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Abstract— Modern infrastructure is heavily reliant on systems 

with interconnected computational and physical resources, named 

Cyber-Physical Systems (CPSs). Hence, building resilient CPSs is 

a prime need and continuous monitoring of the CPS operational 

health is essential for improving resilience. This paper presents a 

framework for calculating and monitoring of health in CPSs using 

data driven techniques. The main advantages of this data driven 

methodology is that the ability of leveraging heterogeneous data 

streams that are available from the CPSs and the ability of 

performing the monitoring with minimal a priori domain 

knowledge. The main objective of the framework is to warn the 

operators of any degradation in cyber, physical or overall health 

of the CPS. The framework consists of four components: 1) Data 

acquisition and feature extraction, 2) state identification and real 

time state estimation, 3) cyber-physical health calculation and 4) 

operator warning generation. Further, this paper presents an 

initial implementation of the first three phases of the framework 

on a CPS testbed involving a Microgrid simulation and a cyber-

network which connects the grid with its controller. The feature 

extraction method and the use of unsupervised learning 

algorithms are discussed. Experimental results are presented for 

the first two phases and the results showed that the data reflected 

different operating states and visualization techniques can be used 

to extract the relationships in data features.  

Keywords— Cyber-Physical Systems; Resilience; Unsupervised 

learning; Health Monitoring; Explainable AI; Anomaly Detection;  

I. INTRODUCTION 

Modern systems commonly consist of interconnected 
computing and physical resources which enable interactive 
processing among systems [1]. Such systems, called Cyber-
Physical Systems (CPSs) integrate computations, 
communication, control and physical processes to achieve a 
specific task [2]. Modern infrastructure and systems in many 
domains have become heavily reliant on CPSs and they can be 
found in areas ranging from sensor networks [3], intelligent 
transportation systems and smart grids to space exploration 
systems [1], [2], [4]–[6]. Due to wide spread usage, ensuring 
security and resiliency of CPSs is of utmost importance for 
many socioeconomic reasons. 

CPSs can be vulnerable to cyber-attacks and has a great 
potential of facing security threats without any sign of physical 
component failure [4]. Further, vulnerability of one individual 
component can lead to catastrophic cascading failures [2]. 
Therefore, it is necessary to build resilient CPSs with low failure 
rates and systems with high recovery rates in a failure [2]. In 
building resilient CPSs continuous monitoring of the system 
state is of utmost importance to detect abnormal behavior and 
diagnose any faulty hardware/software components in real-time 

[2]. In other words, continuous monitoring of the CPS 
component and overall health is crucial for improving resilience.  

Health monitoring of CPSs can be very complex [4]. The 
monitoring process must be performed accurately, in real-time. 
Therefore, the health monitoring process should be able to 
minimize the time needed to detect and restore the system back 
to health state [4]. Even though there exist a large body of work 
for intrusion detection systems in the CPS domain, to the best of 
our knowledge there’s limited work that focus on real time 
health monitoring of CPSs. In one such effort, Zhang et. al. 
proposed an adaptive ‘health monitoring and management 
(HMM)’ system in order to fulfil the high reliability and safety 
requirements of CPSs [2]. Their HMM system monitors the 
health condition of the system, diagnose and identifies the faulty 
components by implementing a fault signature matrix (FSM). 
FSM associates the sensors and target system components with 
the rules which describe the normal behavior of the system. 
Hackmann et al.  proposed a structural health monitoring system 
(SHM) [7]. In the SHM, they focused on structural deficiencies 
(environmental corrosion, persistent traffic and wind loading,) 
that occur during the lifetime of civil infrastructure such as 
bridges. Lee et al. performed a case study on preparing a 
predictive health monitoring solution for a fleet of 30 industrial 
robots by using torque and speed data measurements [8]. 
Further, they presented an overview of the electric vehicle and 
battery health management and prognostic platform which is 
based on several health measurements (stress factors) such as 
such as environment temperature, humidity, driving style, 
charging level, discharge rate and road condition. 

This paper presents a framework for measuring the 
operational health of a CPS. In this work, we consider three main 
areas to characterize the health of a CPS: 1) cyber health, 2) 
physical health and 3) overall system health. The framework 
consists of four phases: 1) data acquisition and feature 
extraction, 2) state learning and estimation, 3) cyber-physical 
health calculation, and 4) operator warning generation. The first 
three components have an offline role and an online role. The 
offline roles entail learning from historical data and the online 
role entails using the trained models for producing inferences on 
the live data streams. This paper overviews the complete 
framework and then provides an initial implementation of the 
first two components as a proof of concept. The implementation 
is carried out on a CPS testbed that includes a microgrid 
simulation and a real-time automation controller communicating 
with the microgrid. In the current implementation, the focus is 
on the cyber communication of the CPS. 



The rest of the paper is organized as follows; Section II 
overviews the presented framework and its components, Section 
III provides the background on machine learning algorithms that 
are used in the implementation; Section IV presents the current 
implementation of the framework. Section V presents the 
experiments and their results and finally Section VI concludes 
the paper. 

II. FRAMEWORK FOR DATA DRIVEN HEALTH MEASUREMENT 

OF CYBER PHYSICAL SYSTEMS 

This section presents the presented framework for health 
measurement of cyber-physical systems. The presented 
framework is entirely data driven and assumes minimal prior 
knowledge of the system dynamics. The framework consists of 
four main components: 1) data acquisition and feature 
extraction, 3) state learning and state estimation, 3) health 
evaluation and 4) operator warning generation. Each component 
has an offline role and an online processing role. The framework 
is shown in Fig 1 and Fig 2.  

In this section, the description of the framework is tied to the 
testbed that is used for experimentation. The testbed consists of 
a Microgrid simulation on a Real Time Digital Simulator 
(RTDS), a Real Time Automation Controller (RTAC), a Data 
historian for storing the Microgrid state and controller decision 
(historian) and a cyber-network connecting the components. Fig 
3 depicts the connectivity of the testbed.  

A. Data Acquisition and Feature Extraction 

Data acquisition involves collecting cyber data and physical 

data. DNP3 communication encapsulated in TCP is used as the 

cyber communication protocol. As mentioned, the 

communication between the controller and the historian is 

considered as cyber data for this work. Packet streams are 

captured using a packet sniffer and dissected to extract features 

[16]. For physical data, the power system information is 

collected through the RSCAD software for the RTDS. Further, 

the control decisions is stored from the RTAC for each time 

step as well. The cyber and physical data need to be correlated 

with timestamps taking the latency of communication into 

account.  

One the raw data are captured, features need to be extracted 

from the raw data so that machine learning algorithms can 

extract patterns from the data. Cyber packet stream is processed 

to extract features which can potentially indicate cyber threats 

and as a result characterize the cyber health. Similarly, features 

need to be extracted from the raw Physical data. Feature 

extraction can be done using domain expert knowledge and 

using data driven techniques.  

B. State Identification and State Estimation 

Once the relevant features are extracted, data driven 

techniques can be used to identify the different states that the 

 

Fig 1: Health monitoring/measurement framework and its components 

 

Fig 2: Data flow of the health measurement framework 

 

Fig 3: Test bed for implementing the CPS health measurement framework 



testbed operate in. Cyber states and Physical states can be 

identified separately through separate analysis. Further, a 

fusion engine needs to be developed to take a holistic view at 

the cyber-physical system.  

The state learning algorithms learn the patterns that exist in 

data and identifies similar behavior. This process is used to 

characterize the “normal” behavior for cyber and physical 

aspects using the extracted features in the previous section. An 

unsupervised approach or a supervised approach could be used 

to learn the states and their behavior. The advantage of using 

unsupervised approaches is that the states could be identified 

without any prior knowledge about the data. The similarities 

and dissimilarities in data can be used to group the data into 

different states.  

Mainly, in this context, the need is to identify 

“normal”/”healthy” behavior and any state which shows a 

degradation of health. In a cyber-communication context, the 

degradation could be a cyber-intrusion. In a physical power 

system context, that can be a physical attack or any other sub-

optimal behavior such as a component failure. When all the 

states are correctly identified using the historical data, these 

state information can be used to estimate the state of the cyber-

physical system in real time using real time data streams. 

C. Cyber-Physical Health Evaluation 

The goal of this phase is to produce a single figure that 

indicates the operational health of the CPS. The objective is to 

measure the physical health, cyber health and an overall health 

of the system. This calculation leverages the learnt states in the 

state learning phase.  

In the state learning phase, the different states that the 

system goes through can be identified. In that, in a controlled 

environment such as the testbed, data collected for the “normal” 

operations can be used as the baseline to characterize the 

“healthy” state(s) of the system in both cyber and physical 

sense. In this paper, since the focus is on cyber 

communications, the DNP3 communication data that are 

collected during normal operations is used to identify the 

“healthy” cyber baseline. Deviation from the identified baseline 

is considered as a degradation of health. This calculation is 

done in real-time.  

D. Warning Generation 

Once the health is calculated in real time, if there is a 
degradation in health, warnings is generated for the operator in 
human understandable linguistic terms. The warnings should 
have temporal and spatial context, i.e. when and where the 
degradation is happening.  

III. ALGORITHMS USED IN IMPLEMENTATION 

This section provides a brief background on the machine 

learning algorithms used in the current implementation of the 

presented framework. First, Self-Organizing Maps (SOMs) are 

presented, then One-Class Support Vector Machines (OCSVM) 

are discussed.  

A. Self-Organizing Maps 

The Self-Organizing Map (SOM) was developed by 
Kohonen [9], [10]. SOMs employ unsupervised learning and are 
comprised of a topological neuron grid usually arranged in a 2D 
grid. The main function of the SOM is that its capability of 
mapping high dimensional input spaces into a low dimensional 
space while maintaining the topological relationships. The SOM 
employs competitive learning to learn relationships in data.  
SOMs have been successfully used in many areas including 
image clustering and classification, speech recognition , process 
control, telecommunication and robotics[11], [12].  

The learning of the SOM is carried out using the following 
steps:  

Step 1 – Initialization: Assuming that the SOM is a 2D grid of 
neurons of size 𝑛 × 𝑚 , each neuron of the grid maintains a 
weight vector of dimensionality d, where d is the dimensionality 
of the input space. Each weight vector is initialized randomly.  

Step 2 – Sampling: An input pattern is selected randomly from 
the training data. 

Step 3 – Competitive learning: The best matching unit (BMU) 
for the selected input pattern is selected. The BMU is selected 
by calculating the Euclidean distance to all the neurons from the 
input patterns and taking the neuron with the minimum distance. 
The BMU for a input pattern 𝑏𝑔 can be expressed as,  

𝐵𝑀𝑈(𝑏𝑔) = argmin
𝑗

‖𝑏𝑔 − 𝑤𝑗‖ (1) 

where, 𝑤𝑗  is the weight vector of the jtI neuron.   

Step 4 – Cooperative weight update: In this step, the weights 
of the BMU and its neighbors are updated. The idea is to move 
the neurons that are similar, close together. The weight update 
of the jth neuron is expressed as follows:  

𝑤𝑗(𝑖 + 1) = 𝑤𝑗(𝑖) +  𝛼(𝑖) ℎ𝑗(𝑖)(𝑏𝑔 − 𝑤𝑗(𝑖)) (2) 

where i is the iteration, 𝛼, ℎ are the learning rate and the degree 
of membership to a neighborhood centered at the BMU.  

Step 5 – Convergence test:  In this step, the convergence 
criterion is checked. If the criterion is met, the training is 
stopped. If not, algorithm starts from Step 2 

B. One Class Classification 

One-class learning is to learn the specifics of a single class 
of data [13]. In this problem, one-class learning is beneficial to 
perform learning of the “normal”/”healthy” behavior. A One-
Class S 

Therefore, one-class classification problems are ideal for 
anomaly detection problems where the determination is whether 
the data record belongs to the “normal” behavior or not. Support 
Vector machines are classifiers based on statistical learning 
techniques [14]. They have been successfully used in many 
research areas including face detection and recognition, 
information retrieval, image retrieval, handwritten character 
recognition, prediction and natural language processing [14]. In 
[15], researchers have suggested a methodology for adapting the 
SVM classifiers to one-class classification problems. In this 
work, the one-class classification problem is tackled using a 
one-class support vector machine (OCSVM). 



IV. IMPLEMENTATION 

This section presents the current implementation of the 
presented health framework components. The current 
implementation involves implementation of the first three 
components of the framework.  

A. Implementation Data Acquisition and Feature Extraction 

In the current implementation of the presented framework. 

Only the cyber aspect is considered. Cyber data were collected 

from the testbed without any external disturbances to 

characterize normal behavior and during cyber intrusions that 

were created. The collected network data were processed to 

extract features. The extracted features were used to train the 

learning algorithms. In the initial version of the 

implementation, unsupervised learning algorithms were used 

for data exploration and state identification.  

Feature extraction was carried out on the DNP3 packet 
stream using a windowing technique. The DNP3 packet stream 
is considered as a time series and a set of statistical features is 
extracted from a set of neighboring packets by using a window 
of length one second. Therefore, the set of neighboring packets 
generate one window based feature vector. The feature 
extraction is shown in Fig 4. 9 Features were extracted from each 
window: 1) speed of communication (packets per second), 2) 
Speed of data (bytes per second), 3) average time gap between 
the packets in the window, 4) Average number of packets with 
the same destination address, 5) Number of source addresses, 6) 
average window size for the packets, 7) number of packets with 
zero window size, 8) average length of data per packet and 9) 
maximum data length per packet. This results in a dataset with 
data records consisting of 9 features that can be used to 
characterize the different behavior of the cyber communications 
and can be used to detect intrusions and other health 
degradations. 

B. Implementation of State Identification and State 

Estimation 

In this implementation, initial data exploration and state 
learning is carried out using Self-Organizing Maps (SOMs) and 
One-Class Support Vector Machines (OCSVM). These 
algorithms are used mainly because of their unsupervised 
learning capabilities. SOMs have the capability of providing a 
low dimensional embedding of high dimensional data. 
Therefore, the 9-dimensional space can be embedded in a two-
dimensional space while preserving the topological 
characteristics in data. Therefore, SOMs enable visualizations of 
high dimensional data. Further, SOMs are a proven clustering 
algorithm that can group data based on their similarities. SOMs 
based visual data mining techniques can be used to extract 
relationships that exist in features [12], [17].  

C. Implementation of Cyber-Physical Health Evaluation 

Using the identified states in state learning phase, the health 

of the cyber-physical system can be measured. Once the healthy 

or normal behavior is characterized using the features that was 

extracted, the deviation from that can be considered as the 

health degradation.  

For instance, a vector that is representative of the “healthy” 

behavior (𝑣ℎ⃗⃗⃗⃗ ) can be calculated. This vector can be a cluster 

center, or a simple average of the features for the data records 

which are in the “healthy” state. Once 𝑣ℎ⃗⃗⃗⃗  is obtained using 

historical data, the real-time cyber-physical health can be 

calculated using the deviation from 𝑣ℎ⃗⃗⃗⃗ . 

In this implementation, the deviation is calculated using the 

Euclidean distance. For every time period t, the feature vector 

(𝑣𝑡⃗⃗⃗  ) is generated in real time using the procedure explained 

Section IV-A, then, the Euclidean distance to 𝑣ℎ⃗⃗  ⃗.is calculated 

as follows:  

𝑑𝑡 = ‖𝑣ℎ⃗⃗  ⃗ − 𝑣𝑡⃗⃗⃗  ‖2 (3) 

The degree of membership to the “healthy” state of the 

system is considered as the real time health of the system in this 

implementation. To calculate this degree of membership, a 

Gaussian neighborhood is used to quantify the health of the 

system. The distance 𝑑𝑡  is used to define a Gaussian 

neighborhood with mean 𝑣ℎ⃗⃗  ⃗.and variance 𝜎2: 

In this implementation, 𝑣ℎ⃗⃗  ⃗ is set by calculating the average 
of the data that are identified to be “normal”, i.e. the data points 
that are within the boundary defined by the OCSVM. 

V. EXPERIMENTS 

This section presents the experiments conducted to test the 
feature extraction and the state  

In this paper, SOMs are used to learn the states that the 
system goes through during operations. As mentioned, only 
cyber data are considered in this study. In order to capture the 
possible cyber states, packet streams were collected for normal 
communications. Further, cyber data were collected during a 
Denial of Service (DoS) attack which was introduced on the test 
bed.  

Fig 5 shows the behavior of each dimension extracted from 
the trained SOM. It can be clearly seen that the communication 
speed and the average packets targeted at the same destination 
are highly correlated (circled in the image). This information can 
be used to infer the state of the data in the clusters with those 
attributes. For instance, a window with higher speed and a 
higher number of communication connections to the same 
destination can be an indication of a DoS attack 

Fig 6 shows the U-Matrix view of the trained SOM. The U-
Matrix is a 2D visualization of how far the neurons are to each 
other in the output space. Therefore, the U-Matrix can be used 
to identify the topological behavior of the dataset. Each neuron 
is a representation of several data points where the neuron was 
chosen as their BMU. Therefore, neurons that are closer together 
in the U-Matrix indicates that the data records are closer together 
as well. In the U-Matrix view presented, it can be seen that there 
are four different states that the system operates in. Bulk of the 
data fall within the red lines shown on the U-Matrix. Therefore, 
that can be assumed as the most prevalent state and the “normal” 
state in the cyber communication. It can be observed that few 

 

Fig 4: Window based feature extraction 

 



data points are far away from the rest (bottom right corner). 
Those can be attributed as the extreme anomalies. Further, when 
comparing the U-Matrix with the behavior of input dimensions, 
it can be seen that there is a strong correlation between feature 

values and the data patterns that lie outside of the enclosed area 
in red. Further analysis is needed to verify the classes of the data 
points that fall under these clusters. 

Fig 7 and 8 show the results of the health calculation for 
normal communication and a communication record which 
contained a introduced DoS attack on the test bed. It was noticed 
that the health for the normal communication oscillated between 
0 and 100 continuously. However, during the attack, there was 
a clear degradation of cyber health. The health calculation 
methodology should be modified to remove these oscillations. 
Further, the health degradation has to be gradual, so that the 
operators can take measures for mitigation. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presented a framework for monitoring the health 
of Cyber-Physical Systems. The framework consists of four 
main components 1) data acquisition and feature extraction, 2) 
state identification and real time state estimation, 3) cyber-
physical health calculation and 4) operator warning generation. 
Further, this work presented an initial implementation of the first 
two components. The implementation was carried out on a 
testbed consisting of a Microgrid simulation, a controller, data 
historian and a cyber-network connecting the physical 
components. Data acquisition and state identification was 
carried out for cyber data. A windowing feature extraction 
technique was used and a SOM was used to perform the state 
learning. The SOM based visualizations indicated that the there 
were about four different states and some features were highly 

 

Fig 5: Feature behavior in the output space as shown by the SOM. It can be seen that the communication speed and the packets per destination are highly 

correlated 

 

 

 

Fig 6: The U-Matrix view of the trained SOM. The darker places 

indicate areas close together. Lighter places indicate areas apart. The red 
shows areas which are well separated. The redlines show the possible 

cluster separations or different states 

 



correlated with the clusters shown by the SOM. Further studies 
need to be carried out to analyze the clusters produced by the 
SOM. As next steps, the framework will be refined using the 
testbed and the data analytics will be extended to physical data 
as well.  
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Fig 7: Cyber health calculation of a previously known normal 

communication. The health oscillates between 0 and 100. 

 

Fig 8: Cyber health calculation of a communication which contained a 

DoS Attack. The health degradation is circled in red 

 


