
 

TITLE PAGE 

APPLICATIONS OF MODERN HEURISTICS AND ADVANCED DATA 

MINING TECHNIQUES 

 

 

A Thesis 

Presented in Partial Fulfillment of the Requirements for the  

Degree of Master of Science 

with a  

Major in Computer Science 

in the 

College of Graduate Studies 

University of Idaho 

 

 

 

 

 

by 

Kevin S. McCarty 

December 2008 

 

Major Professor: Milos Manic, Ph.D. 
  



ii 

AUTHORIZATION TO SUBMIT THESIS 
 

This thesis of Kevin McCarty, submitted for the degree of Master of Science with a 

major in Computer Science and titled “APPLICATIONS OF MODERN HEURISTICS 

AND ADVANCED DATA MINING TECHNIQUES” has been reviewed in final form.  

Permission, as indicated by the signatures and dates given below, is now granted to 

submit final copies to the College of Graduate Studies for approval. 

 

Major Professor _____________________________     Date_____________ 

   Milos Manic 

 

Committee Members _____________________________     Date_____________ 

Akira Tokuhiro 

   _____________________________     Date_____________ 

   Miles McQueen 

 
 

Department 

Administrator  _____________________________     Date_____________ 

   Mark L. Manwaring 

 

Discipline’s 

College Dean  _____________________________     Date_____________ 

   Howard Peavy 
 

 

Final Approval and Acceptance by the College of Graduate Studies 
 

___________________________________________     Date_____________ 

Margrit von Braun



iii 

ABSTRACT 

 
Applications of advanced data mining techniques have proven useful in 

addressing a wide range of research topics and problems.  Data mining results, however, 

can be difficult to interpret and often mask important relationships with trivial ones.  In 

particular, the Decision Tree, used for classification, prediction and association has a 

tendency to mask sparse data as it may not reach the information gain threshold 

required to generate a new node.  Rule generation based upon Decision Trees also can 

be difficult to interpret without a proper contextual framework to base those rules upon.  

Fuzzy logic, effective in creating semantic precision by using partial contributions from 

multiple sets, applied to Decision Trees can make them both more precise linguistically 

and easier to understand.  Fuzzy Type-2 extends fuzzy logic even further by providing a 

contextual framework within which a Decision Tree rule can be polymorphically 

derived.  Use of these new contexts also allows for faster, set-based pruning of the tree, 

as opposed to traditional node searches. 

Applications of data mining include intelligent controllers for autonomous 

vehicles.  By maintaining a database of prior behavior, an autonomous vehicle can learn 

to follow and better anticipate moves by a lead vehicle.  At times, however, when a 

given space is either too large or simply unknown, a vehicle might have to rely upon 

local search techniques in order to determine the most appropriate action for a given 

situation. 

By combining traditional techniques with modern heuristics in combination with 

non-traditional constructs, even more powerful, effective or practical implementations 

are possible.  This thesis presents applications of modern heuristics and algorithms used 
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to improve upon a traditional Data Mining Technique: the Decision Tree.  Because Data 

Mining is often complemented with Local Search Techniques, this thesis looks at the 

effectiveness of a number of Local Search Techniques and explores improvements to 

Stochastic Hill Climbing, and Simulated Annealing in a Factory Scheduling Problem.  

Finally, applications, such as intelligent controllers often incorporate elements of Data 

Mining as well as local search.  This thesis presents a practical method for the control of 

an autonomous vehicle.  Applications of these techniques are demonstrated in examples 

showing significant reduction and simplification of .the Decision Tree, significant 

reduction in Local Search failure rates and an effective tracking algorithm. 
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Chapter 1 

 

INTRODUCTION 

 
From data classification to rule generation for intelligent controllers to local 

search routines for adversarial games, modern heuristics and advanced data mining 

techniques play an increasingly important role.  Application of these techniques has 

proven useful in addressing a wide range of theoretical as well as practical issues [Cox 

05], [Han 06], [Kliewer 00].  In addition, in items such as autonomous vehicles, all of 

these elements may well come into play.  Driving around safely and appropriately 

requires application of numerous heuristics as the dynamics and rules can change with 

each new sensor input.  Decision Trees, possibly derived from huge data warehouses 

can provide guidance for a given set of circumstances, while local search algorithms 

can help to find optimal solutions where the search space is simply too large to 

comprehensively explore. 

However, problems persist in that certain traditional approaches in each of these 

areas are not necessarily the most practical or even best approaches given certain 

conditions [Guimar 07], [Mendon 97], [Fuering 99].  Better results are achievable by 

combining these traditional approaches with heuristics and other modifications.  Among 

the modifications demonstrated here are the use of fuzzy logic and neural networks to 

enhance relevancy and overall performance. 

Chapter 2 presents background material about the techniques described in this 

thesis: Fuzzy Type 1 Logic and Fuzzy Type 2 Logic, Neural Networks, Local Search 

Algorithms and Advanced Data Mining Techniques. 
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Chapter 3 examines a modification of the Decision Tree called CoFuH-DT for 

Contextual Fuzzy Hierarchies for Decision Trees; an algorithm for capturing intrinsic 

relationships among the nodes of a DT and based upon a proposed concept of Fuzzy 

Type 2 “contexts”.  In a series of steps, this algorithm fuzzifies a Decision Tree, then 

overlays Fuzzy Type 2 contexts.  The resulting Fuzzy Type 2 classification is then able 

to capture intrinsic relationships that are otherwise difficult to describe.  The resulting 

Decision Tree is smaller and more precise for rule construction.  Example tests 

demonstrate savings of multiple orders of magnitude in terms of nodes and applicable 

conditions. 

Chapter 4 extends the work done in chapter 3 by presenting a method for 

generating the hierarchical contexts used by the CoFuH-DT technique.  Contextual 

derivation from Decision Trees, CoT-DT, searches for useful classifications within a 

traditional Decision Tree, classifications which can then be applied in CoFuH-DT.  

CoT-DT is demonstrated along with examples showing significant improvement in data 

representation. 

Because data mining techniques are often used in combination with other 

approaches such as local search algorithms or applications such as intelligent control, 

Chapter 5 discusses modern heuristics used in local search algorithm modifications and 

as a means of creating an inexpensive, yet effective tracking algorithm. 

Regarding the former, tests are performed on local search algorithms and 

applied to a production scheduling problem.  Two traditional local search techniques 

are modified using a set of heuristics resulting in a significant increase in the success 
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rate.  A complete application demonstrating all of the techniques along with the 

algorithms used is described and comparisons of results are shown. 

As to the latter, tracking algorithm, a simple and elegant configuration is 

demonstrated, called FLoST, Fuzzy Line of Sight Tracking, based on inexpensive line-

of-sight devices controlled by a heuristic to determine direction and speed of a follower.  

Unlike alternative approaches where the follower needs to undergo a complex training 

process, the FLoST-based follower primarily relies upon a human leader to provide 

direction.  This allows for a much simpler and less expensive implementation while still 

being able to match or exceed the effectiveness of the autonomous design under similar 

conditions.  Three boundary cases of lead vehicle maneuvers, circle, spiral and weave, 

are presented to show the efficacy of this approach. 
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Chapter 2 

 

BACKGROUND 

 
2.1 FUZZY LOGIC 

 
2.1.1 Fuzzy Logic Type 1 

 

Traditional systems are designed to make decisions based upon the truth or 

falsehood of a specific condition or value: 

 

If X=A then 

DoSomething 

Else 

DoSomethingElse       (1) 

 

While this approach is fine for many applications, there are situations where 

having hard, or, in fuzzy terms, “crisp” decision boundaries can lead to difficulties 

[Hanss 05], [Cox 05].  Consider, for example, the cruise control on a car.  Suppose the 

driver wishes to cruise at 60 miles per hour and sets the cruise control to 60.  Now 

suppose the internal cruise mechanism has three settings: ACCELERATE, which 

applies gas to speed the car up, BRAKE which applies the brakes to slow it down and 

NEUTRAL which equates to a no-operation.  The control logic might then be as 

follows: 
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If SPEED < 60 mph then 

  ACCELERATE 

Elseif SPEED = 60 then 

  NEUTRAL 

ElseIf SPEED > 60 then 

  BRAKE        (2) 

 

When the car travels at less than 60 mph, it speeds up and greater than 60 mph it 

slows down.  Problems can occur, however, at or around the 60 mph speed marker.  If 

the car is still accelerating at 59.99 mph, residual acceleration will result in the car 

exceeding 60 mph, in which case it will begin to apply the brake, perhaps bringing the 

car under the 60 mph threshold again, which will result in another round of acceleration 

and braking, making for a very inefficient system.  A smart designer might decide to 

improve the system by creating degrees of acceleration and braking such as 

HARD_ACCELERATION, MEDIUM_ACCELERATION, SOFT_ACCELERATION 

and HARD_BRAKE, MEDIUM_BRAKE and SOFT_BRAKE attempting to mitigate 

problems at the 60 mph speed marker.  The designer decides to create 5 mph zones on 

each side so the control logic might look like this: 
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If SPEED <= 60 - 10 mph then 

  HARD_ACCELERATE 

ElseIf SPEED <= 60 - 5 mph AND SPEED > 60 - 10 mph then 

  MEDIUM_ACCELERATE 

ElseIf SPEED < 60 mph AND SPEED > 60 - 5 mph then 

  SOFT_ACCELERATE 

ElseIf SPEED = 60 then 

  NEUTRAL 

ElseIf SPEED > 60 AND SPEED <= 60 + 5 then 

  SOFT_BRAKE 

ElseIf SPEED > 60 + 5 AND SPEED <= 60 + 10 then 

  MEDIUM_BRAKE 

ElseIf SPEED > 60 + 10 then 

  HARD_BRAKE       (3) 

 

This approach would serve to smooth out performance but there would still be 

problems at the various boundaries, such as when transitioning from HARD_BRAKE 

to MEDIUM_BRAKE or SOFT_ACCELERATE to NEUTRAL to SOFT_BRAKE.  

The ride would be rough and uneven.  Adding even more degrees of acceleration and 

braking would help, but would also introduce a great deal more complexity into the 

system. 

Another approach might be to come up with a smooth, continuous function, 

such as a linear or Cosine function; but often such simple representations do not come 
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close to approximating complex, real-world systems such as a cruise control.  More 

complex polynomial functions are possible, but require significant computer resources 

and are often difficult to derive for more than a small number of dimensions. 

There are other problems as well.  Describing a HARD_BRAKE as a single 

value, say deceleration of exactly -10 ft/s2 provides no description for neighboring 

values such as deceleration of -9.9 ft/s
2
.  Speedometers often give imprecise readings so 

any given speed reading is likely to be high or low to some degree.   To make a useful, 

reliable and consistent controller noise, ambiguity and uncertainty must be taken into 

consideration; but to do that requires a level of complexity that may be unattainable.  

This has to do with the fact that much of the real-world phenomena an individual, or 

machine, is likely to encounter are imprecise [Cox 95].  Dealing with imprecise 

phenomena using precise means can be computationally expensive, if not impossible 

[Hanss 05].  What is needed is a way to describe imprecise, or “uncertain” 

characteristics such that complexity is kept to a minimum. 

Fuzzy Logic, introduced by Lofti Zadeh in 1965, attempts to deal with these 

complexities by introducing a level of imprecision or “uncertainty” in place of crisp 

values [Cox 94].  This uncertainty takes the form of a “fuzzy set”, 𝐹1
  which consists of 

the set of all μ(x) where µ is Fuzzy Type 1 membership function that determines a 

degree of membership, or truth, from 0 to 1, for a given element x in some range of 

values X. 

 

𝐹1
 = {𝑥, 𝜇 𝑥 | ∀𝑥 ∈ 𝑋, 𝜇 𝑥 ⊆ [0,1]}      (4) 
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The fuzzy set, 𝐹1
 , as well as the membership function, µ, depend upon the 

knowledge of one or more domain “experts” who define boundaries and rules to create 

a suitable approximation of the desired result [Cox 95].  In Boolean logic, the truth, or 

membership, value only consists of the values 0, indicating false, or 1, indicating true, 

while a fuzzy logic value can consist of the values 0, indicating no membership, 1, 

indicating full membership, or any value in between.  As a result, fuzzy members can 

have membership in not just one, but potentially many fuzzy sets, with the degree 

determined by µ, hence their inherent “fuzziness”. 

For example, a person providing a description of a real-world object such as: 

THE MAN IS TALL 

might consider the description TALL to mean someone who is more than 6 feet in 

height.  The traditional Boolean description would look like this: 

 

6 feet IS TALL (Tall = True) 

6 feet IS NOT SHORT (Short = False)     (5) 

 

However the same person would likely not consider it entirely accurate to 

classify someone who is 5 feet 11.5 inches as SHORT, nor someone who is 5 feet 

11.9999 inches.  While it may seem counterintuitive, because language and real-world 

phenomena are often imprecise, describing objects in imprecise/fuzzy terms often leads 

to a corresponding increase in precision as well as a reduction in both ambiguity and 

complexity of systems. 
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Take, for example, a gentleman who is 5 feet 11.5 inches in height.  While he 

may not be TALL, he is clearly not SHORT either.  Instead, he might be considered by 

most to be TALL to a degree, but not completely, and also SHORT to a degree, though 

only marginally.  In fuzzy terms, 5 feet 11.5 inches might look like this: 

 

µTall(5’11.5”) = 0.95 

µShort(5’11.5”) = 0.05        (6) 

 

The fuzzy description is both precise and much more consistent with traditional 

perception.  The expert designing a fuzzy description of a person’s height would create 

a pair of overlapping fuzzy sets to describe a person’s height [Cox 94].  The resulting 

description might say that a person under 4 feet in height is SHORT, while a person 

over 6 feet is TALL, but between 4 and 6 feet, a person has gradations of both as shown 

in Figure 2 - 1. 

 

False

True
SHORT TALL

4 ft 5 ft 6 ft

 
 
Figure 2 - 1, A basic, fuzzy description of a person’s height 

 

The shapes in Figure 2 - 1 are trapezoidal, but fuzzy sets can consist of many 

kinds of “shapes”, such as a triangle and Bell Curve, among others. 
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The only restriction to fuzzy logic membership lies at the end points; fuzzy logic 

is an extension of traditional Boolean logic so at the endpoints 0, 1, any fuzzy µ must 

produce exactly the same value as its Boolean counterpart.  In the case described above, 

6 feet = TALL: 

 

µTall(6’) = 1 => 6 feet IS TALL 

µShort(6’) = 0 => 6 feet IS NOT SHORT     (7) 

 

which satisfies the restriction and holds to equation (5). 

To further extend Boolean logic, Zadeh introduced fuzzy set operators [Cox 94], 

taking the traditional AND, OR, NOT operators and creating the fuzzy equivalents µmin, 

µmax, u~,  indicating µ’s complement, where: 

 

µmin(x, y) = min(µ(x), µ(y)) 

µmax(x, y) = max(µ(x), µ(y)) 

µ~(x) = 1 - µ(x)        (8) 

 

These fuzzy operators reduce to Boolean equivalents at the endpoints 0 and 1, as 

demonstrated by the following truth table comparing the Boolean AND with the fuzzy 

operator µmin: 

  



11 

Value A Value B A   AND   B µmin(A, B) 

1 1 1 min(1, 1) = 1 

1 0 0 min(1, 0) = 0 

0 1 0 min(0, 1) = 0 

0 0 0 min(0, 0) = 0 

 
Table 2 - 1, Fuzzy and Boolean AND Truth Table 

 

Fuzzy sets also have modifiers, called “hedges” which serve to strengthen or 

relax a given fuzzy set.  The net effect is to either increase or decrease the gradient of a 

fuzzy set [Cox 94].  Generally these modifiers employ commonly used linguistic terms 

such as VERY (increase gradient) or SOMEWHAT (decrease gradient) and have an 

effect similar to that shown in Figure 2 - 2 and Figure 2 - 3. 

 

False

True

SHORT

4 ft 5 ft 6 ft

SOMEWHAT 

SHORT

 
 
Figure 2 - 2, Fuzzy description of a person’s height using hedge SOMEWHAT. 
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False

True
TALL

4 ft 5 ft 6 ft

VERY 

TALL

 

 
Figure 2 - 3, A basic, fuzzy description of a person’s height using hedge VERY. 

 

As would be expected, a person who is to some degree SHORT is to a greater 

degree SOMEWHAT SHORT, while a person who is to some degree TALL is to a 

lesser degree; VERY TALL. 

Taking another look at the example of the cruise control, the crisp 

implementation of acceleration described would look like a stair-step pattern of choices. 

6045 50 55 65 70 75

HARD_ACCELERATE

MEDIUM_ACCELERATE

SOFT_ACCELERATE

SOFT_BRAKE

MEDIUM_BRAKE

HARD_BRAKE

NEUTRAL

 

Figure 2 - 4, A stair-step, crisp implementation. 
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While a fuzzy-based implementation instead would create a series of 

overlapping fuzzy sets. 

 

False

True
HARD_ACCL MEDIUM_ACCL SOFT_ACCL

45 7065605550

SOFT_BRAKE MEDIUM_BRAKE

HARD_BRAKE

75

NEUTRAL

 
 

Figure 2 - 5, Constructing fuzzy sets from speed ranges. 

 

Any acceleration/braking would be a fuzzy function taking into account 

membership in one of the fuzzy sets described below: 

 

μAction(SPEED) = μHard_Accl(SPEED) + μMedium_Accl(SPEED) + μSoft_Accl(SPEED) + 

μNeutral(SPEED) + μSoft_Brake(SPEED) + μMedium_Brake(SPEED) + 

μHard_Brake(SPEED)        (9) 

 

The resulting implementation, instead of a fragmented stair-step, would look 

more like a smoother sigmoid, or S-Curve as shown in Figure 2 – 6.. 
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6045 50 55 65 70 75

HARD_ACCELERATE

MEDIUM_ACCELERATE

SOFT_ACCELERATE

SOFT_BRAKE

MEDIUM_BRAKE

HARD_BRAKE

NEUTRAL

 

 
Figure 2 - 6, A smooth fuzzy implementation 

 

In many cases Fuzzy logic provides a number of advantages over traditional, 

crisp implementation [Hanss 05], [Cox 94]: 

1.    The ability to model complex systems 

Fuzzy logic can be used to represent very complex systems with many diverse 

elements. 

2.    Semantic precision 

Fuzzy logic can describe states and actions in a way that is both more precise 

and easily understood. 

3.    Cooperative modeling 

Fuzzy logic can incorporate the opinions of multiple experts into a single 

unified model 

4.    Reduced complexity 

Fuzzy logic can be used to approximate complex equations as well as a myriad 

of diverse interactions. 

5.    Improved handling of uncertain values and noise 
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Precision can be difficult to obtain if data is noisy or sensors are inaccurate.  By 

being able to relax a specific value into a range of values, Fuzzy logic can allow 

for variances without having to compromise accuracy.  As such, it can do a 

better job of handling and using less-than-reliable values, such as an inaccurate 

speedometer, as well as other types of noise that can affect a model. 

6.     Improved handling of possibilities 

A policeman trying to determine if a person is driving recklessly would asses 

such factors as speed, weaving, and road conditions.  Fuzzy logic treats each of 

these as fuzzy sets, e.g. SPEED (HIGH, NORMAL, LOW), WEAVE (HIGH, 

NORMAL, LOW), ROAD (GOOD, NORMAL, POOR) with a fuzzy function 

μReckless that describes membership in the RECKLESS category.  The 

relationship between SPEED, WEAVE, ROAD and the possibility of 

recklessness, as indicated by membership in RECKLESS, is direct and easy to 

understand.  A crisp expert system would otherwise have to employ a 

sophisticated array of conditionals which may provide an adequate answer, but 

does little to tell us about the intrinsic relationship between the individual 

components. 
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2.1.2 Fuzzy Logic Type 2 

 

Fuzzy Type 1 logic has been proven to be very useful for implementation in a 

wide array of difficult problems.  However, there are plenty of issues that Fuzzy Type 1 

logic has difficulty handling [Mendel 02]: 

1.    Experts can disagree on meaning of linguistics terms. 

“Cold”, “Warn” and “Hot” can have different meanings to experts living in 

different regions of the world, such as Barrow, Alaska, Hilo Hawaii, and 

Phoenix, Arizona.  Creating a thermostat that tries to maintain a “Warm” 

temperature in each region turns into a complex problem as midpoints, 

endpoints and ranges of fuzzy sets can vary dramatically. 

2.    Fuzzy sets work best on continuous data. 

Histograms containing non-continuous data can pose a problem for a Fuzzy 

Type 1 implementation. 

3. Data can contain noise beyond the ability of Fuzzy Type 1 to handle easily. 

All of these “uncertainties” can influence the ability of a membership function 

to come up with an appropriate solution. 

 

Fuzzy Type 2 extends Fuzzy Type 1 by adding another dimension of 

“uncertainty” to the existing Fuzzy Type 1 construction.  Recall in the previous section 

the Fuzzy Type 1 set 𝐹1
 , described as a union of a range of values X and a fuzzy 

membership function μ: 

 

𝐹1
 = {𝑥, 𝜇 𝑥 | ∀𝑥 ∈ 𝑋, 𝜇 𝑥 ⊆ [0,1]}      (10) 

 



17 

Fuzzy Type 2 creates a new fuzzy set 𝐹2
  which is the union of a new 

membership function μ2 applied to members of 𝐹1
 : 

 

𝐹2
 = {( 𝑥, 𝜇 𝑥  , 𝜇2(𝑥, 𝜇(𝑥))|∀𝑥 ∈ 𝑋, ∀𝜇(𝑥) ⊆ [0,1]}   (11) 

 

This new fuzzy dimension “relaxes” the original Fuzzy Type 1 set, generating a 

transformation into a new Fuzzy Type 1 set for more generic problem solving.  As such 

it is able to compensate for many the shortcomings of Fuzzy Type 1.  Consider the 

problem of the definition of “Warm”.  Experts may disagree on the precise mid-point or 

range of “Warm” but they are likely to have a consensus on “Warm” being at or around 

some statistical measure; for example, the daily mean.  While it is not possible to 

construct a Fuzzy Type 1 set to a suitable “Warm” range for all climates, using Fuzzy 

Type 2, “Warm” can now come to mean the average temperature plus and minus one 

standard deviation.  Now the Fuzzy Type 1 set for “Warm”, under Fuzzy Type 2 

becomes location-dependent and can adjust its members, as well as its corresponding 

membership values, as necessary to fit the appropriate “expert” definition. 

Take for example an airplane taking passengers from to various points in the 

United States.  It has a fuzzy thermostat.  However, the airplane wants everybody to be 

most comfortable, or “Warm” depending upon the location they fly to.  In Barrow, 

Alaska, where temperatures tend to remain below freezing for long periods, a fuzzy 

representation of “Hot”, “Warm”, and “Cold” might look like Figure 2 - 7. 
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Figure 2 - 7, Fuzzy sets for a thermostat in Barrow, Alaska. 

 

In Phoenix, Arizona, where temperatures tend to remain above freezing for long 

periods, a fuzzy temperature gage might use a representation like Figure 2 - 8. 
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Figure. 2 - 8, Fuzzy sets for a thermostat in Phoenix. 

 

Notice that a move from Barrow to Phoenix requires a corresponding shift in the 

fuzzy sets designated for “Cold”, “Warm” and “Hot” in order to accommodate the 

differing Fuzzy Type 1 definitions for each location.  Fuzzy Type 2 allows the resulting 

Fuzzy Type 1 definitions the flexibility to change according to requirements, but remain 

internally consistent. 
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Figure 2 - 9, A Fuzzy Type 2 transition of Fuzzy Type 1 sets. 

 

It is the new dimension of uncertainty provided by Fuzzy Type 2 that accomplishes this. 
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Figure 2 - 10, Fuzzy Type 2 dimension of uncertainty added to Fuzzy 1. 

 

Just as in Fuzzy Type 1, Fuzzy Type 2 must be consistent with Boolean logic at 

the endpoints and must use the same Zadeh operators as Fuzzy Type 1. 
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2.2 NEURAL NETWORKS 

 
 Neural networks arose from a study of biological neural systems, although only 

superficial similarities exist [Schalk 97].  The concept of a neural network centers 

around a single unit, called a neuron, that receives input from one of more sources.  In 

the biological version, a series of fine structures called dendrites collect signals and 

transmit them to the neuron’s cell body.  Each neuron has an inhibitor which serves as a 

threshold for the incoming signal.  If the incoming signal is sufficiently strong to 

overcome the inhibitor, the cell “fires” or initiates a chemical process, creating a signal 

that gets passed through an axon to other dendrites of other cells [Zurada 92].  In the 

artificial version, dendrites serve as inputs which are summed and passed to an 

algorithm called an Activation Function that serves as the threshold as demonstrated in 

Figure 2 - 11. 

 

 
 

Figure 2 - 11, A biological neuron and its computer-based equivalent. 

 

The input consists of a value along with “weights” and in the artificial neuron is 

combined with all other inputs and a bias.  The total is then processed by the activation 

function, which outputs one of two values along the Axon, or output.  This new model 

is shown in Figure 2 - 12. 
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Figure 2 - 12, A Simple Artificial Neuron. 

 

The output values allow a neuron to “classify” inputs into one of two categories.  

The classification allows a single neuron to distinguish characteristics between points in 

n-dimension space.  By adjusting the weights on the individual inputs and bias, the 

neuron can “learn” to behave in a given fashion, that is, change the way it classifies a 

given point. 

 

 
 
Figure 2 - 13, Single neuron separates two square patterns. 

 

Much like their biological counterparts, artificial neurons can learn by example, 

but can also “explore” a space in a process called unsupervised learning [Wang 06], 

[Zurada 92]. 

Whereas a single neuron can distinguish or separate points into one of two 

categories, multiple neurons working together can be trained to recognize very 

sophisticated patterns [Ben-Gan 06].  These neurons working collectively make up the 

neural network as demonstrated in Figure 2-14. 
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Figure 2 - 14, Neurons working together separate squares from circles. 

 

Neural networks come in a variety of configurations such as feed-forward, 

feedback, single-layer and multi-layer and display a variety of behaviors.  Some, such 

as the Kohonen Network,s are highly effective at relating clusters of data points.  Others 

such as Error Back Propagation are useful at discovering non-linear classifications.  

Still others, such as Hopfield and Counter Propagation Networks are very effective at 

learning and associating images and like patterns. 

Neural networks are often very successful at identifying patterns that are often 

too complex for human inspection or other artificial techniques [Ben-Gan 06].  Once 

identified, the neural network acts as the “expert” for that particular pattern and is able 

to discern that pattern from among other sources of data. 

Typical uses for a neural network are classification, regression and prediction 

[Han 06].  Classification is achieved by “training”, either supervised or unsupervised, a 

network’s weights so that the resulting output value is able to identify patterns which 

meet classification criteria.  Regression is achieved by having a neural network modify 

itself in order to describe a sequence of known values.  Prediction is achieved by taking 

a known pattern and extrapolating its behavior forward in time. 
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Neural networks are used in many commercial applications from image, 

character and voice recognition to medical diagnosis, stock market prediction and data 

mining [Yu 06], [Han 06]. 
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2.3 LOCAL SEARCH TECHNIQUES 

 
When investigating an unknown state space, a software agent must engage in 

some form of search.  For a space with a small number of states, a comprehensive 

search is the preferred method for discovering the goal state.  A system simply looks at 

all of the possible permutations and selects the best one.  For state spaces that are 

sufficiently large, there may be either insufficient time or computing resources, making 

a comprehensive search impractical.  In such cases a solution may still be found using 

limited resources.  This is accomplished by starting at a random point and using a 

neighborhood search technique called Local Search [Russell 03], [Martin 07]. 

Instead of trying to examine all possible states, a local search algorithm limits 

its search to neighboring states.  Examination of the “neighborhood” by a local search 

algorithm will often yield a gradient which can be followed to other neighboring states 

with the prospect that this may eventually lead to a goal state or local maximum.  This 

type of search can greatly reduce the cost of computer resources and search time but 

may also fail in its mission to reach a goal state.  Success or failure depends upon the 

state space and the type of local search algorithm used. 
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Figure 2 - 15, Typical space with a global (goal state) and local maxima. 

 

Some “greedy” local search algorithms, such as Hill Climbing, simply follow 

the gradient to its end.  Others, such as Simulated Annealing, introduce some random 

movement to better their chances of finding a goal state without becoming trapped in a 

local maximum.  Still others, such as Tabu search combine a random search with a 

memory to map areas searched and avoid them if they prove unfruitful [Martin 07], 

[Zheng 06]. 

 

Following 

Gradient

Bounce out of local 

maximum

 
 

Figure 2 - 16, Local Search following gradient and “bounce” out of local maximum. 

 

Local search algorithms can be combined with additional heuristics to improve 

their effectiveness for a given search problem. 
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2.4 ADVANCED DATA MINING TECHNIQUES 

 
With each passing day, the amount of data collected continues to increase.  As 

data sources grow, it becomes more and more difficult to derive meaningful 

information via traditional human query and search mechanisms.  Traditional reporting 

often gets overwhelmed in minutiae while key relationships remain hidden [Kita 02], 

[Fu 07]. 

Database technology has evolved to meet these challenges with an ever greater 

and more advanced array of storage mechanism and query tools.  Relational databases 

dominate the business landscape surrounded by data warehouses, high-speed 

connections and high-density hard-drives [Han 06], [Qimming 99].  Anyone looking for 

a specific answer to a specific question, such as who made the most purchases of a 

widget last month, only has to submit the appropriate query to retrieve it. 

Problems often arise, however, in trying to determine what questions are 

appropriate.  Datasets can become so large that even finding out where to begin 

presents significant challenges.  Basic questions that answer “who” or “how many” do 

not easily lead to the more pressing and useful question of “why”.  Common queries 

often fail to define important relationships or criteria, such as how to distinguish a 

“good” customer from a “poor” one or at what times are customers more receptive to 

certain promotions.  Nor can traditional queries easily draw associations, such as 

products that tend to be sold together, either in one purchase or subsequent purchases 

[Han 06], [Ben-Gan 06], [Witten 05]. 

In addition, important information for certain questions may not be easily 

formulated. With databases containing thousands of dimensions, it can be a daunting 
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challenge to determine which, if any, hold useful information.  Manually researching 

these large datasets is very costly, given the vast quantities of information, and human 

comprehension is often too limited to recognize many of the more fruitful patterns that 

exist from among thousands of possible attributes. 

Advanced Data Mining Techniques are a class of algorithms designed to search 

large databases and provide answers to vague and difficult questions by identifying 

relationships and patterns in the underlying data [[Han 06], [Ben-Gan 06], [Cox 05].  

They generally operate as a semi-directed or completely automated process, analyzing 

large datasets looking for useful information.  The results can take the form of data 

clusters, Decision Trees, histograms, graphs, lift charts and other presentations that 

distill complex relationships into a readable form.  The purpose of data mining is to take 

a large series of data points and derive information from which relevant, important, and 

heretofore unknown knowledge can be gained.  This new knowledge can then be used 

for competitive advantage through the creation of rules, or simply as a way to 

understand and predict the behavior of a complex system [Haru 05], [Adom 01]. 

 

 
 

Figure 2 - 17, Data Mining Process. 
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Data mining starts with data, usually in the form of a large relational database 

[Han 06].  This database may then be transformed into a data warehouse or data cube 

through a process called ETL (Extraction, Transformation, Loading) which attempts to 

create “clean” data free from errors and missing values and formatted in a way to make 

it easier to mine [Ben-Gan 06].  Because of the tight relationship between databases and 

data mining, large vendors of database, such as Microsoft, SAP, Oracle, and IBM all 

offer data mining tools to go with their database products.  Once the data is put into a 

more friendly form, data mining tools begin the process of creating mining models and 

extracting useful information. 

Data Mining Techniques fall into a number of categories: 

1.    Classification, where data points are related by classification criteria. 

Among classification techniques include Decision Trees, Neural Networks, 

Baysian Networks, Rule-based systems, Support Vector Machines, K-Means and 

Fuzzy C-Means. 
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Figure 2 - 18, Classification of relations among multiple elements. 

 

2.    Association, where relationships are drawn between objects. 

Among association techniques include Association Rules, Decision Trees, Baysian 

Networks, and K-Nearest Neighbor. 

 

 
 

Figure 2 - 19, Amazon.com association links other book titles to a book purchase. 

 

3.    Prediction, where past behavior is extrapolated to anticipated future actions. 
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Classification techniques can also serve as predictors. 

 

 
 

Figure 2 - 20, Predictions (far right dotted lines) from existing data patterns 

 

4.    Regression, where “common” characteristics are established to explain past 

behavior. 

Among regression techniques are Neural Networks, Linear and Non-Linear 

regression techniques and Fuzzy-Set based approaches. 
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Figure 2 - 21, Linear Regression attempts over a series of data points. 

 

5.    Time Series, where activity is group and trends established according similar 

periods of time in a given time sequence. 

Time series techniques involve a the creation of periodic “time slices” which often 

factor into account seasonal or other significant time-related events, such as 

weekends or a holiday period like the Christmas Season, in order to create trend-

based views that compare similar time periods or time spans or contrast with other 

data values.  Figure 2 – 22 shows a Time Series Analysis of the relationship 

between U.S. Nominal GDP and the yield of the 5-Year U.S. Treasury Note.  A 

close inspection of the year-over-year Treasury rate and of the rate of change of 

Nominal GDP changes shows a lagging correlation between the two with 

Nomincal GDP as the lead.  Time Series makes this otherwise vague relationship 

much more clear. 
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Figure 2 - 22, Time series analysis of US Nominal GDP vs. 5-year Treasury Note. 

 

The list above is by no means complete.  Each implementation attempts to 

“mine” the data in a particular way in order to discover the knowledge hidden there.  

Success often depends upon the characteristics of the data and the types of information 

to be mined.  For that reason, successful data miners often employ multiple techniques 

to both confirm previous findings as well as obtain a more comprehensive “picture” of 

the underlying data. 
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Chapter 3 

 

CONTEXTUAL FUZZY TYPE-2 HIERARCHIES FOR DECISION 

TREES (COFUH-DT) – AN ACCELERATED DATA MINING 

TECHNIQUE 

 
This chapter presents a technique for modifying a Decision Tree using Fuzzy Type 1 & 

2 operations.  The resulting contextual tree is substantially smaller and semantically 

more meaningful.  The results were presented at the IEEE HIS08, Krakow, Poland, 

May 2008 

 

3.1 INTRODUCTION 

 
Suppose the vehicle described in Chapter 1 has to deal with a complex 

environment.  It may have a Decision Tree providing rules on how to react to certain 

obstacles, what distance to maintain, or how quickly to accelerate.  These rules may 

need to deal with all kinds of factors such as weather, terrain, and other vehicles, all of 

which contribute to the overall decision process. 

What if, on the other hand, there was an environment feature that overwhelmed 

the decision-making process so that most or all other factors had little to no relevance.  

Suppose, for instance, the vehicle was on a steep slope.  Turns to the right or left might 

result in a rollover so any instruction or rule set involving right or left turns suddenly 

loses all meaning.  Having to search and prune a Decision Tree with millions of nodes 

or to create a special branch specifically for this possibility requires significant 

resources.  This chapter presents a solution to that and other problems faced by 

Decision Trees, particularly when used for data mining. 

Organizations make extensive use of data mining techniques in order to define 

meaningful and predictable relationships between objects [Liu 07].  Retailers use these 

techniques to create recommender systems that seek to bring products and customers 
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together [Qiming 99], [Kita 02], [Fu 07].  Game designers employ them in order to 

create worthwhile and realistic adversaries.  Zoologists use them to create environments 

in which animals can thrive.  One of the most widely employed methods for data 

mining is the Decision Tree.  The Decision Tree is created using algorithms, such as 

ID3, that take a set of data points and build a tree based upon the content therein [Zhao 

06], [Li 03], [Li 02]. 

Typically a Decision Tree is viewed as a set of conditions and probabilities that, 

when combined, represent a node.  Examining the tree usually means traversing it in a 

depth-first or breadth-first search, looking for nodes to prune in order to optimize the 

search.  Instead, consider the Decision Tree as a set of elements and filters, or 

conditions.  Each node represents a subset of its parent, created by applying one or 

more conditions to the parent set.  The sequence of conditions represents the “path” to a 

given node. 
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Figure 3 - 1, A basic, horizontal Decision Tree. 

 

Hence, in Figure. 3 - 1, the Decision Tree node, N1, represents a sample of data 

for which the condition C1 is applied to N0: N1 = C1(N0).  N3 then becomes the 

condition C3 applied to its parent node, N1: N3 = C3(N1) = C3(C1(N0). 
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Generically, any given node, Nj, is the resulting set derived when applying its 

“path” condition CNj to its parent: 

 

Nj = Ck(NjParent)  j=1,..,jmax, k=1,..,kmax    (12) 

 

where jmax is the number of nodes and kmax is the number of conditions.  For any given 

node, one can determine the conditions, or “path” which lead to it and derive rules to 

apply this node “knowledge”.  This knowledge takes the form of probabilistic events 

specified within the node, such as a purchase or appearance of a threat.  Rules can then 

associate an event with some set of conditions and dictate an appropriate action [Adom 

01], [Kwan 02], [Dai 07]. 

 

DEFINE RULE rule_name 

ON event 

IF condition 

DO action         (13) 

 

The conditions describe the relationships between node elements whether 

obvious, such as customers in a store, or more obscure, such as peanut butter and a 

bottle of cleaner; attempting to draw a meaningful relationship between them.  For 

example: 

 

IF  Customer BUYS Computer THEN 

  Customer BUYS Printer 25%      (14) 



36 

 

The above condition tells a store manager that a customer who buys a computer 

will also buy a printer 25% of the time.  This indicates that there is a high likelihood 

that any given customer who buys a computer will also be interested in purchasing a 

printer.  The manager may choose to act upon this information by bundling printers and 

computer together in a special to encourage more printer purchases.  Using a Decision 

Tree, the manager now knows the probabilities for any given set of conditions and 

sales.  With that information, he or she can create rules that stand a better chance of 

improving sales. 

The CoFuH algorithm extends traditional Fuzzy Type 1 sets through the use of 

Fuzzy Type 2 hierarchies called “contexts”.  In doing so, it both simplifies the 

underlying data set as well as makes it more semantically precise under the higher-

level, polymorphic, implication of its context.  This is accomplished using fast, fuzzy-

set based operators and rules that remove uninteresting data points that are “out of 

context” while enhancing what remains.  The end result is a smaller, yet more precise 

and meaningful data set.  This chapter demonstrates the application of this technique to 

the Decision Tree, taking a large tree, fuzzifying it and applying contexts so that the 

resulting tree is smaller by orders of magnitude, yet more meaningful.  The Contextual 

Fuzzy Hierarchies algorithm for the Decision Tree (CoFuH-DT) is then used to quickly 

prune some sample Decision Trees and create a meaningful relationship between two 

very different objects, such as in the example case of a jar of peanut butter and a bottle 

of window cleaner. 
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This Chapter is organized as follows: Section 2 presents background, describing 

the previous work and issues; Section 3 presents the problem in detail; Section 4 

presents the algorithm; Section 5 applies CoFuH-DT to a pair of example Decision 

Trees; Section 6 presents conclusions and future work. 
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3.2 PROBLEM STATEMENT 

 
For data with many characteristics or non-intuitive ones, it can be difficult to 

build a manageable and meaningful tree because of the following: 

1.    Difficulty of analysis. 

For the manager of an online store, as an example, understanding the relationships 

between and among thousands of customers, each with their own tastes and 

preferences, and products, means having to analyze a Decision Tree with 

potentially millions of nodes.  Simply creating and managing rules for such a large 

number of nodes requires substantial computer resources.  OnLine Analytical 

Processing (OLAP) systems [Qiming 99] help to manage huge datasets but do little 

to address other issues. 

2.    Semantic differences. 

Experts often disagree in rule definition [Mendel 02], [Hanss 05].  For example, 

what differentiates a “good” customer from any other?  Is a “bargain shopper” 

someone who always buys items that are on sale or someone who only buys items 

that are on sale? 

3.    Relationships may be dynamic. 

Some relationships between products change within a given context, e.g. turkey 

and cranberry sauce are closely associated in the United States during the 

Thanksgiving holiday but may not be closely related otherwise. 

4.    Relationships can vary over time. 
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In the summer, for example, a sleeping bag might be associated with a swimsuit, 

bug spray and a fishing pole; while in the winter that same sleeping bag may be 

more closely associated with a parka, snow shoes and gloves. 

5.    Decision Trees can be difficult to interpret. 

Many paths are of no use at all; for instance a node that says ALL BABIES ARE 

BORN TO PREGNANT WOMEN does not provide much useful information.  

Other paths may be too obscure to define readily.  An example of this is that of a 

woman buying certain food items and cleaning supplies.  In her mind, these items 

are closely related in the context of “monthly shopping”.  The Decision Tree may 

reflect this; however, to a retailer such an association may not be so obvious, thus 

looking more like an outlier. 

 

In a real world situation involving many products and customers with differing 

tastes, the number of nodes in a Decision Tree with n dimensions is determined by the 

cross product of the number of elements e of each dimension di used to branch: 

 

Total number of nodes in Decision Tree = 


n

i

id
1

    (15) 

 

The store manager is probably going to be faced with very large Decision Tree. 

Now suppose there is a node on the tree containing the woman’s purchase of 

food and cleaning supplies.  The system produces a rule to address the case of the 

peanut butter to window cleaner relationship: 
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DEFINE RULE PB_Cleaner 

ON Customer PURCHASE 

IF PURCHASE is PeanutButter 

DO Recommend Window Cleaner     (16) 

 

This rule does little to describe to the manager the overall context of the 

purchase and how best to take advantage of this information because there is no natural 

or obvious relationship between the objects to assess.  Simply adding these rules to an 

already existing rule set means having to manage a substantially larger number of rules.  

More rules lead to ever more complex relationships as well as greater difficulty 

deriving meaningful information from them. 

Fuzzy Type 1 Decision Trees were created in an attempt to address some of 

these issues [Lee 03], [Wang 01] but run into difficulty dealing in areas where even the 

semantics themselves are called into question [Mendel 02].  In Fuzzy Type 1 form, 

Decision Trees simplify sets of nodes but do little to address the overall complexity of 

the tree itself. 

Hybrid approaches [Liu 07], behavioral abstractions [Kita 02], [Haru 05], 

Online Analytical Mining (OLAM) [Qiming 99], [Adom 01], [Kwan 02] and multi-

level association rules [Li 02], [Vlag 07] have also been devised to deal with these 

issues.  While successful, these approaches consume significant computing resources 

and can end up creating numerous, multi-layer and often difficult to understand 

conditions.  A modification of rule PB_Cleaner (16) to add a multi-level association 

and a monthly shopping hierarchy might end up looking like the following: 
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DEFINE RULE PB_Cleaner_Multi 

ON Customer PURCHASE 

IF PURCHASE is Peanut Butter 

AND SHOPPING_TYPE IS MONTHLY 

AND DAY IS First Saturday of Month THEN 

DO Recommend Window Cleaner 

OR 

IF PURCHASE is Window Cleaner 

AND SHOPPING_TYPE IS MONTHLY 

AND DAY IS First Saturday of Month THEN 

  DO Recommend Peanut Butter     (17) 

 

An interpretation of this very simple rule is that peanut butter and window 

cleaner are somehow related, but the type of relationship is not easily discernible. 

Unfortunately, typical real world situations are usually more complex.  

Relationships trying to account for many dimensions, dimension elements and 

corresponding Decision Tree nodes become more difficult to describe.  As a result, 

rules themselves become more difficult to generate and understand.  Data growth leads 

to significant growth in the corresponding Decision Tree but without the corresponding 

growth in usefulness. 

Suppose the virtual store manager wishes to give his customers the best 

shopping experience possible.  He has lots of statistics about past purchases and uses 

Decision Trees to breakdown the types of purchases his customers made.  There are lots 
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of things he must take into account, such as how often they shop, what sort of things 

they buy when they come in, what sorts of other products might they be interested in 

and so on.  His initial Decision Tree might consist of the following, Customer Type 

(CT), Product Type (PT), Relative Product Price (RPP), Day of Week (DW), Time of 

Year (TY), Customer Age (CA), Geographic Location (GL) as shown in Table 3-1. 

 
Dimension Sample Values 

CT normal, bargain, premium, bulk, impulsive 

PT food, cleaning, household… 

RPP bargain, normal, sale, premium 

DW Sunday, Monday, … Saturday 

TY Jan 1, Jan 2…Dec 31 

CA 1, 2, 3, …100 

GL address, city, postal code 

 
Table 3 - 1, Dimensions for a virtual store manager 

 

Even with a small average number of elements, e.g. 10 per dimension, the total 

number of nodes generated from this configuration could run into the millions.  In 

addition, a large percentage of these nodes, such as those focusing on time of year, 

contain very little useful information most of the time; but at other times become very 

important.  Removing those uninteresting nodes may still leave a very large tree with a 

correspondingly large number of rules to manage.  By fuzzifying the tree and 

overlaying strategic contexts according to the algorithm presented, the manager can 

reduce and transform the complexity of the generated rules to a more easily understood 

and manageable state. 
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3.3 COFUH-DT – CONTEXTUAL  FUZZY TYPE-2 HIERARCHIES FOR 

DECISION TREES ALGORITHM 

 
The CoFuH-DT algorithm presented in this section consists of the following two 

phases: deconstruction of a Decision Tree into datasets and filters, then fuzzification of 

both datasets and filters resulting in a series of fuzzy sets.  Fuzzy Type-2 membership 

functions, representing one or more newly introduced “contexts” are applied to the sets; 

separating via fuzzy arithmetic those elements that are in context from those out of 

context.  From the remaining fuzzy sets a smaller, in context Decision Tree is 

constructed as demonstrated by Figure 3 - 2. 
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Figure 3 - 2, CoFuH-DT reduction of Decision Tree 

 

The steps of the CoFuH-DT algorithm is as follows: 

Step 1. Condition creation 

Let N1..Nn be the set of nodes generated through data mining techniques such as 

ID3 [2-15], creating a Decision Tree for the original data set D. 

 

N= {N1, N2, …, Nn}        (18) 

 

Now let R1..Rn be the set of rules generated by applying individual paths to each 

node to its data as demonstrated by Figure 3 - 3. 
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Figure 3 - 3, Rule Creation using Decision Tree 

 

Step 2. Condition Normalization 

Create a function f to normalize a set of conditions and corresponding rules CR 

by mapping each Ci to the range [0,1], then translating those values to a normalized set 

Cnorm: 

 

Cnorm = {f(Ci), Ci ∈ CR,  f(Ci) ∈ [0,1]}      (19) 
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Figure 3 - 4, Normalization of a Decision Tree 

 

Step 3. Condition fuzzification 

Fuzzification of the normalized values occurs by extending those values using 

Fuzzy Type 1 membership functions and fuzzy hedges in order to ensure appropriate 
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representation, if necessary, across the entire set and thereby generate the Fuzzy Type 1 

set μCnorm. 

Discrete points e.g. a decision whether to recommend purchases of certain foods 

such as bread, ham, etc. now become a series of fuzzy triangles as demonstrated in 

Figure 3 - 5 with the original crisp conditions represented as a series of ranges at the 

base of each triangle. 
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Figure 3 - 5, Fuzzifying customer’s Decision Tree 

 

In cases where there are multiple Boolean conditions for a node we can apply 

Zadeh’s operators AND and OR for fuzzy unions and intersections for conditions C1 … 

Cn 

 

∩ 𝜇𝐶𝑖     
= max⁡(𝜇𝐶1  , 𝜇𝐶2

, … , 𝜇𝐶𝑛
) 

∪ 𝜇𝐶𝑖     
= min⁡(𝜇𝐶1  , 𝜇𝐶2

, … , 𝜇𝐶𝑛
)      (20) 

 

Further, more extreme examples can make use of mean and weighted mean or other 

general algebraic operators [Cox 05]. 
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Step 4. Context creation 

Create fuzzy sets using a method such as that demonstrated in Chapter 4 

describing “contexts” which group items that may or may not have a natural association 

but do relate within a given broader context.  Contexts also can bring together elements 

of different clusters while at the same time preserving cluster identity as shown in 

Figure 3 - 6.  For the Decision Tree, this has the effect of “pruning” all those nodes 

which fall out of context as demonstrated in Figure 3 – 7. 

Context

Cluster 3

Cluster 2Cluster 1

 
 
Figure 3 - 6, Context unifying 3 clusters 

 

 

 
 

Figure 3 - 7, Nodes pruned by context 

 

Using fuzzy, new dimensions of uncertainty are added, allowing new 

specifications to exist and altering existing ones.  In the example of the woman doing 

her monthly shopping, the context and new dimension of uncertainty “monthly 
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shopping” alters the notion of both “food” and “cleaning supplies” by increasing 

membership in “food” for those items which are bought only occasionally while 

reducing it for others.  At the same time, the context draws a link between food and 

cleaning supplies imposing a hierarchy of “monthly shopping” on top of both.  Hence 

the resulting Fuzzy Type 2 set, “monthly shopping” produces a new set consisting of 

“monthly food” and “monthly cleaning supplies” whose original primary sets locally 

are still regarded as “food” and “cleaning supplies”.  The membership of any item in 

any base set, e.g. food, now assumes a more polymorphic representation dependent 

upon one or more contexts in which it happens to find itself. 

 

False

True

Decreasing 

Frequency

(Visits per 

month)

Daily Weekly Monthly

 
 

Figure 3 - 8, Context of shopping type. 

 

Here the Fuzzy Type 2 context contains the values “daily”, “weekly” and “monthly”. 

Adding additional dimensions is a matter of creating and applying other 

contexts.  For example, suppose the manager wanted to take into account various 

holiday periods.  Now new contexts such as “Thanksgiving” or “St. Patrick’s Day” are 

overlaid onto the Decision Tree to create a potentially different representation for the 

nodes underneath. 
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Figure 3 - 9, Fuzzy deformation under a context. 

 

Step 5. Fuzzy Type 2 application of contexts to fuzzified conditions 

Fuzzy Type 2 contexts extend the newly created Fuzzy Type 1 set by adding an 

additional dimension of uncertainty.  The context creates a Fuzzy Type 2 set Ĉ [Mendel 

02], whose members are the combination of the context functions over the original 

Fuzzy Type 1 membership functions over the original conditions shown in Equation 

(19). Applying the Zadeh product operator across the domain of Ĉ  eliminates those sets 

and the underlying conditions which are “out of context”.  Setting appropriate minimum 

memberships thresholds can serve to further reduce the final result space RC: 

 

RC =  ∩ Ĉ          (21) 

 

This has the desired effect of pruning those nodes completely out of context as 

well as marginalizing those elements which are only of minimal interest. 

For the retailer with the customer doing monthly shopping, de-fuzzification of 

the remaining conditions yields a much smaller Decision Tree.  In addition, by using 



49 

the context applied over the remaining conditions, the conditions take on new meaning 

within that context.  The rule developed previously in Equation (16) can now be 

generalized to: 

 

DEFINE RULE ShoppingType 

ON Customer PURCHASE 

IF PURCHASE IS MonthlyContextItem THEN 

DO Recommend Other MonthlyContextItems   (22) 

 

This new rule is both simpler to implement as well as more descriptive and 

intuitive.  It also takes into account the contextual components of the shopping trip, that 

of a regular monthly shopping day.  In the case of the peanut butter and window 

cleaner, while distinct and very different types initially, they are united under the 

context of “monthly shopping”. 
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3.4 TEST EXAMPLES 

The following test examples were used to demonstrate the effectiveness of the 

algorithm when applied to real world situations.  Developing appropriate contexts and 

then applying them to the underlying dimension elements results in a significant 

decrease in the number of “in context” elements as well as the resulting Decision Tree. 

 

Example 1. Trivial Case 

In the trivial case where the context has no affect on the underlying fuzzy 

conditions, for example “monthly shopping” on a list of only monthly shopping items, 

no deformation occurs and any set operations and the set of rules reduces to that 

described in Equation (13). 

 

Example 2. Woman in store 

Suppose a woman customer comes into the virtual store to buy some groceries.  

The Decision Tree for this woman is based upon Table 3 - 1.  A traditional Decision 

Tree would consist of 1.4 million potential nodes, depending upon the available data.  

Pruning the tree using standard methods requires traversing a large number of nodes, 

investigating each node for applicability.  However, creating a context of “Monthly 

Shopping” (MS) and applying the fuzzification processes a number of things occur: 

1.    The “impulsive” customer type (CT) falls out of context as MS is considered 

planned, thus reducing the size of CT from 5 to 4. 

2.    Many of the product types (PT) that are considered impulse buys (e.g books, 

candy) or quickly perishable items (e.g. bread, lettuce) or irregular purchases (e.g nails), 
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daily purchases, weekly purchases and holiday items fall out of context reducing the 

size of the PT from 10 to 4. 

3.    Relative Product Price is unaffected by MS. 

4.    Since MS occurs on the weekend, Day of Week (DW) values Monday through 

Friday fall out of context reducing the DW dimension from 7 to 2. 

5.    Time of Year (TY) is unaffected 

6.    Customer Age (CA), the context MS usually involves heads of household which 

eliminates certain age categories such as “Under 10”, “Young Adult 10-20”, bringing 

the CA category from 10 to 8. 

7.    Geographic Location (GL) is unaffected. 

 

Even more dramatic would be a context such as “Holiday - St. Patrick’s Day”.  

The types of products shoppers celebrating St. Patrick’s Day require comprise a very 

small group and the type of individual celebrating the holiday is likewise limited.  The 

resulting Decision Tree is reduced considerably.  The final node totals of customer 

Decision Trees for “Monthly Shopping” and “Holiday – St. Patrick’s Day” are shown 

in Table 3 - 2. 

 

Traditional DT    Ctx - Mnthly Shopping      Ctx - St. Patrick’s Day 

Dimensions 

In Context 

7 7 7 

Elements 

In Context 

51 42 24 

Potential Nodes 1.4x10
6
 9.6x10

4
 1024 

 
Table 3 - 2, Example 2 – Node Reduction Under Contexts 
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Figure 3 - 10, Node growth under normal conditions and contexts. 

 

Example 3. Plant manager 

The manager of a plant uses a Decision Tree to decide how to set up the 

production line, taking into account inventory, backlog, capacity and other dimensions.  

For sake of simplicity, limit to 10 elements per dimension.  Creating holiday contexts 

allows the manager to tailor production to meet the changing demands as holidays come 

and go.  Other contexts such as “Preferred Customer” and “Holiday Schedule”, quickly 

reduce the number of possibilities to a small number of “in-context” production options.  

An example is the “Preferred Customer” context, whose implementation eliminates all 

low priority, non-customer components, while the context “Holiday Schedule” 

eliminates those components not purchased or shipped during the holiday. 
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               Traditional DT    Ctx Pref. Customer   Ctx Holiday Sched. 

Dimensions 

In Context 

7 7 7 

Elements 

In Context 

70 27 33 

Potential 

Nodes 

1x10
7
 4400 3.6x10

4
 

 
Table 3 - 3, Example 3 – Node Reduction Under Contexts 
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 3.5 CONCLUSION 

As shown in Examples 2 and 3, the use of contexts significantly reduces the 

number of “in context” dimension elements.  In Example 2, the original number 

dropped from 51 to 42 to 24 for “St. Patrick’s Day”.  The reductions were even more 

dramatic when applied to the number of potential nodes of the Decision Tree, dropping 

from 1.4x10
6
 down to 1024, resulting in a reduction of approximately 3 orders of 

magnitude. 

Whether an e-commerce retailer, behavioral scientist, intelligent controller, or 

manager of a production plant; each relies upon Decision Trees to formulate rules for 

actions.  However, outliers and large combinations of conditions can create difficult and 

confusing sets of rules that have limited applicability.  Current solutions attempt to 

alleviate this problem through clever techniques or sheer brute force to derive meaning 

but have difficulty if relationships are numerous or non-intuitive. 

The fuzzy methods demonstrated in this chapter improve upon these techniques 

by introducing new dimensions of uncertainty serving to both reduce the number and 

complexity of rules as well as tie non-intuitive relationships together within a larger 

meaningful context.  The examples demonstrated many orders of magnitude 

improvement of subsequent Decision Tree construction over traditional methods. 
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Chapter 4 

CONTEXTUAL DERIVATION FROM DECISION TREES (COT-DT) 

BASED ON ADVANCED DATA MINING TECHNIQUES AND 

INTELLIGENT CONTROL 

 
This chapter presents an algorithm for the discovery of interesting contexts within 

Decision Trees.  Applying these contexts with the CoFuH-DT technique reveals 

important information and rules that were previously hidden within the tree. 

 

4.1 INTRODUCTION 

Effective data mining requires the ability to quickly sift through mountains of 

data and extract meaningful kernels of knowledge [Han 06].  This new knowledge 

manifests in new rules for intelligent systems from e-commerce to intelligent 

controllers.  There are a number of Advanced Data Mining Techniques such as 

Bayesian networks, Artificial Neural Network (ANN) classifiers, distance and fuzzy 

clustering techniques and others which are applied to the data in order to derive 

meaningful associations [Han 06], [Adom 01].  One of the more popular techniques is 

the Decision Tree. 

 

 

Figure 4 - 1, A typical Decision Tree used for data mining. 
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Decision Trees are built using techniques such as ID3 and C4.5 [Han 06], [Zhao 

06].  These Decision Tree induction algorithms recursively “grow” the tree, starting 

from a single parent node containing a set of data, by selecting an attribute from among 

a set of candidate attributes.  By using this attribute and distributing the data into 

smaller segments, new child nodes are generated, as demonstrated in Figure 4 - 2.  ID3 

uses a simpler notion of “information content” while C4.5 attempts to overcome the 

bias of uneven sampling by normalizing across attributes. 

 

Node n

Attribute #1Attribute #2

Attribute #3

Attribute #4

Node 

n + 1

Attribute #1

Male

Attribute #2

Attribute #3

Attribute #4

Node 

n + 2

Attribute #2

Attribute #3

Attribute #4

Attribute #1

Female

 
 
Figure 4 - 2, A Decision Tree node generation node with attributes. 

 

The tree is grown in the following steps: 

 

1.    Determine appropriate information “threshold”, designed to yield optimal 

“information content”. 

2.    Choose attribute from among set of attributes with maximum “information gain” 

3.    If information gain from attribute exceeds threshold, create child nodes by splitting 

attribute accordingly [Sun 05]. 
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ID3/C4.5 determines the maximum gain by choosing the attribute which will 

yield the most “information content” or clear differentiation of the data with a minimum 

amount of noise or randomness.  If the gain is above a predetermined threshold, i.e. 

there is sufficient differentiation that new knowledge is likely then the node will 

produce one or more leaf offspring, with each leaf containing a subset of the parent 

node data partitioned along the attribute. 

As a simple example of this technique, consider the node n in Figure 4 - 2 as 

representing a data sample with 100 college students, 50 male and 50 female.  Now 

consider the Attribute #1 as Gender.  Gender achieves maximum gain because it affects 

every data point and partitions the data into subsets of equal size.  In contrast, a sample 

of 99 female students and 1 male student generates little gain. 

As Figure 4 - 2. shows, by applying the Decision Tree algorithm to node n, 2 

new nodes are generated in the tree along the Gender attribute, one for male and one for 

female. 

This process continues recursively for each child node until no new nodes can 

be produced. 

Decision Trees are a very effective tool for data mining [Han 06] but suffer from 

some drawbacks: 

1.    Noise 

Non-systemic errors in either the data or attributes can cause the induction 

method to generate spurious nodes, generating unnecessary complexity or 

creating a tree where meaningful paths are obscured [Yu 06], [Sun 05], [Zhao 

06]. 
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2.    Large trees 

Large numbers of attributes or overly granular attributes can quickly grow trees 

to an unmanageable size.  Initial pruning of trees by brute-force threshold limits 

creates a likelihood that meaningful but small relationships and non-intuitive 

relationships will be overlooked or skipped altogether [McCarty 08a]. 

3.    Applicability 

The uncertain nature of both attributes and data often generate trees that have 

little applicability to real-world decision making [Zhao 06]. 

4.    Slow to search 

Large tree searches for rule generation, using methods such as depth-first or 

breadth-first, are very expensive and time-consuming [Russell 03]. 

 

A number of approaches have been proposed to address these issues, such as 

using Fuzzy Trees [Zhao 06], introducing Support Vector Machines [Wang 06], or 

using the Contextual Fuzzy Type 2 Hierarchies for Decision Trees (CoFuH-DT) 

method [McCarty 08a].  The CoFuH-DT is fuzzification of the Decision Tree followed 

by application a Fuzzy Type 2 context.  Under CoFuH-DT, Decision Trees can be 

pruned quickly via fuzzy set operators and understood in the context of polymorphic 

sets of rules. 

However, in order for CoFuH-DT to be effective, contextual information must 

exist that can be applied to the Decision Tree.  Simply running ID3 or C4.5 over the 

data is unlikely to produce anything but a more or less detailed tree; so a different, 

hybrid technique is required.  Advanced Data Mining Techniques (ADMT) such as 
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Artificial Neural Networks (ANN) are an effective means of generating classifications 

and learning about patterns that may contain sparse or noisy data [Han 06].  As such 

ADMTs are an effective tool for generating a range of candidates for a Fuzzy Type 2 

context. 

 

 
 
Figure 4 - 3, Context spanning several nodes 

 

This chapter demonstrates application of several ADMTs to a Decision Tree 

generated from a sample data set.  It shows how the resulting contexts are available for 

use by CoFuH-DT.  This chapter is organized as follows:  Section 2 introduces a typical 

data problem.  Section 3 describes the various steps of applying an ADMT to the 

Decision Tree to generate contexts.  Section 4 applies the algorithm to a sample data set 

to generate useful contexts.  Section 5 presents the conclusions and future work. 
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4.2 PROBLEM STATEMENT 

Consider a bank wanting to decide which customers represent the best credit 

risk.  There are many types of customers with different income and backgrounds that 

present widely varying degrees of risk.  Some will pay off their loans on time, others 

will be early, others late and still others will default.  The loan officer decides to 

generate a profile of his customers using a Decision Tree.  The attributes of the data 

used could end up looking like that of Table 4-1. 

 
Attribute Potential Values 

Income Many 

Collateral 6 

Age 7 

Education 6 

Occupation Many 

Children 5 

Gender 2 

Region Many 

Marital Status 4 

# Cars 4 

Owns Home 2 

% Down Payment 5 

Credit Score Many 

 
Table 4 - 1, Attributes of a typical customer. 

 

By limiting the number of distinct ranges of values of Income, Occupation, 

Region and Credit Score to just 10, a Decision Tree could still have over 4 billion 

potential nodes.  Making things even more difficult is that some values, like Income and 

Credit Score, have varying weights in lieu of other factors, such as the down payment 

and payment history.  Other values, such as Children appear to have little relevance at 

all but may actually be very important in accurately assessing risk. 

The loan officer wanting to create rules using the resulting Decision Tree is 

faced with a dilemma.  He must choose between analyzing a huge tree in the hope of 
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gaining the necessary insight, or setting the information gain threshold high enough to 

reduce the tree to a manageable number of nodes.  In the first case, resources and time 

required in order to process and analyze a huge base of nodes can be substantial.  In the 

second case, by increasing the threshold for the Decision Tree algorithm, the resulting 

tree may be smaller and more manageable, but a lot of information could be lost in the 

process, potentially leaving the loan officer with no reliable way to measure a 

significant segment of the market. 

CoFuH-DT presents a better alternative by combining the efficiency of the 

Decision Tree with the power of Fuzzy Type 2 contexts.  Generating the contexts can 

be a difficult task, but is made easier through the use of ADMTs such as an Artificial 

Neural Network (ANN).  This is accomplished by applying the ANN to the resulting 

datasets representing the nodes of the Decision Tree and thus generating a series of 

classifications, or contexts.  These contexts can then be applied to the fuzzified 

Decision Tree using CoFuH-DT.  The resulting Decision Tree is smaller, more 

semantically concise and appropriate to the situation but without the loss of information 

associated with traditional methods. 
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 4.3 COT-DT ALGORITHM 

Contextual Derivation from Decision Trees (CoT-DT) works as follows: 

Consider the dataset S; applying ID3 or C4.5 or other algorithm to generate a Decision 

Tree produces a DT with number of nodes M with N leaf nodes.  Each leaf node ni of 

the set of all leaf nodes N contains a subset si of the dataset S. 

 

∀𝑛𝑖 ∈ 𝑁, 𝑓 𝑛𝑖 =  𝑠𝑖 ⊂ 𝑆 , ∪ 𝑠𝑖 = 𝑆, 𝑖 = 1, . . , 𝑁          (23) 

 

where f(ni) is a filter applying all the attributes of ni against S.  Then let the distance 

fd(ni, ni+1) between any two nodes ni, ni+1 be the number of intermediate nodes that must 

be traversed when traveling from ni to ni+1 as demonstrated in Figure 4 - 4. 

 

n1

n2 n5

n3 n4 n6

fd (n
4 ,n

6 ) =
 3

f d(
n 3

,n
4
) =

 1

 
 
Figure 4 - 4, Calculating distance between nodes 

 

Unlike traditional classification using ANNs or other ADMT, which seeks to 

create clusters of data based upon some measure of “closeness”, context generation 

seeks to discover relationships that exist between sets of data within a given set of 

nodes.  This is accomplished by examining the intersection of a particular classification 
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across a set of nodes.  “Interestingness” is a function of the node and data 

characteristics for that classification. 

Whenever the ADMT discovers a cluster that spans more than one node, a 

context is possible.  The algorithm’s steps are as follows: 

 

1.    Decision Tree generation 

2.    Node selection 

3.    ANN classification 

4.    Context Evaluation and Creation 

 

Step1. Decision Tree generation. 

Use ID3, C4.5 or other algorithm as described in Equation (23) to determine the 

information threshold and generate the Decision Tree from the dataset S shown 

in Figure 4 - 5. 

 

Information

Gain

Threshold
Dataset

S

 
 

Figure 4 - 5, CoT-DT Step 1 - Creation of Decision Tree. 

 

Node generation will depend upon how high or low the information threshold is 

set.  The Decision Tree will contain M nodes and N leaf nodes. 
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Step 2. Node Selection. 

Look at the Decision Tree from the point of view of a set-based operator.  Each 

leaf ni of the tree encompasses a subset 𝑠𝑖 ∈ 𝑆 demonstrated in Figure 4 - 6. 

 

ni

Att #1

Att #2

Att #3

Att #4

S

Si

Att1 + Att2 + Att3 + Att4

 

 
Figure 4 - 6, Nodes of Decision Tree produce subset si of original set S. 

 

Figure 4 - 6. shows how the collection of attributes A of the leaf combine to 

create a filter that when applied to S, produces the data set si of the leaf. 

 

∀𝑛𝑖𝜖𝑁, 𝐴𝑛𝑖
 𝑆 =  𝑠𝑖 , 𝑖 = 1, . . , 𝑁      (24) 

 

Node selection then combines si into subsets of S for analysis in Step 3. 

Step 3. ADMT classification. 

From the si created in Step 2, use, in this case, a multilayer, feed-forward, Error-

Back Propagation Artificial Neural Network (EBP-ANN) to create a set of data 

clusters C as shown in Figure 4 - 7. 
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Figure 4 - 7, ANN classifier applied to leaf node sets produces clusters. 

 

Each resulting cluster cp in the set of generated clusters Ck represents a degree of 

“closeness” between a series of data points 𝑠𝑘 .  𝑠𝑘 represents the combination of leaf 

node si created in Step 2 and is a subset of S. 

 

𝑠𝑘 ⊂ 𝑆, 𝑔 𝑠𝑘   =  𝑐𝑝   ∪ 𝑐𝑝 = 𝐶𝑘  𝑝 = 1, . . , 𝑘}     (25) 

 

where  𝑔 𝑠𝑘    is an ADMT such as an ANN that when applied to 𝑠𝑘   produces the set of 

clusters Ck. 

Figure 4 - 8 demonstrates how cluster creation using an ANN combines subsets 

of a node set into one or more unique clusters. 

 

𝑠𝑘  
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Figure 4 - 8. ANN cluster generation. 

 

Step 4. Context Evaluation and Creation. 

Compare each cluster cp ϵ Ck to each node ni.  Denote the non-empty 

intersection of cp with each si in ni as the element ej. 

 

𝑒𝑗 =  𝑠𝑖 ∩ 𝑐𝑝  , 𝑒𝑗 ≠ ∅        (26) 

 

The union of the node elements ej over all or some subset of the leaf nodes N is 

called a cluster-span as shown in Figure 4 - 9. 

 

 
 
Figure 4 - 9. Cluster span over several nodes. 

 

Each single node element ej of the cluster span consists of a “coverage”.  Let 

fdp(ej) represent the number of data points in ej, and let fdp(si) represent the total number 

∪ 𝑒𝑗 =  𝑐𝑝  
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of data points in the node’s corresponding data set si.  The coverage fcvg(ej) is the ratio 

of the number of data points in ej to the number of data points in si. 

 

𝑓𝑐𝑣𝑔(𝑒𝑗 ) =
𝑓𝑑𝑝 (𝑒𝑗 )

𝑓𝑑𝑝 (𝑠𝑖)
        (27) 

 

Let fd(ei,ej) be the distance between the corresponding nodes for ei and ej as 

illustrated in Figure 4 - 4.  Let fdm(ej) represent the greatest distance between the node 

containing the element ej and any other node in the cluster-span. 

 

𝑓𝑑𝑚  𝑒𝑖 =  max⁡(𝑓𝑑 𝑒𝑖 , 𝑒𝑗  , ∀𝑒𝑗 ⊂ 𝑐𝑝 , 

 𝑖 = 1, . . , 𝑛, 𝑗 = 1, . . , 𝑛, 𝑝 = 1, . . , 𝑘      (28) 

 

Further, let “interestingness” of an element fint(ej) be a function of its coverage 

multiplied by its distance function. 

 

𝑓𝑖𝑛𝑡 (𝑒𝑗 ) = 𝑓𝑐𝑣𝑔 𝑒𝑗  ∗  𝑓𝑑𝑚 (𝑒𝑗 )      (29) 

 

In addition any cluster-span containing some non-empty set of elements e1..ej 

also creates a “context”, CTi.  The context is available to be fuzzified and used in 

CoFuH-DT.  

 

𝐶𝑇𝑖 = ∪ 𝑒𝑗          (30) 
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Note that if a given context CTi has only one element, the distance function for 

that element equals 0 as does the measure of interestingness for the context.  The 

context may be particularly interesting but belonging to a single node it adds no new 

information to the Decision Tree.  Hence for any given context CTi to be “interesting” 

its corresponding cluster-span must have at least 2 elements.  Interestingness of a entire 

context, Fint is the weighted) sum of the interestingness of its corresponding elements. 

 

𝐹𝑖𝑛𝑡  𝐶𝑇𝑖 =   𝑤𝑗𝑓𝑖𝑛𝑡  𝑒𝑗  ,𝑗  𝑒𝑗 ⊂ 𝑐𝑝  ∈ 𝐶𝑘 ,  𝑗 = 1, . . , 𝑝, i=1,..,k  (31) 

 

where wj represents a given weight assigned to the corresponding ej.  Weights are a 

means to take into account the relative size or relevance of a node or to reduce the 

impact of noisy data. 

As an example consider the following basic Decision Tree with four leaf nodes 

as shown in Figure 4 - 10.  Each leaf node contains exactly 100 elements. 
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1 2 43

 
 
Figure 4 - 10. Sample Decision Tree with cluster-span. 

 

Now consider a cluster-span which contains 50 elements from nodes 1 and 2 

and another 25 elements from node 4.  Assuming all nodes are weighted equally, by 

Equation (31), its corresponding context “interestingness” is calculated as follows: 

 

fint(e1 )= 3 x .5 = 1.5, 

fint(e2) = 3 x .5 = 1.5, 

fint(e3)  = 3 x.25 = .75 

𝐹𝑖𝑛𝑡  𝐶𝑇𝑖 = 1.5 + 1.5 +  .75 =  3.75     (32) 

 

Contexts with sufficient interestingness may now be employed with CoFuH-DT to 

perform fuzzy-set operations, classification and context pruning. 
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4.4 TEST EXAMPLES 

A sample database provided for users of Microsoft’s SQL Server 2005 Analysis 

Services contains approximately 60,000 purchase records.  The dataset contains 12 

relevant attributes, each with 2 to 70 possible values.  The total potential size of the 

Decision Tree is 2x10
10

 nodes.  The Microsoft Decision Tree induction algorithm is 

described as a proprietary hybrid algorithm based on a C4.5 algorithm combined with 

elements of CART (Classification And Regression Trees).  Using the Microsoft 

Decision Tree induction algorithm to construct the Decision Tree resulted in 187 actual 

nodes. 

Applying a standard back-propagation neural network to the dataset resulted in a 

number of potential contexts.  Some of the more interesting contexts were based upon 

the customer’s age and income.  Creating fuzzy regions for both by breaking the span of 

ages into the fuzzy sets, YOUNG, MIDDLE-AGED, and OLD, and the span of income 

into the fuzzy sets POOR, LOWER-CLASS, MIDDLE-CLASS, UPPER-CLASS, and 

RICH generates a series of classifications. 

From these classifications, two contexts, in particular, emerged with a high 

degree of “interestingness”: RICH_AND_YOUNG and RICH_AND_OLD.  Although 

they were sparse so coverage was low, they covered a number of distant nodes and thus 

were still quite interesting. 

Each context showed a very high correlation between membership in the 

corresponding fuzzy region and high volume and high dollar purchases.  Other cases, 

for example RICH_AND_MIDDLE-AGED, had a much lower correlation. 
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Two other ADMTs were also applied, a K-Means clustering algorithm and a 

Bayesian network.  These also generated contexts.  From the Bayesian network, there 

was a focus on marital status and no children while the K-Means added the dimension 

of home ownership.  These contexts would be described as 

MARRIED_NO_CHILDREN (M-NC) and 

MARRIED_HOMEOWNER_NO_CHILDREN (M-HNC).  Customers who were 

members of the contexts described all showed significantly higher predispositions to 

make more and/or higher value purchases than those who were not members. 

Applying any of these contexts reduced the number of potential nodes on the 

original Decision Tree.  These reductions were very dramatic due to the specificity of 

the context, making irrelevant or “out of context” many other attributes.  Even though 

these contexts proved very significant, they were lost in the original Decision Tree 

generated with the commercial CART algorithm.  Because the data was relatively 

sparse it fell below the threshold for information gain and was hence ignored in favor of 

more dense data. 

A reasonable interpretation of the aforementioned contexts might be that 

younger buyers are more impulsive while older buyers are more secure in their finances 

than members in the middle group.  Hence members of the two outside groups are more 

likely to take on greater and more premium discretionary purchases.  Whatever the 

reason, a sales manager now has a collection of CoFuH-DT-based, semantically simple, 

yet powerful contexts with which to frame and generate rules for particular customers. 
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Finally, rule generation was made much simpler.  In traditional rule generation, 

rules define an action for the set of conditions represented by a node [McCarty 08a], 

[Wang 06]. 

 

DEFINE RULE rule_name  

ON event 

IF condition1 

AND condition2 

… 

AND condition 

DO action         (33) 

 

Any situation described by the rule above may involve a great number of 

conditionals to accurately represent the large number of affected attributes and sub-

conditions.  However, as a result of CoT-DT combined with CoFuH-DT, generating a 

context-base rule is much simpler because the many disparate products and customers 

now belong to a single contextual category.  For example a contextual rule based upon 

the context RICH_AND_YOUNG might look like this: 

 

DEFINE RULE RECOMMEND_PURCHASE 

ON CustomerPurchase 

IF Customer IS RICH_AND_YOUNG 

 DO Recommend purchase PREMIUM_PRODUCT    (34) 
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Use of CoT-DT, CoFuH-DT and Decision Trees is not limited to e-commerce 

applications. Intelligent controllers use a variety of methods to determine how to 

respond to their environment.  Among them is the use of rules derived from Decision 

Trees. 

A robotic land rover attempts to navigate a landscape with a myriad of 

environmental and physical obstacles and hazards.  The faster it moves, the more 

quickly it must process all the various attributes and come to a good decision.  

However, there are times when certain factors become so overwhelming that a good 

decision only needs to take those most relevant factors into account while ignoring the 

others.  Take the case where the land rover has to navigate a steep slope.  Turning to the 

right or left greatly increases the possibility of a roll-over so virtually any decision 

which would involve such a turn is not a good one.  It makes no sense to contemplate 

turning decisions or pursue decision branches which might be considered irrelevant 

when making a turn.  At other times, outliers in behavior or actions which would in 

most cases be considered abnormal, suddenly become “normal” or preferred within a 

given context.  For example suppose under low battery conditions the rover has an 

overriding need to seek a power source and may have to engage in any number of 

aberrant moves and behaviors to meet that goal. 

CoFuH-DT/CoT-DT allows the rover to frame potential actions, such as might 

be required in a low battery condition, into a meaningful context as well as more 

quickly prune its Decision Tree, resulting in a more understandable set of rules. 

Comparisons of Decision Trees using the aforementioned derived contexts are 

shown in Table 4-2.  While the original Decision Tree (Org DT) had many potential 
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nodes, the Microsoft CART algorithm produced a tree with only 187 nodes.  CoFuH-

DT trees using the contexts RICH_AND_YOUNG/MIDDLE_AGED/OLD (EBP Cond 

1) and RICH_AND_OLD (EBP Cond 2) resulted in much smaller trees but more 

significant in identifying buyers more likely to purchase.  The same applies to a lesser 

extent for CoFuH-DT trees generated using Bayes and K-Means algorithms. 

 

 Nodes Avg. # Purch Avg. $ Purch 

Org DT 2x10
10

 3.27 1588 

MS SQL HDT 187 3.27 1588 

EBP Cond 1 17 4.07 3343 

EBP Cond 2 13 4.0 1537 

Bayes 43 3.46 1839 

K-Means 24 3.51 2000 

 
Table 4 - 2, Node comparisons using various contexts 

  



75 

4.5 CONCLUSION 

This chapter demonstrates two significant benefits of the Contextual Derivation 

from Decision Trees (CoT-DT) algorithm using Advanced Data Mining Techniques 

(ADMT): 

The first benefit is that ADMT under CoT-DT can derive new contextual 

information from a fully-formed Decision Tree for use by Contextual Fuzzy Type-2 

Hierarchies for Decision Trees (CoFuH-DT) rule generation.  The second benefit of the 

CoT-DT approach is that it can be used to measure and validate the overall 

effectiveness of a Decision Tree induction algorithm.  The more accurate or complete 

an algorithm, the fewer and less interesting contexts that are likely derivable.  By the 

same token, CoT-DT can compensate for an ineffective algorithm by providing useful 

contexts for appropriate rule generation. 

As demonstrated by experimental results of this chapter, the CoT-DT approach 

produced new and meaningful contexts.  Viewing a Decision Tree within the narrow 

frame of a context reduced the in-context Decision Tree by many orders of magnitude 

over what was theoretically possible.  After applying a commercial algorithm, CoT-DT 

was able to achieve an additional contextual reduction of over 90%. 
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Chapter 5 

GENERAL APPLICATIONS OF MODERN HEURISTICS 

 
This chapter presents heuristics used to modify traditional local search algorithms and 

enable autonomous vehicles to track, anticipate, and respond to moves from a human 

leader.  A 99% decrease in a local search failure rate and a less expensive, yet more 

effective implementation of autonomous technology were obtained.  Results were 

presented at IEEE ICIEA08 Conference, June 2008 and ETFA08 Conference, 

September 2008. 

 

5.1 INTRODUCTION 

Advanced Data Mining Techniques have many uses well beyond the data-

centric applications described in preceding chapters.  Decision Trees, for example, 

guide the actions of intelligent controllers such as those that might direct the path of an 

autonomous vehicle or serve as a computer opponent in a chess match.  However, 

limitations of data mining often mean that real-world problems and applications require 

much more than a database of options or predictions, and as such rely on a much 

broader array of techniques to in order to meet a set of requirements.  Some of these 

techniques, however, have limitations of their own.  Among them are unacceptably high 

rates of failure and cost of implementation.  This final chapter looks at ways heuristics 

can be used to address some of these limitations and solve real-world applications. 

The first part of this chapter describes heuristics to modify various local search 

techniques called Descending Deviation Optimizations.  While plenty of situations can 

be described with a modest-sized Decision Tree or database of rules, there are problems 

where the complete state space cannot be described, whether it is too large or simply 

unknown at the time.  Data mining tools are of little use in this environment.  Instead, 

there is a class of heuristics known as Local Search Algorithms (LSAs) which allow 
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exploration of the space locally, in the hopes of finding a global solution or maxima.  

While LSAs share many of the same applications as data mining and intelligent control, 

this chapter looks at an application of LSAs to solve an automation problem. 

One of the very important aspects of factory automation is the efficient use of 

both time and space [Gao 07], [Chase 06].  Doing so requires the precise coordination 

of people, material and equipment in limited space boundaries in order to maximize 

throughput and minimize latency [GCI07].  However, having one optimal set layout is 

generally impractical as priorities often change during the course of a production cycle 

or significant events [Garcia 08].  For example, the breakdown or introduction of new 

equipment can significantly affect the production schedule. 

Unfortunately, combinations of variables and constraints can quickly result in the 

factorial growth of the possible permutations to search beyond the practical ability of 

modern computer systems to thoroughly assess.  An exhaustive search through a space 

of potential configurations becomes impractical.  Problems like that of the production 

scheduling problem mentioned above belong to a generic class of problems called 

Constraint Satisfaction Problems (CSPs).  CSPs often encompass a potential set of 

states for which the entire state space is beyond a system’s ability to search 

comprehensively.  CSPs belong to a class of combinatorial problems called NP for 

“Non-Deterministic Polynomial” for which a given solution can be found by a 

polynomial-time algorithm [Martin 07], [Sipser 06].  

Local Search Algorithms (LSAs) have proven very useful for finding solutions 

to CSPs [Guimar 07].  LSAs compensate for a lack of universal awareness by starting at 

some beginning state then exploring neighboring states and testing for goal states along 
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the way [Russell 03].  This allows for a smaller requirement of resources as only 

neighboring states need to be stored or searched.  If there are multiple goal states in the 

overall state space, then there is a significant probability that an LSA will discover one 

quickly.  This makes LSAs the preferred method for solving CSPs such as the factory 

automation production scheduling problem [Liu 07].  However, there are many 

different LSA techniques and all have various issues particularly dealing with locally 

optimal but globally sub-optimal states called local maxima.  Descending Deviation 

Optimizations addresses some of these issues by allowing LSAs to move away from 

local maxima in a controlled fashion so as to have a higher likelihood of finding global 

maxima. 

The second section of this chapter takes a look at how to simplify a tracking 

algorithm.  There are situations where it is necessary or desirable to be able to rely upon 

autonomous, machine-guided vehicles to perform certain tasks.  It is not practical, for 

example, to send a human to explore the surface of Mars.  Nor is it wise for a human to 

travel the crater of an active volcano. 

In less extreme conditions, autonomous vehicles are still called upon to perform 

a variety of tasks.  Unfortunately both the difficulty and cost often prove significant 

obstacles to implementation [Liu 06].  Innovative solutions have addressed this [Wall 

02], but challenges in the form of urban terrain, road conditions, traffic “rules” and 

other obstacles continue to plague autonomous vehicles.   Situations do exist, however, 

where the environment is tightly controlled enough not to require a fully autonomous 

solution but rather one which combines human leadership with the ability of a vehicle 

to follow a leader. 
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For example, it may be necessary for an individual to require the help of a 

machine to transport material from point to point.  An example could be an airport, 

where a person has to move luggage across a busy terminal, or a factory, where 

inventory is moved from production to shipping through small corridors or a junkyard 

where tons of metal has to guided around piles of debris.  More extreme cases might 

involve the removal of hazardous waste or movement through a dangerous area where it 

would be preferable to use automated vehicles in lieu of human resources.  Whereas it 

might otherwise be prohibitively expensive or simply too dangerous to trust to a truly 

automated vehicle, a hybrid system, with a human leader and an array of mechanical 

followers could prove a practical alternative. 

“Following” technology, as opposed to a purely autonomous one, doesn’t 

require sophisticated decisions with respect to direction, speed, hazards, or road 

conditions and as such requires less sophisticated sensory hardware and software.  

Additional reliance upon the judgment of the human leader can also mitigate the impact 

of obstacles and other issues which can make the operation of a purely autonomous 

vehicle difficult and hazardous. 

Other solutions for automated following have been proposed, for example, by 

combining CCD cameras and neural networks for pattern recognition [Omura 99], 

motion sensors, GPS systems and standard communications [Chang 91] for platooning.  

This thesis chapter demonstrates that combining line-of-sight devices and a fuzzy 

algorithm for following is superior to the first solution in that it avoids much of 

difficulties associated with noise in the patterns and superior to the latter solution in that 

it employs a simpler array of devices and logic.  An autonomous follower, using FLoST 
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(Fuzzy Line of SighT) to mimic its human leader, presents a much more cost-effective 

solution and a potentially more effective one.  Using the analogy of a mother “Duck” 

and her “ducklings”, the FLoST algorithm guides a series of mobile, autonomous units 

to follow a lead vehicle (or “Duck”) and each other from a predetermined distance, 

mimicking both velocity and, to a greater or lesser degree depending upon conditions, 

direction traveled. 

The proposed alternative technique relies upon a series of rapid angular scans to 

achieve location and distance measurements to the lead target.  Technologies for line-

of-sight tracking have been in use in both the commercial and military sectors for many 

years in various devices [Leigh 97], [Michaud 06], [Hsu 07], [Crump 07].  These 

devices detect an object (such as a hostile aircraft) and relay information such as 

distance, direction and speed to other units.  Such devices, mounted upon and directing 

the movement of some sort of mobile platform, following a human or mechanical 

leader, can thereby creating some new utility. 

This chapter is organized as follows: Section 5.2.1 presents a problem statement 

and a brief look at various local search techniques under consideration.  Section 5.2.2 

presents the Descending Deviation Optimizations steps.  Section 5.2.3 presents the 

application of Descending Deviation Optimizations to Simulated Annealing and 

Stochastic Hill Climbing to solve the scheduling problem along with other test results 

for many of the traditional techniques. 

Section 5.3.1 presents a simple scenario and a series of applications for the 

tracking algorithm presented in this paper.  Section 5.3.2 presents the FLoST (Fuzzy 

Line of SighT) algorithm.  Section 5.3.3 lists test scenarios along with a discussion of 
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the FLoST algorithm performance.  Section 5.4 will present conclusions and future 

work. 
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5.2.1 DESCENDING DEVIATION OPTIMIZATION TECHNIQUES FOR 

SCHEDULING PROBLEMS 

 
5.1.2 Background and Problem Statement 

 

Factory automation scheduling must often take into account a myriad of 

competing elements ranging from floor space to personnel and equipment costs, 

production times to shipping and delivery priorities.  Finding the best configuration 

means creating a schedule where conflicts and idle time are reduced to the greatest 

extent possible [Li 06], [Chase 06], [Ishi 99]. 

In a typical factory a number of different products are produced.  Each product 

consists of components.  Each component is made from raw materials or other 

components delivered to the factory or produced within it.  Raw materials must be 

shipped in and moved across the factory floor from a receiving point to a production 

station navigating a maze through which other raw materials, components and products 

must also pass. 

For testing purposes, consider a factory that produces 8 products.  From raw 

material to shipped product there are 8 stations to pass through: receiving (R), 

component assembly (CA), quality inspection (QI), final assembly (FA), inventory 

control (IC) and storage (S), testing (T) and loading and shipping (LS). 

The factory’s goal is to try to reduce the time material is in the plant to the 

smallest possible amount.  This means moving raw materials in and product out as 

quickly as possible.  But the situation can be very dynamic, with changing schedules 

and priorities and product lines.  In order to work as efficiently as possible the factory 

must be able to create a layout that will allow materials to move such that there is a 

limited amount of time spent waiting to move to the next station. Constraints include 
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minimum time spent at each station and minimum time to move between stations.  The 

goal state is one in which all products were at a given station with no product waiting 

on another. 

As there was no way to predict what the initial state would be, a random state 

generator was used to create 1000 random starting states to see how well the scheduling 

problem could be resolved to a goal state. 

A number of Local Search Algorithms (LSAs) were used to see which could 

most consistently move from a random starting state to a goal state without being 

trapped by local maxima. 

Heuristics determine where in the local neighborhood LSAs are to search as 

well as places to avoid.  Many LSAs work to explore nearby maxima through a process 

of moving to successively more optimal states, hoping to encounter a global solution 

along the way [Martin 07], [Russell 03], [Mantawy 99].  The problem is that many 

problems are populated with localized maxima such that flowing nearby gradients can 

“trap” a LSA by leading it to a position which is not a global solution but in which all 

of its neighboring positions lead to a less optimal state as shown in Figure 5.1 - 1. 
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Figure 5.1 - 1, Comparison of Local/Global Maxima. 

 

Some LSAs attempt to escape out of these local maxima through some sort of 

random “bounce” [Kurbel 98], [Pasias 04], [Kliewer 00], [Mendon 97] which moves an 

algorithm to a less optimal state but potentially into a location more capable of 

providing a solution as shown in Figure 5.1 - 2. 
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Figure 5.1 - 2, Bounce out of a Local Maxima Trap. 
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These random “bounces” are often not successful however, leading an algorithm 

away, rather than towards, a solution; expending time and computing resources in a 

fruitless search.  Descending Deviation Optimizations (DDOs) tries to improve upon an 

LSAs ability to escape local maxima and find a goal state by restricting it movements 

somewhat in order to prevent it from moving to far away in any random direction from 

a potential goal state.  This process works well in the scheduling problem presented in 

this paper because the state space contains a number of goal states spread throughout. 

Local Search algorithms tried were as follows: 

1. Hill Climbing 

2. Stochastic Hill Climbing 

3. Random Restart Hill Climbing 

4. Simulated Annealing 

5. Genetic Mutation 

6. Minimum Conflicts Search 

7. Tabu Search 

The results are listed in Table 5.1 - 1. 

 

Algorithm Tries Success Failure % Success 

Hill Climbing 1000 141 859 14.1 

Stochastic Hill climbing 1000 146 854 14.6 

Random Restart Hill Climbing
1
 1000 866 134 86.6 

Simulated Annealing 
2
 1000 271 729 27.1 

Genetic Mutation
3
 1000 229 771 22.9 

Min Conflicts
4
 1000 919 81 91.9 

Tabu Search
5
 1000 680 320 68.0 

 
Table 5.1 - 1, Initial Results of LSA Testing  

 
1. Random Restart declares failure after 100 restarts and no goal state 

2. Simulated Annealing alpha set at .99, number iterations max set to 1000, temp set to 1000 
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3. Genetic Mutation population of 30 boards, sample of 2 

4. Min Conflicts max iterations set to 100 

5. Tabu Search max iterations set to 100 

 

 

All of the techniques had some success in finding goal states, but the most 

successful required additional memory resources (Minimum Conflicts Search, Tabu 

Search) or a “lucky” combination of start states (Random Restart Hill Climbing) in 

order to succeed.  With limited resources, it would be more advantageous to implement 

a different strategy using one of the other techniques and the Descending Deviations 

Optimization. 
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5.1.3 The Descending Deviation Optimizations Technique 

Steps in the Descending Deviation Optimization (DDO) Implementation are 

then as follows: 

 

Step 1. DDO-LSA generates a potential random choice.  If the choice leads to a goal 

state then declare success. 

Step 2. DDO-LSA choice is compared to the DDO threshold.  If the choice moves the 

algorithm beyond that threshold, then choice is rejected and algorithm selects another 

random choice and tests again until a choice if found or all choices are tested. 

Step 3. If choice is accepted, the optimal threshold reduced by a predetermined amount 

and the algorithm moves to Step 1. 

 

As an example of the DDO technique consider a common local search 

technique: Simulated Annealing. 

Simulated Annealing (SA), named after a process in metallurgy whereby metals 

are successively heated and cooled, implements a succession of random “bounces” that 

slowly diminish over time [Kliewer 00], [Mendon 97].  SA’s pseudo-random selection 

method measures a random pick against a slowly descending de-optimization threshold.  

The algorithm allows a large range (nearly random) set of choices early on, getting 

progressively more restrictive in favor of better choices with each iteration.  Since the 

range of options is greater in the beginning, it will have a tendency to explore more 

maxima and is correspondingly more likely to find one that is a global solution.  SA is 

able to explore a relatively wide range of possibilities when compared to other 

algorithms and does a comparatively good job of finding global maxima compared with 
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other local search techniques.  However this can be computationally expensive.  In 

addition, the algorithm can have a tendency to be lead hopelessly astray by a succession 

of less than optimal choices as demonstrated in Figure 5.1 - 3. 
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 Figure 5.1 - 3, Pattern in which SA fails to find a solution 

 

The DDO approach to SA takes the original SA implementation and adds the 

following optimizations: 

1. An artificial, decreasing ceiling is imposed on the allowable number of 

conflicts.  The DDO threshold is a function of the square root of the temperature 

variable.  This prevents the solution from going from a lower state to a much 

higher state late in the process via a series of small, negative changes 

demonstrated in Figure 5.1 - 4.  With each iteration the DDO threshold forces 

the SA to explore a smaller and smaller range of randomizations, hopefully to 

move it more quickly to the goal state. 

2. Some versions of SA pick a value and may or may not use it depending upon 

whether or not it exceeds some “fitness” value.  In this case, all the local 

potential moves are tested.  Any move which would cause a no-operation to 

occur is thrown out of the sample of choices so that each iteration produces only 

those values that meet the fitness criteria. 
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3. During the screening process, if a particular choice is found that reaches the goal 

state, use that choice automatically so the process ends in success. 

Goal 

State

Conflicts
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SA Pattern with Descending Deviations DD Threashold

 
Figure 5.1 - 4, Simulated Annealing with Descending Deviations 
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5.1.4 Test Examples 

In order see how effective DDOs are, the best and worst LSAs were chosen for 

implementation; Simulated Annealing (SA) as the best performing and Stochastic Hill 

Climbing (SHC) as the worst.  Traditional Hill Climbing does not utilize a random 

component so was excluded. 

Stochastic Hill Climbing (SHC) is a variant of the traditional Hill Climbing in 

which not the steepest ascent is picked but any ascent is eligible, dictated by a 

probability assigned to each option [Russell 03].  The probability is dependent to some 

degree upon the steepness of the ascent. 

DDO-SHC works exactly like the traditional SHC until it gets “stuck”, at which 

point it “bounces” the solution to a nearby, less optimal state and again applies the 

original strategy.  The “bounces” are gradually lessened in height or until they 

disappear at which time if a global solution is not reached, the strategy fails. 

The DDO-SHC and DDO-SA were added to the suite of LSAs and tested 

against the scheduling problem.  The results of the modified LSAS are listed in Table 

II. 

 

Algorithm Tries Success Failure % Success 

DDO-Stochastic Hill Climbing1 1000 253 747 25.3 

DD-Simulated Annealing2 1000 993 7 99.3 

 
Table 5.1 - 2, Results of Modified Local Search Algorithm Testing.  

 
1. DD-Hill rescued 121 failures, threshold set at 5 

2. Simulated Annealing/DD-Simulated Annealing alpha set at .99, number iterations max set to 

1000, temp set to 1000 
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In both cases DDO modifications to the original LSAs resulted in significant 

improvements in the LSAs ability to avoid local maxima and find a global solution.  

The DDO-SHC success rate nearly doubled (14.6% to 25.3%) while the DDO-SA 

achieved an almost fourfold (27.1% to 99.3%) rate increase to the point it was nearly 

perfect and better than any of the traditional LSAs tried. 

There were 2 additional benefits as well for the DDO-SA algorithm.  Despite the 

additional overhead imposed by the DDO, the increased success rate resulted in 20% 

fewer iterations overall for the given 1000-test cycle.  In addition, the algorithm also 

displayed a lesser tendency to “wander around” or be lead astray by a series of bad 

choices.  This resulted in both more successes and lead to a net time reduction of over 

35% to complete 1000 iterations, also resulting in a large net decrease in computational 

resources required. 
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5.2 LINE-OF-SIGHT TRACKING BASED UPON MODERN HEURISTICS 

APPROACH 

 
This remainder of this chapter presents heuristics to enable autonomous vehicles to 

track, anticipate and respond to moves from a human leader.  These heuristics for less 

expensive, yet more effective implementation of autonomous technology.  The results 

were presented at IEEE ICIEA08, June 2008. 

 

5.2.1  Introduction 

Intelligent control is one area that can make extensive use of both data mining 

and local search techniques.  Using a Decision Tree, for instance, a controller can turn a 

database of information into a mechanism to determine various actions.  In the event a 

database is not available, Local Search techniques allow it to explore the neighborhood 

for the most optimal course of action. 

Among other things, intelligent controllers are in use today to drive autonomous 

vehicles.  There are situations where it is necessary or desirable to be able to rely upon 

autonomous, machine-guided vehicles to perform certain tasks.  On the surface of Mars, 

for example, it is not practical to send a human driver; while the crater of an active 

volcano may be practical but deemed too hazardous, but not all conditions are this 

extreme. 

Regardless of the situation, there is usually significant difficulty and cost to 

autonomous implementation [Liu 06].  Innovative solutions have addressed this [Wall 

02] but challenges in the form of urban terrain, road conditions, traffic “rules” and other 

obstacles continue to plague autonomous vehicle operation. 

An alternative exists for those situations where the environment is tightly 

controlled enough not to require a fully autonomous solution and safe and practical 
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enough for human participation.  In this situation an approach is possible which 

combines human leadership with the ability of a vehicle to follow.   

For example, it may be necessary for an individual to require the help of a 

machine to transport material from point to point.  An example could be an airport, 

where a person has to move luggage across a busy terminal, or a factory, where 

inventory is moved from production to shipping through small corridors or a junkyard 

where tons of metal needs to be guided around piles of debris.  More extreme cases 

might involve the removal of hazardous waste or movement through a dangerous area 

where it would be preferable to use automated vehicles in lieu of human resources.  

Whereas, it might otherwise be prohibitively expensive or simply too dangerous to trust 

to a truly automated vehicle, a hybrid system, with a human leader and an array of 

mechanical followers could prove a practical alternative. 

“Following” technology, as opposed to a purely autonomous one, doesn’t 

require sophisticated decisions with respect to direction, speed, hazards, or road 

conditions and as such requires less sophisticated sensory hardware and software.  

Additional reliance upon the judgment of the human leader can also mitigate the impact 

of obstacles and other issues which can make the operation of a purely autonomous 

vehicle difficult and hazardous. 

Other solutions for autonomous following have been proposed, for example, by 

combining CCD cameras and neural networks for pattern recognition [Omura 99], 

motion sensors, GPS systems and standard communications [Chang 91] for platooning.  

This chapter demonstrates that combining line-of-sight devices and a fuzzy algorithm 

for following has advantages to the first solution in that it avoids many of the 
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difficulties associated with noise in the patterns.  It also has advantages to the latter 

solution in that it employs a simpler array of devices and logic.  An autonomous 

follower, using FLoST to mimic its human leader, presents a much more cost-effective 

solution and a potentially more effective one. 

FLoST is a novel, fuzzy arithmetic based algorithm.  Using the analogy of a 

mother “Duck” and her “ducklings”, the algorithm guides a series of mobile, 

autonomous units to follow a lead vehicle (or “Duck”) and each other from a 

predetermined distance, mimicking both velocity and, to a greater or lesser degree 

depending upon conditions, direction traveled. 

The proposed alternative technique relies upon a series of rapid angular scans to 

achieve location and distance measurements to the lead target.  Technologies for line-

of-sight tracking have been in use in devices in both the commercial and military 

sectors for many years in various devices [Leigh 97], [Michaud 06].  These devices 

detect an object, such as a hostile aircraft, and relay information, such as distance, 

direction and speed, to other units.  Such devices, mounted upon and directing the 

movement of some sort of mobile platform, following a human or mechanical leader, 

can create some new utility. 

The remainder of this chapter is organized as follows: Section 5.2.2 presents a 

problem statement with simple scenario and a series of applications for the algorithm 

presented in this chapter.  Section 5.2.3 presents the FLoST, for Fuzzy Line of SighT, 

algorithm.  Section 5.2.4 lists test scenarios along with a discussion of the FLoST 

algorithm performance.  Section 5.2.5 will present conclusions. 
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5.2.2  Problem Statement 

For the purpose of demonstration, consider a lead vehicle (“Duck”) and N 

followers (“ducklings”).  Based on the FLoST algorithm presented in this paper, each 

“duckling” becomes the “Duck” to the subsequent "duckling”, hence any configuration 

of 1 “Duck” to N “ducklings” is possible. 

This technique has application in many areas where the movement of material is 

impractical for human agents.  Consider the following scenario: an earthquake damages 

a chemical plant.  Highly explosive chemicals must be moved to another facility 

immediately but it is deemed unsafe for anyone to be near the chemicals while in 

transit.  Applying FLoST in this scenario, the chemicals are loaded onto a series of 

FLoST-equipped vehicles following a lead vehicle with a human driver.  The lead 

vehicle, or “Duck”, is a heavily armored vehicle able to protect its human driver from 

the effects of a blast.  The followers, or “ducklings”, are FLoST transports. 

 

DuckDuckling 1
Duckling 2

d2

d1

 
 

Figure 5.2 - 1, 2-D surface, example with 1-Duck and 2 ducklings. 

 

Typically the “Duck” will proceed in a determined, but not constant direction, 

and will not have to back-track at any point.  The road surface may contain obstacles to 

move around, but otherwise allow the “ducklings” to maintain line-of-sight to the 

“Duck”.  “Ducklings” themselves are “daisy-chained” such that the “duckling” in front 

will serve as its follower’s respective “Duck”.  It is reasonable to assume that the 
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“Duck” will not intentionally try to evade the “ducklings” so its movement will be 

fairly consistent, though it may be necessary, at times, for more drastic maneuvers. 
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5.2.3 FLoST (Fuzzy Line-of-Sight Tracking) algorithm 

The FLoST algorithm will be presented on a generic problem of N “ducklings” 

following a “Duck”, as illustrated by Figure 5.2 - 2: 

P0

α0

P1

12N

 
 
Figure 5.2 - 2, Duck and ducklings at start. 

 

The heuristic of the FLoST algorithm allows each “duckling” to follow the 

“Duck” as it proceeds from point to point on its journey.  Each “duckling” 

accomplishes this by maintaining a knowledge base of “Duck” behavior.  At each point, 

the “duckling” records the relative distance, ΔP, and relative direction change, Δα, of 

the “Duck” in its knowledge base, allowing it to determine  its absolute position and 

direction as well as its desired velocity. 

The “duckling” then applies the FLoST heuristic to better predict future 

behavior of the “Duck’s” human driver as a function of its past behavior.  In this 

example, the “duckling” creates three speed “zones” called Slow (S), Normal (N), and 

Fast (F), which are overlapping measures of the maximum speed of the “Duck” and 

used to assign direction changes, Δα, along with an average direction change αAvg, as 

shown in Figure. 5.2 - 3. 
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Figure 5.2 - 3, Direction changes and averages in Duck speed zones 

 

The “duckling” then assigns each Δα to its respective zone or zones if it lies 

within an overlap: 
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       (35) 

 

where Vmax is the maximum velocity of the “Duck”.  By taking the mean over all Δα in 

a given zone, the duckling calculates the αAvg, which is then used to generate a turn rate 

coefficient for that zone.  In this example the coefficients are: 

 

TRx = ½αxAvg + ½αLast , x  FNS ,,        (36) 

 

where αAvg is the average α for a given zone; αLast is the last measurement taken for that 

zone; and TRx is a component used in a fuzzified function to calculate the search. 

At the beginning of this scenario, the “Duck” starts at location P0, followed by 

two “ducklings”.  The “Duck” will then proceed over time Δt in a direction and speed 

indicated by the angle α0 to the point P1 as shown in Figure 5.2 - 4.  The first “duckling” 
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will orient itself on and proceed to P0, then using the FLoST algorithm, the duckling 

will begin its first scan for the “Duck”using as its first search angle, Θ, the vehicle 

Maximum Turn Rate (MTR) based upon the fuzzy equation developed by Wu, Zeng, 

Chaing and Lee [Wu 05] for a given vehicle. 

 

 
 

Figure 5.2 - 4, Duck proceeds to first point 

 

As the “duckling” moves from point to point, it updates its knowledge base of 

“Duck” behavior with information derived from each new “Duck” point.  From the 

original speed zones, the duckling creates fuzzified versions of Slow (S), Normal (N), 

and Fast (F) that range from 0 to the maximum velocity of the Duck (Vmax) as shown in 

Figure 5.2 - 5. 

 

Vmax

Slow Normal Fast

.1 .2 .3 .4 .5 .6 .7 .8 .9

Fuzzy speed zones

0

false

true

 
 
Figure 5.2 - 5, Fuzzified speed of Duck. 

 

The duckling applies the FLoST algorithm using the following steps: 
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Step 1. Scan for and locate “Duck”.  Apply FLoST to determine the search angle Θ, 

calculated as follows: 

 

Θ  = Vf * TR = [Vs   Vn   Vf] * 

















f

n

s

TR

TR

TR

     (37) 

 

where Θ has a minimum value of 1 degree.  In the absence of any points for any TRx, 

use the vehicle Maximum Turn Rate (MTR). 

The search angle is drawn using the +/- Θ offset from the current angle αi  The 

search continues until either the “Duck” is located or it is determined the “Duck” is lost 

as illustrated  by Figure 5.2 - 6. 

 

 
 

Figure 5.2 - 6, Scan for Duck at P1. 

 

Step 2. Use information about Duck’s relative position to determine next point: P1, and 

a new direction α1. 

The “duckling’s” rangefinder provides a relative distance from the “Duck”, ΔP, 

and the traversal mechanism provides the relative direction Δα.  The new location P1 

and the new vector α1 are defined as: 
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Pi+1 = Pi + ΔPi         (38) 

αi+1 = α0 + Δα         (39) 

 

Step 3. Calculate the velocity of “Duck” to P1 as: 

 

Vi = |Pi – Pi-1| / ∆ti,  ∆ti = ti – ti-1      (40) 

 

Step 4. Update the knowledge base as described by Equation. (35) & (36). 

Step 5.  Adjust course and speed and then proceed to “Duck’s” new known location. 

As opposed to just applying the Maximum Turn Rate, MTR, the FLoST TRx 

will usually generate a smaller search area than MTR.  In this way, the “duckling” (d) 

can concentrate its search in the area the “Duck” (D) appears to be headed as illustrated 

in Figure 5.2-7. 

 

P1

P0

-Θ

+Θ

Current 

Direction

Duck

duckling

Predicted 

Search Area

Actual 

Position

d1

D

 
 

Figure 5.2 - 7, Choosing a search area. 

 

The major hardware components of the “duckling” consist primarily of an array 

of Line-of-Sight (LoS) sensors mounted on elements that can traverse the search area.  

A sample configuration is illustrated in Figure 5.2 - 8.  These LoS mechanisms feed 
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speed, direction and distance information to the navigation system which adjusts the 

“duckling’s” movement accordingly. 

 

P1

P0

-Θ

+Θ

Sensor #1

Sensor #2

Sensor #3

Sensor #4
 

 
Figure 5.2 - 8, Duckling searching with sensor array 

 

Using the FLoST algorithm, the “duckling” follows the “Duck” from point to 

point, adjusting course and speed and updating its knowledge base of prior actions as 

shown in Figure 5.2 - 9.  The algorithm attempts to minimize the search area whenever 

possible, adjusting the search angles to account for variations in “Duck” movement at 

each iteration.  Minimizing search angles allows for a more rapid scan rate which both 

reduces the search area and enables the “duckling” to make course and speed 

corrections on a more frequent basis thus reducing the chance for future misdirection. 

 

P0
P1

P2

…….
PN?

PN-1

PN-2

α0

α1

αN-1

αN-2-Θ

+Θ

+Θ

-Θ

 
 

Figure 5.2 - 9, Two ducklings using FLoST to follow Duck 

 

This is possible when the actions of the “Duck” are generally consistent and 

relieves the “duckling” of having to take into account considerations regarding terrain, 
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speed, safety, and obstacles.  These, and other factors, can be very difficult and 

expensive to implement in an automated system.  However, such factors are much more 

easily “inferred” by training the duckling to follow the behavior of the “Duck” 

precisely.  Because human behavior is likely to vary at differing speeds and times, 

FLoST implements a series of fuzzy speed zones TRs.  Because transitions are loosely 

defined, variances in behavior are more easily tolerated. 
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5.2.4 Test Examples 

 

Examples consist of both trivial cases and non-trivial cases.  Trivial cases arise 

when the following three instances occur: velocity is zero; the change of direction is 

zero; and the sample time is zero.  In each case, the search angle collapses.  These 

trivial examples will not be discussed any further.  Non-trivial cases arise when the 

“Duck” moves in one direction for a period of time, establishing a knowledge base of 

very small direction changes, then executes a maximum turn in one direction or the 

other.  For the “ducklings” this behavior is unexpected and will require additional 

iterations in order to learn and adapt to this new pattern.  The performance of FLoST 

will be discussed using three boundary cases, representing three scenarios of sudden or 

unusual trajectory of “Duck” movements. These cases are: the “Duck” is going in tight 

circle; the “Duck” is going in spiral; the “Duck” is weaving back and forth. 

The first boundary case, where the “Duck” moves in a tight circle using the 

maximum turn rate (MTR), is shown in Figure 5.2 - 10.   
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Figure 5.2 - 10, Duck moves in tight circle 

 

As the duckling has “learned” only small movements to this point, it will have 

to learn very different, new behavior in order to generate a reasonable search rate 

coefficient TR. 

While a traditional search uses the full MTR to establish the search angle, the 

coefficients used by the “duckling” create a tight angle initially, growing larger with 

each sampling.  While the standard search will always capture the “Duck” in its primary 

scan, the “duckling” will require many samples in order to generate a large enough 

search angle.  A way to compare the two methods is to examine how efficient each is in 

its primary scan.  This can be accomplished by comparing the scan Θ for search 

technique: 
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Figure 5.2 - 11, Comparison of FLoST vs Maximum Turn Rate Search 

 

For TR = 20° the FLoST algorithm will begin at a significant disadvantage as it 

tries to unlearn previous behavior with the first measurement being off by a factor of 

20.  Very quickly, however, the FLoST adjusts the angle of search based upon the last 

recorded change in direction enabling it to rapidly approximate the increased difference 

between the directions of “Duck” and “duckling” as demonstrated in Figure 5.2 - 11.  

Problems of major directional change are not limited to FLoST; extreme maneuvers 

cause difficulty in other fuzzy tracking algorithms as well [Chan 95], [Cheng 01]. 

The second boundary case is when the “Duck” moves in a widening spiral. 
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Figure 5.2 - 12, Ducklings follow Duck in spiral. 

 

The spiral motion starts as extreme as the circle but gradually reduces the turn 

rate as it moves outward.  In this example, the spiral starts out with an initial turn of 20° 

and loses a degree every two samples.  It does not take long for the FLoST algorithm to 

catch up in this case as indicated by the graph in Figure 5.2 - 13 comparing the search 

areas: 

 

 
 

Figure 5.2 - 13, Comparison of FLoST vs Maximum Turn Rate Search in a spiral. 

 

As with the tight circle, the “duckling” starts off at a significant disadvantage.  

However, the FLoST search angle quickly “catches up”.  It surpasses the efficiency of a 
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brute-force MTR calculation after a series of iterations allows it to expand and adapt, 

then narrow its search to accommodate the slowly degrading turn of the spiral. 

A third boundary case is the weave.  Like the circle, the weave utilizes 

maximum turn rate MTR, but in alternating directions. 

 

D

d

d

d
 

 
Figure 5.2 - 14, Ducklings follow Duck in weave pattern. 

 

The weave attempts to perform the same extreme maneuver as the circle, 

although inertia in one direction will hinder its ability to exploit the full MTR in the 

other direction. 

With an initial turn of 20° and subsequent weaves of 19°, FLoST quickly adapts 

to create a useful Θ as indicated by the graph in Figure 5.2 - 15. 

 

 
 

Figure 5.2 - 15, Comparison of FLoST vs Maximum Turn Rate Search in a weave 
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Despite some initial trouble at boundary extremes, FLoST does very well under 

less extreme, more “normal” operating conditions. 

It is reasonable to assume a human operator will not deliberately attempt to 

evade a “duckling” or drive in an extreme circle, weave or spiral for any significant 

length of time.  “Normal” operation then consists of relatively gentle turns at higher 

speeds or extreme turns at low speeds followed by sequences of relatively straight 

paths.  Under these conditions, the FLoST “duckling” expands or narrows its search 

angle to compensate, relative to the fuzzy zones (slow, normal, and fast) determined 

during operation.  Using the fuzzy zones further optimizes the “normal” case since 

larger degree turns are more safely accomplished at slower speeds, and is reflected in 

the autonomous “duckling’s” knowledge base.   The “duckling” then knows that the 

slower speed has a greater incidence of wide turns and will adjust its search parameters 

accordingly. 

In the original scenario of the chemicals that need to be moved to a safe 

location, workers could load the dangerous chemicals and be well away from harm 

while the “Duck” calls the “ducklings” to marshal.  The “Duck” driver can navigate a 

complex path at a safe speed knowing the automated “ducklings” will mimic the course 

and speed very precisely.  Once at an area where they can be unloaded, the “ducklings” 

are dispersed automatically to safe areas and processed as needed. 
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5.3 CONCLUSION 

The results demonstrate the importance of applying additional heuristics to 

traditional algorithms.  In the case of Local Search Algorithms, the advantage of 

Descending Deviation Optimizations when applied to Stochastic Hill Climbing and 

Simulated Annealing in the production line scheduling problem of factory automation 

was significant.  Compared with the traditional approaches, DDO-Optimized versions 

were not only more successful overall in finding a solution, but in the case of DDO-SA 

were less likely to engage in fruitless searches due to a lengthy series of bad choices.  

This resulted in a significant net time reduction and large net decrease in computational 

resources required.  DDO-SA also outperformed all other Local Search Algorithms 

tested, including those heavily dependent upon memory resources and “luck”. 

In the case of the autonomous vehicle, notions of an unmanned successful 

tracking system usually involve a complex array of devices and software and the 

assumption that no human direction is available.  However, as this thesis demonstrates, 

a simpler combination of human intelligence and machine algorithm could prove a 

worthwhile alternative.  The performance of FLoST, the algorithm presented in this 

paper, is discussed for three boundary cases, “Duck” moving in circle, “Duck” moving 

in spiral and “Duck” weaving back and forth, in which the FLoST algorithm quickly 

and successfully adjusted the search parameters to compensate. 
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Chapter 6 

FINAL CONCLUSIONS AND FUTURE WORK 

 
The preceding chapters presented methods and algorithms to improve the 

effectiveness of Decision Trees, Local Search Algorithms and Intelligent Controllers.  

Taken together or separately, these techniques constitute very powerful systems with 

extensive capabilities.  However, the results shown demonstrate that these capabilities 

can still be greatly improved through application of the techniques detailed in this 

thesis.  Using Contextual  Fuzzy Type-2 Hierarchies for Decision Trees, CoFuH-DT, 

combined with Contextual Derivation From Decision Trees, CoT-DT, Decision Trees 

were made smaller by many orders of magnitude; simpler, faster and more easily 

described.  Rule generation moved from a cumbersome sequence of If-Then statements 

to a much cleaner polymorphic construction.  Descending Deviation Optimizations 

applied to Local Search Algorithms reduced failure rates by up to 99%.  Finally, using 

FLoST resulted in an autonomous vehicle both relatively inexpensive but still quite 

effective. 

Future work needs to be done in each of the areas.  Artificial Neural Networks, 

(ANNs), were shown in Chapter 2 to be a well-suited for classification.  In Chapter 4, 

once such ANN, the Error Back Propagation ANN or EBP-ANN, was used to generate 

significant contexts for a Decision Tree.  However ANNs are very diverse with a wide 

range of capabilities.  The EBP-ANN used to generate contexts for CoT-DT is only one 

of a number of possibilities.  Future work involving the effectiveness of other ANN 

implementations, such as Kohonen Self-Organizing Maps, needs to be explored.  In 
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addition, other classifiers such as Support Vector Machines and Bayesian Networks 

also show promise for context generation. 

While the Decision Tree was the primary focus of this thesis, both CoFuH and 

CoT have potential for generalization across a wide range of Advanced Data Mining 

Techniques, particularly classifiers, such as K-Means, Bayesian, Fuzzy c-Means and 

others.  Generalizing the CoFuH and CoT algorithms to provide a more complete and 

generic framework for other ADMTs is a goal. 

For Local Search Algorithms, future work needs to be done to apply the DDO 

method to other LSAs to see what improvements are possible elsewhere.  It appears 

possible that any of the traditional LSAs which utilize some randomization, for 

example, Genetic Mutation, can be improved.  Also to be tested is how DDO-Simulated 

Annealing will perform in place of traditional Simulated Annealing for other classes of 

NP-problems such as neural network optimizations, adversarial game play, intelligent 

control and chip layout, and whether results will be comparable to those achieved in the 

factory scheduling problem. 

Further work also is necessary to improve FLoST prediction and accuracy.  This 

may be possible by incorporating a neural network based approach.  Extending the 

FLoST to allow “ducklings” to properly couple and decouple from a train, sort 

themselves out and avoid conflicts with other “ducklings” would greatly improve the 

applicability and overall usefulness of FLoST.  Finally there need to be processes to 

allow the “Duck” and “duckling” to respond and reestablish contact in the event line-of-

sight tracking fails. 
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APPENDIX A 

 
LOCAL SEARCH ALGORITHMS PSEUDO-CODE 

A number of local search algorithms (LSAs) were studied and programmed for 

simulation in the C# programming language.  What follows is pseudo-code for the 

individual algorithms. 

  

Terms: 

 

Schedule – The current schedule 

ScheduleConfig – A possible alternative schedule (could be NULL) derived by a slight 

modification of existing schedule 

schedule_state – A value indicating whether Schedule is in goal (success) state, a 

failure state or intermediate state 

Candidates – An array of possible ScheduleConfigs 

Element – Competing elements that make up a Schedule 

Option – One particular element configuration 

Track – Flow of a given option 

bounce_condition – Occurs when a LSA has exhausted all search possibilities and is 

“trapped” in a condition that is not a goal state 

bounce – A randomization of the current state to another state 

Conflict – Condition where two elements require the same resource at the same time 
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LSA#1 - Hill Climbing 

 

The Hill Climbing algorithm is a greedy algorithm which tries to move from a 

state to the lowest possible conflict state.  The pseudo-code outline of this approach is 

as follows: 

Hill Climbing(Schedule) returns schedule_state 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

else 

ChangeSchedule(Schedule, GetNextHillClimbConfig(Schedule)) 

UpdateConflicts(Schedule) 

End Loop 

 

GetNextHillClimbConfig(Schedule) returns ScheduleConfig 

for each ScheduleConfig in Schedule 

if Conflicts(ScheduleConfig) < Conflicts(Schedule) AND 

Conflicts(ScheduleConfig) <= LowestConflict 

AddToCandidates(ScheduleConfig) 

 LowestConflict = Conflicts(ScheduleConfig) 

 for each ScheduleConfig in Candidates 

  if Conflicts(ScheduleConfig) > LowestConflict 

   Remove(ScheduleConfig)  

    return random(ScheduleConfig) from Candidates 

 

 

Strength of this approach is simple implementation and minimal resources 

required.  Weakness is that it has a great tendency to be attracted to and trapped in a 

local maximum. 
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LSA #2 - Stochastic Hill Climbing 

 

Stochastic Hill Climbing is a variant of the hill climb in which not the steepest 

ascent is picked but any ascent is eligible, dictated by a probability assigned to each 

option.  The probability is dependent to some degree upon the steepness of the ascent.  

The pseudo-code outline of this approach is as follows: 

Stochastic Hill Climbing(Schedule) returns schedule_state 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

else 

ChangeSchedule(Schedule, GetLowerScheduleConfig(Schedule)) 

UpdateConflicts(Schedule) 

End Loop 

 

GetLowerScheduleConfig(Schedule) returns ScheduleConfig 

for each ScheduleConfig in Schedule 

if Conflicts(ScheduleConfig) < Conflicts(Schedule)  

AddToCandidates(ScheduleConfig) * Conflicts(Schedule) – 

Conflicts(ScheduleConfig) 

    return random(ScheduleConfig) from Candidates 

 

 

Strength of this approach is that it does allow an algorithm to escape a local 

maximum.  Weakness is that it still has a great tendency to be attracted to and trapped 

in a local maximum. 
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LSA #3 - Stochastic Hill Climb using Descending Deviation Optimizations 

DDO-Stochastic Hill Climb works like the standard stochastic hill climb until it 

gets “stuck”; at which point it “bounces” the solution to a nearby, less optimal state and 

again applies the standard stochastic hill climb.  The “bounces” are gradually lessened 

in height until they disappear; at which time if a global solution is not reached, the 

strategy fails.  Pseudo-code implementation is as follows: 

 

DD-Stochastic Hill Climbing(Schedule) returns schedule_state 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

if neither state 

ChangeTile(Schedule, GetNextHillClimbTile(Schedule)) 

UpdateConflicts(Schedule) 

       If bounce_condition(Schedule) 

 Bounce(Schedule) 

End Loop 

 

GetLowerScheduleConfig(Schedule) returns ScheduleConfig 

for each ScheduleConfig in Schedule 

if Conflicts(ScheduleConfig) < Conflicts(Schedule)  

AddToCandidates(ScheduleConfig) * Conflicts(Schedule) – 

Conflicts(ScheduleConfig) 

    return random(ScheduleConfig) from Candidates 

 

Bounce(Schedule, height) 

 ScheduleConfig = PickScheduleConfig(Random(Schedule.Option), 

Random(Schedule.Track), height) 

 MoveScheduleToScheduleConfig(ScheduleConfig) 
 
 

PickScheduleConfig(Track, Option, height) 

for each ScheduleConfig in Schedule.Option 

if Conflicts(ScheduleConfig) <= height 

AddToCandidates(ScheduleConfig) 

    return random(ScheduleConfig) from Candidates 

 

 



124 

Strengths of this approach is that it will never do worse (or take longer) that the 

standard stochastic hill climb, but has the ability to escape local maxima.  The weakness 

of this approach is when a global maximum is not nearby, the algorithm may not be 

able to “bounce” far enough to find it and hence will still fail, albeit with more effort. 
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LSA #4 - Random Restart Hill Climbing 

 

The Random Restart is another variant on the Hill Climb, except in this case, 

once a local maximum is discovered, the process does a random scramble and tries 

again.  The assumption is that a Random Restart will eventually produce an initial 

configuration that will allow it to reach a goal state.  While the probably of success is 

essentially one, meaning that if given enough retries the Random Restart will eventually 

randomize its way to a solution.  The implementation presented in this thesis limits the 

number of tries to 100 restarts, so as to not go on for too long.  Pseudo-code 

implementation is as follows: 

 

Random Restart Hill Climbing(Schedule) returns schedule_state 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

if neither state 

ChangeScheduleConfig(Schedule, 

GetNextHillClimbScheduleConfig(Schedule)) 

UpdateConflicts(Schedule) 

       If restart_condition(Schedule) 

 Restart(Schedule) 

End Loop 
 

GetNextHillClimbScheduleConfig(Schedule) returns ScheduleConfig 

for each ScheduleConfig in Schedule 

if Conflicts(ScheduleConfig) < Conflicts(Schedule) AND 

Conflicts(ScheduleConfig) <= LowestConflict 

AddToCandidates(ScheduleConfig) 

 LowestConflict = Conflicts(ScheduleConfig) 

 for each tile in Candidates 

  if Conflicts(tile) > LowestConflict 

   Remove(ScheduleConfig)  

    return random(ScheduleConfig) from Candidates 

 

Restart(Schedule) 

 Element = Random(Schedule.Elements) 

 ScheduleConfig = Random(Element.Track) 
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 MoveElementToScheduleConfig(ScheduleConfig) 
 

 

Strengths of this approach is that the algorithm should theoretically be able to 

find any solution if it exists.  The weakness is that if global maxima are sparse and local 

maxima are dense, the algorithm could take a very long time to find a solution.  
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LSA #5 - Simulated Anneling (SA) 

 

Simulated Annealing introduces a pseudo-random selection method in that the 

best choice is not necessarily used but it is not random either.  The algorithm allows a 

large range, or nearly random, set of choices early on, getting progressively more 

restrictive in favor of better choices as the algorithm iterates.  Eventually, the algorithm 

will work in much the same fashion as the Hill Climb, but since the range of options is 

greater in the beginning, it will have theoretically explored more maxima and is 

correspondingly more likely to find a global one.  Psuedo-code implementation is as 

follows: 

 

Simulated Annealing (Schedule) returns schedule_state 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

if neither state 

ChangeScheduleConfig(Schedule, GetNextSAScheduleConfig(Schedule)) 

UpdateConflicts(Schedule) 

End Loop 

 

GetNextSAScheduleConfig(Schedule) returns ScheduleConfig 

ScheduleConfig = RandomScheduleConfig(Schedule) 

if Conflicts(ScheduleConfig) < Conflicts(Schedule) OR 

Annealing(Conflicts(ScheduleConfig)) <= Probability 

 return ScheduleConfig 

       else 

 return null 

 

 

The strengths of this approach is that it explores a pretty wide range of 

possibilities and does a better job of finding global maxima than the other Hill-Climb 

variants (except for the Random Restart).  The weakness is that this process requires 

much more processing power and time. 
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LSA #6 - Genetic Mutation (GM) 

 

Genetic Mutation attempts to emulate the characteristics of random selection.  

The first step is to create a “population” of candidates and select a small sample from 

that population; in Chapter 5, the sample size was two.  The “fittest” of the sample 

survives, while the remaining members “mutate” based upon a probability and “cross-

breed” with the best member, exchanging some of their attributes with those of the best 

member.  Then the sample is returned to the population and a new sample is drawn.  

Pseudo-code implementation is as follows: 

 

GeneticMutation (Schedule) returns schedule_state 

 ScheduleCollection = random collection of Schedules + Schedule 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

if neither state 

 Sample = Sample(ScheduleCollection)  // pull a pair of Schedules 

NewSchedule = Fittest(Sample) // get the Schedule with the least conflicts 

Crossover(NewSchedule, Sample – NewSchedule) 

Mutate(Sample – NewSchedule) 

UpdateConflicts(NewSchedule) 

End Loop 

 

Crossover(Schedule, ScheduleCollection) 

for each SampleSchedule in ScheduleCollection  

 replace random Options in SampleSchedule with Options from Schedule 

 

Mutate(ScheduleCollectioin) 

      for each SampleSchedule in ScheduleCollection  

If random < threshold 

   Move random Element to random Track 

 

 

The strengths of this approach is that it explores many different states and 

doesn’t generally focus on any given local maxima.  The weakness is that it performs a 



129 

lot of useless mutations, often moving around local maxima for a number of iterations 

instead of spending fewer cycles on a more direct approach.  In many cases, the 

mutation also put potential schedules in a worse state.  A DDO version might be to limit 

the range of mutations so that they produce only better schedules or, at least, no worse 

or marginally worse.  This might serve to avoid a lot of effort that would otherwise be 

devoted to useless comparisons later on. 
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LSA #7 - Min Conflicts 

 

The Min Conflicts approach takes apart the space option by option seeking the 

minimum for each.  This allows for a multi-pronged approach to greedy search that 

appears to be very effective in this case.  In this implementation, the directional sweep 

of rows alternated from left-to-right and right-to-left, so as to not bias the heuristic to 

any given direction.  Pseudo-code implementation is as follows: 

 

MinConflicts(Schedule) returns schedule_state 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

if neither state 

 for each column in Schedule 

 MoveElementToBestTrack(ScheduleConfig) 

UpdateConflicts(Schedule) 

End Loop 

 

MoveElementToBestTrack(ScheduleConfig)  

for each Track in Option 

if Conflicts(ScheduleConfig(Track, Option)) < Conflicts(Element) 

Element.ScheduleConfig = ScheduleConfig(Track, Option) 

 

The strengths of this approach are that is generally finds a solution in only a few 

iterations and is fairly easy to implement.  The weakness is that may be susceptible to 

looping conditions as changes propagate and undo/redo various configurations that are 

interdependent. 
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LSA #8 - Tabu Search 

 

Tabu Search combines elements of the Hill Climb with a local “memory” of 

previous configurations.  Instead of necessarily picking the best solution, it simply 

picks from among as good or better solutions.  The memory prevents the algorithm 

retrying paths that have already proven fruitless.  Pseudo-code implementation is as 

follows: 

 

TabuSearch (Schedule) returns schedule_state 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

if neither state 

 conflicts = Conflicts(Schedule) 

ScheduleConfig = GetALowerScheduleConfig(Schedule, conflicts) 

if ScheduleConfig = null return failure 

else AddToAlreadyUsed(ScheduleConfig) 

UpdateConflicts(Schedule) 

End Loop 

 

GetLowerScheduleConfig(Schedule, conflicts) returns ScheduleConfig 

For each ScheduleConfig in Schedule 

If Conflicts(ScheduleConfig) <= conflicts 

AddToCandidates(ScheduleConfig) 

 

      For each ScheduleConfig in Candidates 

 If AlreadyUsed(ScheduleConfig) 

       Remove(ScheduleConfig) 

 

    return random(ScheduleConfig) from Candidates 

 

 

The strengths of this approach is that it explores many potential paths.  The 

weakness is that it requires significant memory for large search problems (potentially 

configuration size times # bits to represent configuration times possible configurations) 

so may not be practical.  One alternative is to limit the number of prior representations 
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stored in memory but this adds the additional complication that looping conditions can 

still be encountered if the loop exceeds the size of the tabu array. 
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LSA #9 – Simulated Annealing Using Descending Deviation Optimizations 

 

DDO-Simulated Annealing is based upon traditional Simulated Annealing (SA) 

but attempts to correct some of the inherent problems associated with traditional SA.  

First, traditional SA can, through a series of bad randomizations, move to a 

progressively worse state or “wander” too far away off a gradient path to recover.  DDO 

prevents this by imposing an artificial limit on the algorithm’s ability to wander.  A 

second problem with traditional SA is that it may pick a direction that is so bad that it 

fails the threshold test, resulting in a “no operation” (no-op).  DDO-SA forces a 

selection from only those actions that are valid so a no-op doesn’t occur.  The third 

problem is that traditional SA can randomize to the goal state but not select it due to the 

number of possible states, of which the goal state is only a member.  DDO-SA does a 

scan of all possible states looking specifically for the goal state.  If the goal state is 

found the algorithm choose that and completes successfully.  Pseudo-code 

implementation is as follows: 

 

Simulated Annealing (Schedule) returns schedule_state 

Loop 

schedule_state = AssessSchedule(Schedule) 

if schedule_state = success/failure 

 return schedule_state 

if neither state 

ChangeScheduleConfig(Schedule, GetNextSAScheduleConfig(Schedule)) 

UpdateConflicts(Schedule) 

End Loop 

 

GetNextSAScheduleConfig(Schedule) returns ScheduleConfig 

ScheduleConfig = RandomScheduleConfig(Schedule) 

if Conflicts(ScheduleConfig) < Conflicts(Schedule) OR 

Annealing(Conflicts(ScheduleConfig)) <= Probability 

 return ScheduleConfig 

       else 

 return null 
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RandomScheduleConfig(Schedule) returns ScheduleConfig 

For each ScheduleConfig in Schedule 

 if ScheduleConfig = goal_state 

   return ScheduleConfig 

 

if Conflicts(ScheduleConfig) < Conflicts(Schedule) OR 

(Annealing(Conflicts(ScheduleConfig)) <= Probability AND 

Conflicts(ScheduleConfig) <= DDO threshold) 

AddToCandidates(ScheduleConfig) 

    Loop 

    return random(ScheduleConfig) from Candidates 

 

 

This approach carries with it all the positives of tradition SA, with one 

exception.  In limiting the algorithm’s ability to wander, finding a goal state in a state 

space that is sparsely populated may prove more difficult.  One other limitation of this 

approach is that each iteration requires a complete scan of all possible current 

configurations.  This could be somewhat expensive, SA +O(n), where n is # of 

possibilities.  However, when compared to the original approach it might also be faster 

as fewer, relatively more expensive, iterations are needed to reach a solution.  The scan 

could be optimized further by added elements to Tabu Search to prevent rescanning. 
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APPENDIX B 

 
DATABASE, DATA WAREHOUSE AND DATA MINING TEST SOFTWARE 

Microsoft’s SQL Server 2005 Developer Edition provided the platform for the 

relational database along with the data warehouse, data cube, and the data mining test 

software.  The test database was the Adventure Works sample database also provided 

by Microsoft.  The database consists of sales records from a fictitious bicycle shop 

called AdventureWorks and contains data pertaining to customers, products and product 

sales, employees, vendors and other related information.  Sales take place both in-store 

and on the web and are tracked separately.  The schema is too big to show in its entirety 

but a partial schema is shown in Figure B - 1. 
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SalesOrderDetail

PK,FK1 SalesOrderID

PK SalesOrderDetailID

 CarrierTrackingNumber

 OrderQty

FK2 ProductID

FK2 SpecialOfferID

 UnitPrice

 UnitPriceDiscount

 LineTotal

 rowguid

 ModifiedDate

ProductCategory

PK ProductCategoryID

 Name

 rowguid

 ModifiedDate

ProductModel

PK ProductModelID

 Name

 CatalogDescription

 Instructions

 rowguid

 ModifiedDate

Product

PK ProductID

 Name

 ProductNumber

 MakeFlag

 FinishedGoodsFlag

 Color

 SafetyStockLevel

 ReorderPoint

 StandardCost

 ListPrice

 Size

FK3 SizeUnitMeasureCode

FK4 WeightUnitMeasureCode

 Weight

 DaysToManufacture

 ProductLine

 Class

 Style

FK2 ProductSubcategoryID

FK1 ProductModelID

 SellStartDate

 SellEndDate

 DiscontinuedDate

 rowguid

 ModifiedDate

ProductSubcategory

PK ProductSubcategoryID

FK1 ProductCategoryID

 Name

 rowguid

 ModifiedDate

SalesOrderHeader

PK SalesOrderID

 RevisionNumber

 OrderDate

 DueDate

 ShipDate

 Status

 OnlineOrderFlag

 SalesOrderNumber

 PurchaseOrderNumber

 AccountNumber

FK7 CustomerID

FK3 ContactID

FK8 SalesPersonID

FK9 TerritoryID

FK1 BillToAddressID

FK2 ShipToAddressID

FK4 ShipMethodID

FK5 CreditCardID

 CreditCardApprovalCode

FK6 CurrencyRateID

 SubTotal

 TaxAmt

 Freight

 TotalDue

 Comment

 rowguid

 ModifiedDate

Customer

PK CustomerID

FK1 TerritoryID

 AccountNumber

 CustomerType

 rowguid

 ModifiedDate

SalesTerritory

PK TerritoryID

 Name

 CountryRegionCode

 Group

 SalesYTD

 SalesLastYear

 CostYTD

 CostLastYear

 rowguid

 ModifiedDate

Address

PK AddressID

 AddressLine1

 AddressLine2

 City

FK1 StateProvinceID

 PostalCode

 rowguid

 ModifiedDate

CountryRegion

PK CountryRegionCode

 Name

 ModifiedDate

CustomerAddress

PK,FK3 CustomerID

PK,FK1 AddressID

FK2 AddressTypeID

 rowguid

 ModifiedDate

StateProvince

PK StateProvinceID

 StateProvinceCode

FK1 CountryRegionCode

 IsOnlyStateProvinceFlag

 Name

FK2 TerritoryID

 rowguid

 ModifiedDate

PurchaseOrderDetail

PK,FK2 PurchaseOrderID

PK PurchaseOrderDetailID

 DueDate

 OrderQty

FK1 ProductID

 UnitPrice

 LineTotal

 ReceivedQty

 RejectedQty

 StockedQty

 ModifiedDate

 
 
Figure B - 1, Partial Schema of AdventureWorks sample database 

 

Using SQL Server 2005 Analysis Services, the relational database was 

processed into a data cube to speed up certain queries and also for use as the staging 

area for data mining.  Data mining consisted of applying provided Bayes, Decision 

Trees, Clustering and Neural Network algorithms to the data cube.  The Decision Tree 
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was generated using a proprietary process combing CART techniques with C4.5.  The 

Artificial Neural Network used is a Back Propagation Network with one hidden layer.  

Mining models were then generated for each algorithm.  The resulting Decision Tree 

(totaling 184 nodes) mining model implementation is shown in Figure B-2 and the 

Bayes mining model implementation is shown in Figure B - 3.  The Neural Network 

mining model does not have a graphical representation.  Instead it lists a set of variables 

with favorability ratings.  These ratings determine how closely (or loosely) a given 

condition is associated with a result, demonstrated in Figure B - 4. 
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Figure B - 2, The Decision Tree mining model 
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Figure B - 3, The Bayes mining model 
 

 

 
 

Figure B - 4, The Neural Network mining model 

 


