NAME:_SOLUTIONS_

EGRE 426

Quiz 1

Open book / Open notes

October 8, 2008

1. Consider the expression
[image: image8.png]Binvert

Carryln

Less

'

CarryOut

Result

Assume all data is available as needed, and each type of operation requires one unit of time. Obtain general expression in terms of n for the fastest time to compute F using:

(a). A SISD computer.

ANS: T = TADD + TMUL + TDIV = (n-1) + (n-1) + 1 = 2n - 1

(b). A MIMD computer with unlimited processors.

ANS:
[image: image2.wmf]2

log1

Tn

=+

éù

êú

(c). A SIMD computer with unlimited processors.

ANS:
[image: image3.wmf]2

2log1

Tn

=+

éù

êú

(d). Of these three computers, which is the most efficient when computing F.

ANS: the SISD computer since it is 100% efficient. It has only one processor which is busy all of the time. Or E = Speedup / number of processor = 1/1 = 100%. The reason we use multiple processors is not for better efficiency but faster execution.
(e). Of these three computers, which is the least efficient when computing F.

ANS: I disregarded this problem since your answer to (d) determined your answer to (e).

To achieve the maximum speed the MIMD would require p = 2(n-1) processors (assuming n is even). Therefore,

[image: image4.wmf](

)

(

)

22

(21)

1

2(1)

log1log

sisd

MIMD

mimd

T

n

pn

E

T

nn

-

-

==®

+

éùéù

êúêú

For the SIMD, since the multiplications and divisions must be done separately, only p = (n-1) processors are required to achieve the maximum speed. Therefore,

[image: image5.wmf](

)

(

)

(

)

222

(21)

21

(1)

2log12loglog

sisd

SIMD

simd

T

n

pn

E

T

nnn

-

-

==®=

+

éùéùéù

êúêúêú

Therefore, under these reasonable assumptions the efficiency of the SIMD and MIMD are approximately the same.

2. The micro operations MDR (ALU, MDR (ALUout, and A (MDR are not supported by the book’s architecture, which is shown below. Sketch on the diagram how this capability can be added by using a two input mux and a 3 input mux. Briefly, describe how you would add this capability to the architecture, and draw on the figure the new multiplexes and data paths that must be added to implement these micro operations. You must show exactly where each mux must be located and all data line connections to each mux. You do not need to show the control lines.

[image: image1.wmf]1121

121

1

n

i

inn

n

nn

i

i

A

AAAA

F

BBBB

B

=-

-

=

´´´´

==

+++

Õ

å

K

K

[image: image6.png]PCSource

- PCWriteCond

lorD Cutputs

ALUSTrcB

Control

0
M
Jump 1y
address [31-0] X
o . 2
I I Read
rt Read
Read
[register 2 data 1 l
ALUOut

Instruction

Instruction

Address

Instruction

Memory

MemData _ Registers
Instruction Write Read
[15-0] register 4t 2

Instruction
register

Write

data
register

. l v
L

3. Answer the following MIPS assembly language questions. Do not use pseudoinstructions!

a) The MIPS rotate right pseudoinstruction, ror $a0, $a0, 1, can be described in our register transfer notation as $a0 ($a0(0)||$a0(31..1). The ror $a0, $a0, 1 can be implemented using three instructions and a temporary register. The last two of these instructions are shown below. What instruction must precede the two shown?

???
sll $t0, $a0, 31

srl
$a0, $a0, 1

or
$a0, $a0, $t0
b). Replace the two MIPS instructions shown below with a single MIPS instruction.

lui
$a0, 0xffff

ori
$a0, $a0, 0xffff

ANS: addi
$a0,$0,-1

c). Write the minimum sequence of MIPS instructions to put all “0’s” in the memory word with address 0xabcdef10 (i.e. M(0xabcdef10) (0).

ANS:
lui
$a0,0xabcd

ori
$a0, $a0, 0xef10

sw
$0, 0($a0)

d). The following sequence of mips instructions was intended to put the value 1234AA55H in register $4. What value (in hexadecimal) is actually put in $4?

lui
$4,0x1234

addi
$4,$4,0xAA55

ANS: 0xAA55 is sign extended causing the result to be 1233AA55H
e). Suppose the instruction sequence in d). is changed to

lui
$4,0x1234

addiu
$4,$4,0xAA55

 How does this affect the final value in $4?

ANS: This has no affect on the result. The addiu instruction extends the sign, but doesn’t cause an exception if there is an overflow.

4. A portion of the KIPS control unit FSM described using a pseudo HDL is shown below. Show, by filling in the blanks, how to implement the MINC instruction defined as: MINC rs ; M(RS) (M(RS) + 1
IF Reset then Goto S0

S0:
PC (PC + 4, IR (M(PC), goto S1 unless INT then goto Sint

S1:
A (Rs, B (Rt,

ALUout (PC + (n||00
i.e. ALUout (ALU := (SA := PC) + (SB := 4)

if op = J goto S9

if op = BEQ goto S8

if op = R-type goto S6

if op = LW or SW goto S2

if op = Imm goto S10
 # i.e. addi rt,rs,n ; Rt (Rs + (n

if op = JR goto S11
 # jr rs

;PC (Rs

if op = JAL goto S9a
 # jal addr ; $31(PC+4, PC (PC(31..28)||addr||00

if op = WAI goto S13
 # wai rt
;Rt (PC

if op = LWR goto S15
 # lwr

;Rd (M(Rs + Rt)

if op = MINC goto S18
minc rs
;M(RS) (M(RS) + 1

S18:
ALUout (A, goto S19

S19:
MDR (M(ALUout), goto S17

S20:
A (MDR, MDR (1, goto S21

S21: B (MDR, goto S22

S22: MDR (A + B, goto S23

S23: M(ALUout) (MDR, goto S0

5. A large number of “alu1” chips have been fabricated based an entity and architecture for the alu1 represented by the schematic shown below. Unfortunately due to a fabrication flaw the adder portion of the alu1 chip does not work, but everything else works as designed. Show, by filling in the ___’s in the vhdl program, how to construct a two input XOR gate using several of the alu1 chips. Hint: Recall that
[image: image7.wmf]Y

X

Y

X

Y

X

×

+

×

=

Å

. cout does not function correctly and cannot be used.

entity xoralu1 is

component alu1

 port(a, b: in std_logic;

 binv: in std_logic;

 less: in std_logic;

 op: in unsigned(1 downto 0);

 cin: In std_logic;

 cout: out std_logic;

 Result: out std_logic);

end component alu1;

 signal S1, S2: std_logic;

begin

 U1: alu1 port map

 (a => X,
 b => Y,
 binv => '1',
 less => '-', -- don’t care
 op => "00",
 cin => '-', -- don’t care
 Result => S1);
 U2: alu1 port map

 (a => Y,
 b => X,
 binv => '1',
 less => '-', -- don’t care
 op => "00",
 cin => '-', -- don’t care
 Result => S2);
 U3: alu1 port map

 (a => S1,
 b => S2,
 binv => '0',
 less => '-', -- don’t care
 op => "01",
 cin => '-', -- don’t care
 Result => Z);
end behav;

_1284818135.unknown

_1285052912.unknown

_1285053316.unknown

_1284818174.unknown

_1284818076.unknown

_1095364469.unknown

