n,k ∈N and

(n
k
)
is a prime number, then k = 1 or k = n−1.

33. Suppose f (x)= a0 +a1x+a2x2 +·· ·+anxn is a polynomial of degree 1 or greater,
and for which each coefficient ai is in N. Then there is an n ∈N for which the
integer f (n) is not prime.

34. If X ⊆ A∪B, then X ⊆ A or X ⊆ B.


