EGRE 426 – Final Project

11-3-09

Final Report due Friday December 4th.

For the class project, you will work in groups of two. Each group must meet with me at least once a week to review their progress. These reviews will count as part of the project grade, and each member of the group must be present to receive a grade. Discuss the project only with members of your group or the instructor. Do not discuss it with members of other groups.

The project will consists of modeling in VHDL the KIPS version of the pipelined MIPS processor. We will call this PKIPS. You must implement those instructions that were used in Lab 6, but you may be required to implement additional instructions. You will be expected to model the PKIPS at a high level similar to what was done in Lab 6. You must satisfy the following specifications.

1. You are required to have at least three files one containg the test bench entity, tb, one package file pkg_pkips.vhd similar to the pkg_npkips.vhd form lab 6, and one file, pkips.vhd, containing the entity, pkips, for the kips processor.

2. As a minimum satisfy the following for the test bench.

a. Use the pkips entity as a component.

b. When reset pkips should start execution at location 0x00400024 not 0.

c. Use arrays to set up separate memories for code (IM) and data (DM). (Refer to lab 6 for an example of setting up a memory array).

d. The code memory should start at addresses 0x00400024 and contain 32 words and be read only.

e. The data memory should start at addresses 0x10010000 and contain 8 words.

f. Only words will be used for memory accesses, and the byte address to memory will always be on a word boundary.

g. The memories must respond consistent with the timing diagram shown below.

3. As a minimum satisfy the following for the pkips.vhd file.

a. The five pipeline stages: IF, ID, Ex, MEM, and WB must be readily identifiable in your code.

b. Use an array for the GPR as in lab 6.

c. Implement the ALU functions directly in the architecture at the behavioral level. Use a delay of 7 ns for all ALU outputs.

d. You are also required to use the registers defined in class: IR, PC, IRX, PCX, A, B, IRM, ALUM, SMDR, IRW, and ALUW. The registers must be used in a manner consistent with that developed in class. Delay each register transfer by 1 ns., a delay of 7 ns for all ALU output operations, and a delay of 7 ns for all other arithmetic operations (i.e. PC (PC + 4). You may assume 0 ns for any other operations. You are not required to model a specific structure such as distinct multiplexes, but base your design on the MIPS CONTROL UNIT V 5.03 handed out in class with whatever extensions you find necessary. You may assume that all branches and jumps will be implemented in software using the branch delay of two technique. Implement your processor to be consistent with this assumption. You must correctly handle forwarding, stalls and aborts. You do not need to be concerned with exceptions, overflows, and stalls due to a cache miss.

4. You are expected to develop test program to verify your design, but the instructor may provide one or more test programs.

 Any deviation form the above must have prior approval from the instructor. If clarifications are necessary, see the instructor. Do not discuss the project with members of other groups!
Both the processor and the test bench will weigh heavily on the project grade. Your report should not only thoroughly document and discuss the processor implementation but also your test bench.

Each group will turn in a final report in both hard copy and electronic form (Word document and source code). Completed source code must be burned onto a CD and the source code must be included in the project report. Each group will be required to demonstrate their program using one or more supplied test benches and one or more test benches created by the group. The final report and demonstration will be due no later than December 4th.

Monitor the class web page for project update information.

PKIPS.VHD – The KIPS project will be implemented in the PKIPS.VHD file. The entity is provided and must not be modified. You are to write the architecture. The timing diagram below shows how PKIPS interacts with the instruction memory and data memory. The memories are to be modeled in your test bench, and you must insure that the memory timing is modeled correctly. The test bench program must be read from a file as was done in Lab 6. The control signals nir, nrd, and nwr must be generated in PKIPS.

The timing diagram below shows how PKIPS interacts with the instruction memory and data memory. The memories are modeled in the test benches that I have provided, but you must understand this timing required for the memory. The control signals nir, nrd, and nwr must be generated in PKIPS.

entity pkips is

 port(res: in std_logic; clk: in std_logic;

 caddr: out std_logic_vector(31 downto 0);

 daddr: out std_logic_vector(31 downto 0);

 im: inout std_logic_vector(31 downto 0);

 dm: inout std_logic_vector(31 downto 0);

 nir: out std_logic; nrd: out std_logic;

 nwr: out std_logic);

 end;

	CLK
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	nIR
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	nRD
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	nWR
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	CADDR
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	DADDR
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	IM
	R
	
	R
	
	R
	
	R
	
	R
	
	R
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	DM
	
	
	R
	
	R
	
	W
	
	
	
	R
	

PKIPS.VHD

-- pkips.vhd: Simple pipelined MIPS processor

-- Egre 426: Computer organization and design

LiBRARY IEEE;

USE work.ALL;

USE IEEE.std_logic_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_unsigned.ALL;

entity pkips is

 port(res: in std_logic;

 clk: in std_logic;

 caddr: out std_logic_vector(31 downto 0);

 daddr: out std_logic_vector(31 downto 0);

 im: inout std_logic_vector(31 downto 0);

 dm: inout std_logic_vector(31 downto 0);

 nir: out std_logic;

 nrd: out std_logic;

 nwr: out std_logic);

 end;

architecture arch of pkips is

begin

end;

8
1

