
 1

NAME:_SOLUTIONS_

EGRE 426

Quiz 2
Open book / Open notes

November 10, 2009

 2

1. On the MIPS control unit description shown below; fill in the blanks to show how to add the
lui instruction. You may add new microinstructions if they are necessary and reasonable. Use a
dash where no new operation is necessary.
lui rt,n rt  n||016

THE MIPS CONTROL UNIT V 5.03
Needs to be MODIFIED for SW preceded by LW.

IF: - / IR  IM(PC), - / PC  PC + 4

ID: not J / PCX  PC, - / IRX  IR, - / A  GPR(IR.Rs), - / B  GPR(IR.Rt)

EX: IF IRX.Rs = IRM.Rd THEN  := ALUM
 ELSE
 IF IRX.Rs = IRW.Rd THEN  := ALUW ELSE  := A
IF IRX.Rt = IRM.Rd THEN  := ALUM
 ELSE
 IF IRX.Rt = IRW.Rd THEN  := ALUW ELSE  := B
(IRX.OP = ADD) / ALUM   + 
(IRX.OP = AND) / ALUM   & 
(IRX.OP = ADDI) / ALUM  + ±IRX.n
(IRX.OP = ANDI) / ALUM   & ±IRX.n
(IRX.OP = SW) / ALUM   + ±IRX.n, SMDR  
(IRX.OP = LW) / ALUM   + ±IRX.n
(IRX.OP = J) / PC PCX(31..28)||IRX.addr||002
(IRX.OP = JR) / PC  
(IRX.OP = SLT) & ( < ) / ALUM  1
(IRX.OP = SLT) & (  ) / ALUM  0
(IRX.OP = BEQ) & ( = ) /PC  PCX + IRX.n||00, ZERO1
(IRX.OP = BEQ) & (  ) / ZERO  0
(IRX.OP = LUI) / ALUM  IRX.n||016__

- / IRM  IRX
Note: Loading PC in this stage disables PC  PC + 4 in IF stage.

DM: (IRM.OP  LW) / ALUW  ALUM, - / IRW  IRM
(IRM.OP = SW) / M(ALUM)  SMDR
(IRM.OP = LW) / ALUW  M(ALUM)
(IRM.OP = J) / -
(IRM.OP = JR) / -
(IRM.OP = BEQ) & ZERO / -
(IRM.OP = LUI) / -_

WB: (IRW.OP = ADD) / GPR(IRW.Rd)  ALUW
(IRW.OP = AND) / GPR(IRW.Rd)  ALUW
(IRW.OP = ADDI) / GPR(IRW.Rt)  ALUW
(IRW.OP = ANDI) / GPR(IRW.Rt)  ALUW
(IRX.OP = SLT) / GPR(IRW.Rd)  ALUW
(IRW.OP = LW) / GPR(IRW.Rt)  ALUW
(IRW.OP = SW or J or JR or BEQ) / -
(IRW.OP = LUI) / GPR(IRW.Rt)  ALUW
NOTE: X  Y means that Y is transferred into X on the clock edge that
occurs before the edge that causes A  B.

 3

2 On the MIPS control unit description shown below, fill in the blanks to show how to add the
slti instruction. You may add new microinstructions if they are necessary and reasonable. Use a
dash where no new operation is necessary.
slti rt,rs,n if rs < n1 then rt  1 else rt  0

THE MIPS CONTROL UNIT V 5.03
IF: - / IR  IM(PC), - / PC  PC + 4

ID: not J / PCX  PC, - / IRX  IR, - / A  GPR(IR.Rs), - / B  GPR(IR.Rt)

EX: IF IRX.Rs = IRM.Rd THEN  := ALUM
 ELSE
 IF IRX.Rs = IRW.Rd THEN  := ALUW ELSE  := A
IF IRX.Rt = IRM.Rd THEN  := ALUM
 ELSE
 IF IRX.Rt = IRW.Rd THEN  := ALUW ELSE  := B
(IRX.OP = ADD) / ALUM   + 
. . .
(IRX.OP = LW) / ALUM   + ±IRX.n
(IRX.OP = J) / PC PCX(31..28)||IRX.addr||002
(IRX.OP = JR) / PC  
(IRX.OP = SLT) & ( < ) / ALUM  1
(IRX.OP = SLT) & (  ) / ALUM  0
(IRX.OP = BEQ) & ( = ) /PC  PCX + IRX.n||00, ZERO1
(IRX.OP = BEQ) & (  ) / ZERO  0
(IRX.OP = SLTI) & ( < ±IRX.n) / ALUM  1
(IRX.OP = SLTI) & (  ±IRX.n) / ALUM  0
 - / IRM  IRX
Note: Loading PC in this stage disables PC  PC + 4 in IF stage.

DM: (IRM.OP  LW) / ALUW  ALUM, - / IRW  IRM
(IRM.OP = SW) / M(ALUM)  SMDR
(IRM.OP = LW) / ALUW  M(ALUM)
(IRM.OP = J) / -
(IRM.OP = JR) / -
(IRM.OP = BEQ) & ZERO / -
(IRM.OP = SLTI) / -

WB: (IRW.OP = ADD) / GPR(IRW.Rd)  ALUW
(IRW.OP = AND) / GPR(IRW.Rd)  ALUW
(IRW.OP = ADDI) / GPR(IRW.Rt)  ALUW
(IRW.OP = ANDI) / GPR(IRW.Rt)  ALUW
(IRX.OP = SLT) / GPR(IRW.Rd)  ALUW
(IRW.OP = LW) / GPR(IRW.Rt)  ALUW
(IRW.OP = SW or J or JR or BEQ) / -
(IRW.OP = SLTI) / GPR(IRW.Rd)  ALUW
NOTE: X  Y means that Y is transferred into X on the clock edge that
occurs before the edge that causes A  B.

1
 rs and n are treated as signed integers.

 4

3. For each instruction, enter the correct register address under the rs, rt, and rd in the table.

 31 6 5 5 5 5 6 0

 Opcode rs rt rd shamt func
ADD $5,$6,$7 0x00 6 7 5 0x00 0x20
 31 6 5 5 16 0
 Opcode rs rt n/offset
BEQ $6,$7,0x5000 0x04 6 7 0x5000
 31 6 5 5 16 0
 Opcode rs rt n/offset
ADDI $6,$5,0x7fff 0x08 5 6 0x7FFF

 31 6 5 5 5 5 6 0

 Opcode rs rt rd shamt func
ADD $7,$6,$5 0x00 6 5 7 0x00 0x20

4. The code below executes on a MIPS with correctly implemented forwarding. The initial
values contained in registers $5, $6 and $7 are 5, 6 and 7 respectively.
 add $5,$6,$7
 beq $6,$7,0x5000
 addi $6,$5,0x7fff
 add $7,$6,$5
Using hexadecimal values, fill in the table below to show the values in registers $5, $6 and $7.
You do not need to show leading 0’s.
Condition $5 $6 $7
Initial conditions 0x00000005 0x00000006 0x00000007
After add $5,$6,$7 exits WB 0x0000000D 0x00000006 0x00000007
After addi $6,$5,0x7fff exits WB 0x0000000D 0x0000800C 0x00000007
After add $7,$6,$5 exits WB 0x0000000D 0x0000800C 0x00008019

 5

5. The forwarding rules as given in the EX stage of “THE MIPS CONTROL UNIT V 5.03” are
shown below.
IF IRX.Rs = IRM.Rd THEN  := ALUM
 ELSE
 IF IRX.Rs = IRW.Rd THEN  := ALUW ELSE  := A
IF IRX.Rt = IRM.Rd THEN  := ALUM
 ELSE
 IF IRX.Rt = IRW.Rd THEN  := ALUW ELSE  := B

These rules are incomplete and oversimplified. They must be expanded to work in general.

a). Explain what extensions would be necessary to insure that the forwarding always works
correctly when an “add” instruction is being executed.
ANS: Do not forward from ALUM or ALUW unless instruction in DM or
WB will actually load a new value into IRX.Rs or IRX.Rt2; therefore,
must check that instruction in the DM or WB state is an R_type
instruction. Don’t forward if $0 is the destination register in DM or WB
stage.

b). Explain what extensions would be necessary to insure that the forwarding always works
correctly when an “addi” instruction is being executed.
ANS: For addi the destination register must be changed from IRX.Rs to
IRX.Rt.

6. The loop shown below is executed many times. Assume the code is executed on the MIPS
described by THE MIPS CONTROL UNIT V 5.03 where any problems with the  and 
forwarding have been corrected and delayed branches are not used.
Loop: lw $2, 0($10)
 sub $4, $2. $3
 sw $4, 0($10)
 addi $10, $10, 4
 bne $10, $30, Loop
Each time through the loop would require five clock cycles if it were not for stalls and aborts.
How many clock cycles are actually required each time through the loop assuming the branch is
taken.
ANS: lw sub one stall bne two aborts.
Therefore, total time = 5 + 1 + 2 = 8

2
 For example suppose the instruction in the DM stage is “beq $6,$7,0x5000” Then IRM.Rd = 5, but the beq does

not load a new value into $5.

 6

7. Suppose the bne in problem 6 is changed to a delayed branch of two, and the code is rewritten
as shown below. Does the rewritten code produce the same result as the original code? If not
explain why not.
Loop: lw $2, 0($10)
 addi $10,$10,4
 bne $10, $30, Loop
 sub $4, $2. $3
 sw $4, -4($10)
ANS: Yes. This produces the same result as the code in problem 6.
The only difference is that it executes faster.

8. If the original loop in problem 6 is known to be a multiple of two it can be unrolled once as
shown below:
 Original

code

Loop: lw $2, 0($10)
 Sub $4,$2,$3
 Sw $4,0($10)
 Lw $5,4($10)
 Sub $6,$5,$3
 Sw $6,4($10)
 Addi $10,$10,8
 Bne $10,$30,loop
Assume the unrolled code is executed on the MIPS described by THE MIPS CONTROL UNIT
V 5.03. Any problems with the  and  forwarding have been corrected and delayed branches
are not used. Each time through the loop would require eight clock cycles if it were not for stalls
and aborts. How many clock cycles are actually required each time through the loop assuming
the branch is taken.
ANS: Each lw-sub causes one stall. The bne, when taken, causes two
aborts. Therefore, total time = 8 + 1 + 1 + 2 = 12.

9. Fill in the table at the right to show how to reschedule (i.e. rearrange) the code in problem 8 to
execute in the fastest possible way. Do not change the number of instructions!

Original code
Scheduled code for improved
performance

Loop: lw $2, 0($10) lw $2, 0($10)
 Sub $4,$2,$3 Lw $5,4($10)
 Sw $4,0($10) Sub $4,$2,$3
 Lw $5,4($10) Sub $6,$5,$3
 Sub $6,$5,$3 Sw $4,0($10)
 Sw $6,4($10) Sw $6,4($10)
 Addi $10,$10,8 Addi $10,$10,8
 Bne $10,$30,loop Bne $10,$30,loop

